Anatomy and Histochemistry of Seed Coat Development of Wild (Pisum sativum subsp. elatius (M. Bieb.) Asch. et Graebn. and Domesticated Pea (Pisum sativum subsp. sativum L.)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-07155S
Grant Agency of the Czech Republic
PubMed
33925728
PubMed Central
PMC8125792
DOI
10.3390/ijms22094602
PII: ijms22094602
Knihovny.cz E-zdroje
- Klíčová slova
- domestication, dormancy, legumes, macrosclereids, pea, permeability, seed coat, testa,
- MeSH
- domestikace MeSH
- endosperm MeSH
- genotyp MeSH
- hrách setý genetika metabolismus MeSH
- klíčení MeSH
- Magnoliopsida genetika metabolismus MeSH
- proteomika MeSH
- semena rostlinná genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
In angiosperms, the mature seed consists of embryo, endosperm, and a maternal plant-derived seed coat (SC). The SC plays a role in seed filling, protects the embryo, mediates dormancy and germination, and facilitates the dispersal of seeds. SC properties have been modified during the domestication process, resulting in the removal of dormancy, mediated by SC impermeability. This study compares the SC anatomy and histochemistry of two wild (JI64 and JI1794) and two domesticated (cv. Cameor and JI92) pea genotypes. Histochemical staining of five developmental stages: 13, 21, 27, 30 days after anthesis (DAA), and mature dry seeds revealed clear differences between both pea types. SC thickness is established early in the development (13 DAA) and is primarily governed by macrosclereid cells. Polyanionic staining by Ruthenium Red indicated non homogeneity of the SC, with a strong signal in the hilum, the micropyle, and the upper parts of the macrosclereids. High peroxidase activity was detected in both wild and cultivated genotypes and increased over the development peaking prior to desiccation. The detailed knowledge of SC anatomy is important for any molecular or biochemical studies, including gene expression and proteomic analysis, especially when comparing different genotypes and treatments. Analysis is useful for other crop-to-wild-progenitor comparisons of economically important legume crops.
Zobrazit více v PubMed
Bewley J.D., Bradford K., Hilhorst H., Nonogaki H. Seeds: Physiology of Development, Germination and Dormancy. 3rd ed. Springer; New York, NY, USA: 2013.
Baroux C., Grossniklaus U. Seeds-an evolutionary innovation underlying reproductive success in flowering plants. Curr. Top. Dev. Biol. 2019;131:605–642. doi: 10.1016/bs.ctdb.2018.11.017. PubMed DOI
Linkies A., Graeber K., Knight C., Leubner-Metzger G. The evolution of seeds. New Phytol. 2010;186:817–831. doi: 10.1111/j.1469-8137.2010.03249.x. PubMed DOI
Matilla A.J. Seed coat formation: Its evolution and regulation. Seed Sci. Res. 2019;29:215–226. doi: 10.1017/S0960258519000254. DOI
Coen O., Magnani E. Seed coat thickness in the evolution of Angiosperms. Cell. Mol. Life Sci. 2018;75:2509–2518. doi: 10.1007/s00018-018-2816-x. PubMed DOI PMC
Haughn G., Chaudhury A. Genetic analysis of seed coat development in Arabidopsis. Trends Plant Sci. 2005;10:472–477. doi: 10.1016/j.tplants.2005.08.005. PubMed DOI
Coen O., Fiume E., Xu W., De Vos D., Lu J., Pechoux C., Lepiniec L., Magnani E. Developmental patterning of the sub-epidermal integument cell layer in Arabidopsis seeds. Development. 2017;144:1490–1497. doi: 10.1242/dev.146274. PubMed DOI PMC
Debeaujon I., Léon-Kloosterziel K.M., Koornneef M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 2000;122:403–414. doi: 10.1104/pp.122.2.403. PubMed DOI PMC
Bentsink L., Koornneef M. Seed Dormancy and Germination. Arab. Book. 2008;6:e0119. doi: 10.1199/tab.0119. PubMed DOI PMC
Steinbrecher T., Leubner-Metzger G. Tissue and cellular mechanics of seeds. Curr. Opin. Genet. Dev. 2018;51:1–10. doi: 10.1016/j.gde.2018.03.001. PubMed DOI
Verdier J., Dessaint F., Schneider C., Abirached-Darmency M. A combined histology and transcriptome analysis unravels novel questions on Medicago truncatula seed coat. J. Exp. Bot. 2013;64:459–470. doi: 10.1093/jxb/ers304. PubMed DOI PMC
Radchuk V., Borisjuk L. Physical, metabolic and developmental functions of the seed coat. Front. Plant Sci. 2014;5:510. doi: 10.3389/fpls.2014.00510. PubMed DOI PMC
Smýkal P., Vernoud V., Blair M.W., Soukup A., Thompson R.D. The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant Sci. 2014;5:351. PubMed PMC
Gunn C.R. Seed Topography in the Fabaceae. Seed Sci. Technol. 1981;9:733–737.
Baskin C., Baskin J.M. Seed Ecology, Biogeography, and Evolution of Dormancy and Germination. 2nd ed. Academic Press; Elsevier; London, UK: 2014.
Moïse J.A., Han S., Gudynaitę-Savitch L., Johnson D.A., Miki B.L.A. Seed Coats: Structure, development, composition, and biotechnology. In Vitro Cell. Dev. Biol. Plant. 2005;41:620–644. doi: 10.1079/IVP2005686. DOI
Gallardo K., Firnhaber C., Zuber H., Héricher D., Belghazi M., Henry C., Küster H., Thompson R. A Combined proteome and transcriptome analysis of developing Medicago truncatula seeds: Evidence for metabolic specialization of maternal and filial tissues. Mol. Cell. Proteom. 2007;6:2165–2179. doi: 10.1074/mcp.M700171-MCP200. PubMed DOI
Wang H.L., Grusak M.A. Structure and development of Medicago truncatula pod wall and seed coat. Ann. Bot. 2005;95:737–747. doi: 10.1093/aob/mci080. PubMed DOI PMC
Fu F., Zhang W., Li Y.Y., Wang H.L. Establishment of the model system between phytochemicals and gene expression profiles in macrosclereid cells of Medicago truncatula. Sci. Rep. 2017;7:2580. doi: 10.1038/s41598-017-02827-5. PubMed DOI PMC
Qutob D.Q., Ma F.M., Peterson C.A.P.A., Bernards M.A.B.A., Gijzen M.G. Structural and permeability properties of the soybean seed coat. Botany. 2008;86:219–227. doi: 10.1139/B08-002. DOI
Miller S.S., Bowman L.-A.A., Gijzen M., Miki B.L.A. Early development of the seed coat of soybean (Glycine max) Ann. Bot. 1999;84:297–304. doi: 10.1006/anbo.1999.0915. DOI
Miller S.S., Jin Z., Schnell J.A., Romero M.C., Brown D.C.W., Johnson D.A. Hourglass Cell Development in the Soybean Seed Coat. Ann. Bot. 2010;106:235–242. doi: 10.1093/aob/mcq101. PubMed DOI PMC
Ranathunge K., Shao S., Qutob D., Gijzen M., Peterson C.A., Bernards M.A. Properties of the soybean seed coat cuticle change during development. Planta. 2010;231:1171–1188. doi: 10.1007/s00425-010-1118-9. PubMed DOI
Reeve R.M. Ontogeny of the sclereids in the integument of Pisum sativum L. Am. J. Bot. 1946;33:806–816. doi: 10.1002/j.1537-2197.1946.tb12946.x. DOI
Spurný M. Cell wall structure of the epidermal cells of the pea seed coat Pisum sativum L. Preslia. 1954;26:79–88.
Spurný M. The light line of the epidermal cells of the pea seed coat Pisum sativum L. Preslia. 1954;26:139–142.
Spurný M. Cell wall structure of epidermal cells of the pea seed coat (Pisum sativum L.) studied by microcinematography. Mikroskopie. 1963;l8:272–279.
Spurný M. Changes in the permeability of the seed coat in connection with the development of suberin adcrustations of the macrosclereids from the seed coat of the pea (Pisum sativum L.) Flora. 1964;154:547–567. doi: 10.1016/S0367-1615(17)32709-X. DOI
Marbach I., Mayer A.M. Permeability of seed coats to water as related to drying conditions and metabolism of phenolics 1. Plant Physiol. 1974;54:817–820. doi: 10.1104/pp.54.6.817. PubMed DOI PMC
Marbach I., Mayer A.M. Changes in catechol oxidase and permeability to water in seed coats of Pisum elatius during seed development and maturation. Plant Physiol. 1975;56:93–96. doi: 10.1104/pp.56.1.93. PubMed DOI PMC
Werker E., Marbach I., Mayer A.M. Relation between the anatomy of the testa, water permeability and the presence of phenolics in the genus Pisum. Ann. Bot. 1979;43:765–771. doi: 10.1093/oxfordjournals.aob.a085691. DOI
Harris W.M. On the Development of macrosclereids in seed coats of Pisum sativum L. Am. J. Bot. 1983;70:1528–1535. doi: 10.1002/j.1537-2197.1983.tb10856.x. DOI
Harris W.M. On the development of osteosclereids in seed coats of Pisum sativum L. New Phytol. 1984;98:135–141. doi: 10.1111/j.1469-8137.1984.tb06103.x. PubMed DOI
Van Dongen J.T., Ammerlaan A.M.H., Wouterlood M., Van Aelst A.C., Borstlap A.C. Structure of the developing pea seed coat and the post-phloem transport pathway of nutrients. Ann. Bot. 2003;91:729–737. doi: 10.1093/aob/mcg066. PubMed DOI PMC
Weber H., Borisjuk L., Wobus U. Molecular physiology of legume seed development. Annu. Rev. Plant Biol. 2005;56:253–279. doi: 10.1146/annurev.arplant.56.032604.144201. PubMed DOI
Kigel J., Rosental L., Fait A. Seed physiology and germination of grain legumes. In: De Ron A.M., editor. Plant Breeding. Springer; New York, NY, USA: 2015. pp. 327–363. Handbook of Plant Breeding.
Janská A., Pecková E., Sczepaniak B., Smýkal P., Soukup A. The role of the testa during the establishment of physical dormancy in the pea seed. Ann. Bot. 2019;123:815–829. doi: 10.1093/aob/mcy213. PubMed DOI PMC
Godwin J., Raviv B., Grafi G. Dead pericarps of dry fruits function as long-term storage for active hydrolytic enzymes and other substances that affect germination and microbial growth. Plants. 2017;6:64. doi: 10.3390/plants6040064. PubMed DOI PMC
Raviv B., Aghajanyan L., Granot G., Makover V., Frenkel O., Gutterman Y., Grafi G. The dead seed coat functions as a long-term storage for active hydrolytic enzymes. PLoS ONE. 2017;12:e0181102. doi: 10.1371/journal.pone.0181102. PubMed DOI PMC
Smýkal P., Nelson M.N., Berger J.D., Von Wettberg E.J.B. The impact of genetic changes during crop domestication. Agronomy. 2018;8:119. doi: 10.3390/agronomy8070119. DOI
Hradilová I., Trněný O., Válková M., Cechová M., Janská A., Prokešová L., Aamir K., Krezdorn N., Rotter B., Winter P., et al. A combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits: Pod dehiscence and seed dormancy in pea (Pisum sp.) Front. Plant Sci. 2017;8:542. doi: 10.3389/fpls.2017.00542. PubMed DOI PMC
Blixt S. Pea. In: King R.C., editor. Handbook of Genetics. Plenum Press; New York, NY, USA: 1974.
Soukup A. Selected simple methods of plant cell wall histochemistry and staining for light microscopy. In: Cvrčková F., Žárský V., editors. Plant Cell Morphogenesis: Methods and Protocols. Springer; New York, NY, USA: 2019. pp. 27–42. Methods in Molecular Biology. PubMed
Watson D.P. Structure of the testa and its relation to germination in the Papilionaceae tribes Trifoliae and Lotea. Ann. Bot. 1948;12:385–409. doi: 10.1093/oxfordjournals.aob.a083195. DOI
Corner E.J.H. The Leguminous Seed. Phytomorphology. 1951;1:117–150.
Rolston M.P. Water Impermeable Seed Dormancy. Bot. Rev. 1978;44:365–396. doi: 10.1007/BF02957854. DOI
Werker E. Seed dormancy as explained by anatomy of embryo envelopes. Isr. J. Bot. 1980;29:22–44.
Nadeau C.D., Ozga J.A., Kurepin L.V., Jin A., Pharis R.P., Reinecke D.M. Tissue-specific regulation of gibberellin biosynthesis in developing pea seeds. Plant Physiol. 2011;156:897–912. doi: 10.1104/pp.111.172577. PubMed DOI PMC
Chai M., Zhou C., Molina I., Fu C., Nakashima J., Li G., Zhang W., Park J., Tang Y., Jiang Q., et al. A class II KNOX gene, KNOX4, controls seed physical dormancy. Proc. Natl. Acad. Sci. USA. 2016;113:6997–7002. doi: 10.1073/pnas.1601256113. PubMed DOI PMC
McCartney L., Knox J.P. Regulation of pectic polysaccharide domains in relation to cell development and cell properties in the pea testa. J. Exp. Bot. 2002;53:707–713. doi: 10.1093/jexbot/53.369.707. PubMed DOI
Cechová M., Válková M., Hradilová I., Janská A., Soukup A., Smýkal P., Bednář P. Towards better understanding of pea seed dormancy using Laser Desorption/Ionization Mass Spectrometry. Int. J. Mol. Sci. 2017;18:2196. doi: 10.3390/ijms18102196. PubMed DOI PMC
Cavazza L. Recherches sur l’impermeabilite des grains dures chez les legumineuses. Ber. Schweiz Bot. Ges. 1950;60:596–610.
Hamly D.H. Softening of the Seeds of Melilotus alba. Bot. Gaz. 1932;93:345–375. doi: 10.1086/334269. DOI
Bevilacqua L.R., Roti-Michelozzi G., Modenesi P. The watertight dormancy of Melilotus alba seeds: Further observations on the palisade cell wall. Can. J. Bot. 1989;67:3453–3456. doi: 10.1139/b89-422. DOI
Martens H., Jakobsen H.B., Lyshede O.B. Development of the strophiole in seeds of white clover (Trifolium repens L.) Seed Sci. Res. 1995;5:171–176. doi: 10.1017/S0960258500002798. DOI
Manning J.C., van Staden J. The development and ultrastructure of the testa and tracheid bar in Erythrina lysistemon Hutch. (Leguminosae: Papilionoideae) Protoplasma. 1985;129:157–167. doi: 10.1007/BF01279913. DOI
De Jong A., Koerselman-Kooij J.W., Schuurmans J.A.M.J., Borstlap A.C. The mechanism of amino acid efflux from seed coats of developing pea seeds as revealed by uptake experiments. Plant Physiol. 1997;114:731–736. doi: 10.1104/pp.114.2.731. PubMed DOI PMC
Souza F.H.D.D., Marcos-Filho J. The seed coat as a modulator of seed-environment relationships in Fabaceae. Brazil. J. Bot. 2001;24:365–375. doi: 10.1590/S0100-84042001000400002. DOI
Egley G.H., Paul R.N., Duke S.O., Vaughn K.C. Peroxidase involvement in lignification in water-impermeable seed coats of weedy leguminous and malvaceous species. Plant Cell Environ. 1985;8:253–260. doi: 10.1111/1365-3040.ep11604651. DOI
Egley G.H., Paul R.N., Vaughn K.C., Duke S.O. Role of peroxidase in the development of water-impermeable seed coats in Sida spinosa L. Planta. 1983;157:224–232. doi: 10.1007/BF00405186. PubMed DOI
Gijzen M., Van Huystee R., Buzzell R.I. Soybean seed coat peroxidase (A comparison of high-activity and low-activity genotypes) Plant Physiol. 1993;103:1061–1066. doi: 10.1104/pp.103.4.1061. PubMed DOI PMC
Schmitz N., van Huystee R., Gijzen M. Characterization of anionic soybean (Glycine max) seed coat peroxidase. Can. J. Bot. 1997;75:1336–1341. doi: 10.1139/b97-845. DOI
Serrato-Valenti G., Cornara L., Ferrando M., Modenesi P. Structural and histochemical features of Stylosanthes scabra (Leguminosae; Papilionoideae) seed coat as related to water entry. Can. J. Bot. 1993;71:834–840. doi: 10.1139/b93-095. DOI
Hyde E.O.C. The Function of the hilum in some Papilionaceae in relation to the ripening of the seed and the permeability of the testa. Ann. Bot. 1954;18:241–256. doi: 10.1093/oxfordjournals.aob.a083393. DOI
Hanma A., Denna D. Moisture movement in impermeable snap bean seed. Quart. Bull. Mich. Agr. Exp. Sta. 1962;44:726–730.
Lush W.M., Evans L.T. The seed coats of cowpeas and other grain legumes: Structure in relation to function. Field Crops Res. 1980;3:267–286. doi: 10.1016/0378-4290(80)90034-9. DOI
Gillikin J., Graham J.S. Purification and developmental analysis of the major anionic peroxidase from the seed coat of Glycine max. Plant Physiol. 1991;96:214–220. doi: 10.1104/pp.96.1.214. PubMed DOI PMC
Chou Y.E., Schuetz M., Hoffmann N., Watanabe Y., Sibout R., Samuels A.L. Distribution, mobility, and anchoring of lignin-related oxidative enzymes in Arabidopsis secondary cell walls. J. Exp. Bot. 2018;69:1849–1859. doi: 10.1093/jxb/ery067. PubMed DOI PMC
Renard J., Martínez-Almonacid I., Sonntag A., Molina I., Moya-Cuevas J., Bissoli G., Muñoz-Bertomeu J., Faus I., Niñoles R., Shigeto J., et al. PRX2 and PRX25, Peroxidases regulated by cog1, are involved in seed longevity in Arabidopsis. Plant Cell Environ. 2020;43:315–326. doi: 10.1111/pce.13656. PubMed DOI
Müller K., Linkies A., Vreeburg R.A.M., Fry S.C., Krieger-Liszkay A., Leubner-Metzger G. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol. 2009;150:1855–1865. doi: 10.1104/pp.109.139204. PubMed DOI PMC
Pourcel L., Routaboul J.-M., Kerhoas L., Caboche M., Lepiniec L., Debeaujon I. TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell. 2005;17:2966–2980. doi: 10.1105/tpc.105.035154. PubMed DOI PMC
Renzi J.P., Duchoslav M., Brus J., Hradilová I., Pechanec V., Václavek T., Machalová J., Hron K., Verdier J., Smýkal P. Physical dormancy release in Medicago truncatula seeds is related to environmental variations. Plants. 2020;9:503. doi: 10.3390/plants9040503. PubMed DOI PMC
Collins T.J. ImageJ for Microscopy. BioTechniques. 2007;43:S25–S30. doi: 10.2144/000112517. PubMed DOI