• This record comes from PubMed

Paralogous Gene Recruitment in Multiple Families Constitutes Genetic Architecture and Robustness of Pod Dehiscence in Legumes

. 2024 Dec 04 ; 16 (12) : .

Language English Country Great Britain, England Media print

Document type Journal Article

Grant support
31930007 National Natural Science Foundation of China
19-07155S Grant Agency of the Czech Republic
PrF-2023-001 Palacky University Grant Agency

Pod dehiscence facilitates seed dispersal in wild legumes while indehiscence is a key domestication trait in cultivated ones. However, the evolutionary genetic mechanisms underlying its diversity are largely unclear. In this study, we compared transcriptomes of two warm-season (Glycine spp. and Phaseolus spp.) and two cool-season (Pisum spp. and Medicago ruthenica) legumes in analysis of dehiscent and indehiscent pod genotypes. Differentially expressed genes in AP2/ERF-like transcription factors and seven structural gene families, including lactoperoxidase, laccase, and cellulose synthase-interactive proteins, which are involved in secondary cell wall component accumulation, were identified to exert key roles in pod dehiscence variation. In accordance with this, higher lignin and cellulose contents were observed in pod secondary cell wall of dehiscent accessions of soybean and pea; however, the variation patterns of lignin polymers in soybean (accumulation) and pea (proportion) differed between dehiscent and indehiscent pods. Moreover, genome-wide comparative analysis revealed that orthogroups represented <1% of all identified differentially expressed genes could be traced among the four genera of legumes, while recruiting paralogous members may constitute the genetic robustness of legume pod dehiscence. This study compared the genetic mechanism among several legumes in pod dehiscence formation and revealed a compensating role of paralogous redundancy of involved gene families in seed dispersal, which can guide crop breeding.

See more in PubMed

Aguilar-Benitez  D, Rubio  J, Millán  T, Gil  J, Die  JV, Castro  P. Genetic analysis reveals PDH1 as a candidate gene for control of pod dehiscence in chickpea. Mol Breeding. 2020:40(4):40. 10.1007/s11032-020-01117-9. DOI

Akazome  Y, Kanda  S, Okubo  K, Oka  Y. Functional and evolutionary insights into vertebrate kisspeptin systems from studies of fish brain. J Fish Biol. 2010:76(1):161–182. 10.1111/j.1095-8649.2009.02496.x. PubMed DOI

Ali  S, Kucek  LK, Riday  H, Krom  N, Krogman  S, Cooper  K, Jacobs  L, Mehta  P, Trammell  M, Bhamidimarri  S, et al.  Transcript profiling of hairy vetch (Vicia villosa Roth) identified interesting genes for seed dormancy. Plant Genome. 2023:16(2):e20330. 10.1002/tpg2.20330. PubMed DOI

Armon  S, Efrati  E, Kupferman  R, Sharon  E. Geometry and mechanics in the opening of chiral seed pods. Science. 2011:333(6050):1726–1730. 10.1126/science.1203874. PubMed DOI

Aslan  C, Beckman  NG, Rogers  HS, Bronstein  J, Zurell  D, Hartig  F, Shea  K, Pejchar  L, Neubert  M, Poulsen  J, et al.  Employing plant functional groups to advance seed dispersal ecology and conservation. AoB Plants. 2019:11(2):plz006. 10.1093/aobpla/plz006. PubMed DOI PMC

Azani  N, Babineau  M, Bailey  CD, Banks  H, Barbosa  AR, Pinto  RB, Boatwright  JS, Borges  LM, Brown  GK, Bruneau  A, et al.  A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: the legume phylogeny working group (LPWG). Taxon. 2017:66(1):44–77. 10.12705/661.3. DOI

Bailon-Zambrano  R, Sucharov  J, Mumme-Monheit  A, Murry  M, Stenzel  A, Pulvino  AT, Mitchell  JM, Colborn  KL, Nichols  JT. Variable paralog expression underlies phenotype variation. eLife. 2022:11:e79247. 10.7554/eLife.79247. PubMed DOI PMC

Balarynová  J, Klčová  B, Sekaninová  J, Kobrlová  L, Cechová  MZ, Krejčí  P, Leonova  T, Gorbach  D, Ihling  C, Smržová  L, et al.  The loss of polyphenol oxidase function is associated with hilum pigmentation and has been selected during pea domestication. New Phytol. 2022:235(5):1807–1821. 10.1111/nph.18256. PubMed DOI

Ballester  P, Ferrándiz  C. Shattering fruits: variations on a dehiscent theme. Curr Opin Plant Biol. 2017:35:68–75. 10.1016/j.pbi.2016.11.008. PubMed DOI

Boerjan  W, Ralph  J, Baucher  M. Lignin biosynthesis. Annu Rev Plant Biol. 2003:54(1):519–546. 10.1146/annurev.arplant.54.031902.134938. PubMed DOI

Cantalapiedra  CP, Hernández-Plaza  A, Letunic  I, Bork  P, Huerta-Cepas  J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol Biol Evol. 2021:38(12):5825–5829. 10.1093/molbev/msab293. PubMed DOI PMC

Cao  H, Chen  J, Yue  M, Xu  C, Jian  W, Liu  Y, Song  B, Gao  Y, Cheng  Y, Li  Z. Tomato transcriptional repressor MYB70 directly regulates ethylene-dependent fruit ripening. Plant J. 2020:104(6):1568–1581. 10.1111/tpj.15021. PubMed DOI

Cao  M-J, Zhang  Y-L, Liu  X, Huang  H, Zhou  XE, Wang  W-L, Zeng  A, Zhao  C-Z, Si  T, Du  J, et al.  Combining chemical and genetic approaches to increase drought resistance in plants. Nat Commun. 2017:30(1):1183. 10.1038/s41467-017-01239-3. PubMed DOI PMC

Cao  Z, Socquet-Juglard  D, Daba  K, Vandenberg  A, Bett  KE. Understanding genome structure facilitates the use of wild lentil germplasm for breeding: a case study with shattering loci. Plant Genome. 2024:17(2):e20455. 10.1002/tpg2.20455. PubMed DOI

Cárdenas  PD, Almeida  A, Bak  S. Evolution of structural diversity of triterpenoids. Front Plant Sci. 2019:10:1523. 10.3389/fpls.2019.01523. PubMed DOI PMC

Chamberlain-Irwin  HN, Hufford  MB. Convergent domestication: finding the genes that make crops. Curr Biol. 2022:32(12):R585–R588. 10.1016/j.cub.2022.05.003. PubMed DOI

Chen  S, Zhou  Y, Chen  Y, Gu  J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018:34(17):884–890. 10.1093/bioinformatics/bty560. PubMed DOI PMC

Dai  Y, Luo  L, Zhao  Z. Genetic robustness control of auxin output in priming organ initiation. Proc Natl Acad Sci U S A. 2023:120(28):e2221606120. 10.1073/pnas.2221606120. PubMed DOI PMC

Diss  G, Ascencio  D, DeLuna  A, Landry  CR. Molecular mechanisms of paralogous compensation and the robustness of cellular networks. J Exp Zool B Mol Dev Evol. 2014:322(7):488–499. 10.1002/jez.b.22555. PubMed DOI

Di Vittori  V, Bitocchi  E, Rodriguez  M, Alseekh  S, Bellucci  E, Nanni  L, Gioia  T, Marzario  S, Logozzo  G, Rossato  M, et al.  Pod indehiscence in common bean is associated with the fine regulation of PvMYB26. J Exp Bot. 2021:72(5):1617–1633. 10.1093/jxb/eraa553. PubMed DOI PMC

Di Vittori  V, Gioia  T, Rodriguez  M, Bellucci  E, Bitocchi  E, Nanni  L, Attene  G, Rau  D, Papa  R. Convergent evolution of the seed shattering trait. Genes (Basel). 2019:10(1):68. 10.3390/genes10010068. PubMed DOI PMC

Dong  XM, Chen  JW, Zhou  Q, Luo  D, Fang  LF, Liu  WX, Liu  ZP. Pod-shattering characteristic differences between shattering-resistant and shattering-susceptible common vetch accessions are associated with lignin biosynthesis. J Integr Agr. 10.1016/j.jia.2024.03.032, 2024, preprint: not peer reviewed. DOI

Dong  Y, Yang  X, Liu  J, Wang  B-H, Liu  B-L, Wang  Y-Z. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat Commun. 2014:5(1):3352. 10.1038/ncomms4352. PubMed DOI

Edgar  RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004:5(1):113. 10.1186/1471-2105-5-113. PubMed DOI PMC

Emms  DM, Kelly  S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Bio. 2019:20(1):238. 10.1186/s13059-019-1832-y. PubMed DOI PMC

Félix  M-A, Wagner  A. Robustness and evolution: concepts, insights and challenges from a developmental model system. Heredity (Edinb).  2008:100(2):132–140. 10.1038/sj.hdy.6800915. PubMed DOI

Forlani  S, Masiero  S, Mizzotti  C. Fruit ripening: the role of hormones, cell wall modifications, and their relationship with pathogens. J Exp Bot. 2019:70(11):2993–3006. 10.1093/jxb/erz112. PubMed DOI

Forlani  S, Mizzotti  C, Masiero  S. The NAC side of the fruit: tuning of fruit development and maturation. BMC Plant Biol. 2021:21(1):238. 10.1186/s12870-021-03029-y. PubMed DOI PMC

Fourquin  C, del Cerro  C, Victoria  FC, Vialette-Guiraud  A, de Oliveira  AC, Ferrándiz  C. A change in SHATTERPROOF protein lies at the origin of a fruit morphological novelty and a new strategy for seed dispersal in Medicago genus. Plant Physiol. 2013:162(2):907–917. 10.1104/pp.113.217570. PubMed DOI PMC

Fu  C, Chen  H, Gao  H, Lu  Y, Han  C, Han  Y. Two papaya MYB proteins function in fruit ripening by regulating some genes involved in cell-wall degradation and carotenoid biosynthesis. J Sci Food Agric. 2020:100(12):4442–4448. 10.1002/jsfa.10484. PubMed DOI

Fuller  DQ, Allaby  R. Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. In: Østergaard  L, editor. Annual plant reviews volume 38: fruit development and seed dispersal. Oxford: Wiley-Blackwell; 2009. p. 238–295. 10.1002/9781444314557.ch7. DOI

Fuller  DQ, Denham  T, Arroyo-Kalin  M, Lucas  L, Stevens  CJ, Qin  L, Allaby  RG, Purugganan  MD. Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc Natl Acad Sci U S A. 2014:111(17):6147–6152. 10.1073/pnas.1308937110. PubMed DOI PMC

Funatsuki  H, Suzuki  M, Hirose  A, Inaba  H, Yamada  T, Hajika  M, Komatsu  K, Katayama  T, Sayama  T, Ishimoto  M, et al.  Molecular basis of a shattering resistance boosting global dissemination of soybean. Proc Natl Acad Sci U S A. 2014:111(50):17797–17802. 10.1073/pnas.1417282111. PubMed DOI PMC

Gu  C, Guo  Z-H, Hao  P-P, Wang  G-M, Jin  Z-M, Zhang  S-L. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Bot Stud. 2017:58(1):6. 10.1186/s40529-016-0159-1. PubMed DOI PMC

Guo  MW, Zhu  L, Li  HY, Liu  WP, Wu  ZN, Wang  CH, Liu  L, Li  ZY, Li  J. Mechanism of pod shattering in the forage legume Medicago ruthenica. Plant Physiol Biochem. 2022:185:260–267. 10.1016/j.plaphy.2022.06.013. PubMed DOI

Hammer  K. Das Domestikationssyndrom. Kulturpflanze.  1984:32(1):11–34. 10.1007/BF02098682. DOI

Han  J, Han  D, Guo  Y, Yan  H, Wei  Z, Tian  Y, Qiu  L. QTL mapping pod dehiscence resistance in soybean (Glycine max L. Merr.) using specific-locus amplified fragment sequencing. Theor Appl Genet. 2019:132(8):2253–2272. 10.1007/s00122-019-03352-x. PubMed DOI PMC

Hofhuis  H, Moulton  D, Lessinnes  T, Routier-Kierzkowska  A-L, Bomphrey  RJ, Mosca  G, Reinhardt  H, Sarchet  P, Gan  X, Tsiantis  M, et al.  Morphomechanical innovation drives explosive seed dispersal. Cell. 2016:166(1):222–233. 10.1016/j.cell.2016.05.002. PubMed DOI PMC

Hradilová  I, Trněný  O, Válková  M, Cechová  M, Janská  A, Prokešová  L, Aamir  K, Krezdorn  N, Rotter  B, Winter  P, et al.  A combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits: pod dehiscence and seed dormancy in pea (Pisum sp.). Front Plant Sci. 2017:8:542. 10.3389/fpls.2017.00542. PubMed DOI PMC

Hu  D, Kan  G, Hu  W, Li  Y, Hao  D, Li  X, Yang  H, Yang  Z, He  X, Huang  F, et al.  Identification of loci and candidate genes responsible for pod dehiscence in soybean via genome-wide association analysis across multiple environments. Front Plant Sci. 2019:10:811. 10.3389/fpls.2019.00811. PubMed DOI PMC

Iohannes  SD, Jackson  D. Tackling redundancy: genetic mechanisms underlying paralog compensation in plants. New Phytol. 2023:240(4):1381–1389. 10.1111/nph.19267. PubMed DOI

Jin  J, Tian  F, Yang  D-C, Meng  Y-Q, Kong  L, Luo  J, Gao  G. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2017:45(D1):1040–1045. 10.1093/nar/gkw982. PubMed DOI PMC

Johnson  LS, Eddy  SR, Portugaly  E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics. 2010:11(1):431. 10.1186/1471-2105-11-431. PubMed DOI PMC

Kang  X, Cai  J, Chen  Y, Yan  Y, Yang  S, He  R, Wang  D, Zhu  Y. Pod-shattering characteristics differences between two groups of soybeans are associated with specific changes in gene expression. Funct Integr Genomics. 2020:20(2):201–210. 10.1007/s10142-019-00702-2. PubMed DOI

Kessler  A, Kalske  A. Plant secondary metabolite diversity and species interactions. Annu Rev Ecol Evol Syst. 2018:49(1):115–138. 10.1146/annurev-ecolsys-110617-062406. DOI

Kim  D, Paggi  JM, Park  C, Bennett  C, Salzberg  SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019:37(8):907–915. 10.1038/s41587-019-0201-4. PubMed DOI PMC

Koonin  EV. Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet. 2005:39(1):309–338. 10.1146/annurev.genet.39.073003.114725. PubMed DOI

Kumar  M, Campbell  L, Turner  S. Secondary cell walls: biosynthesis and manipulation. J Exp Bot. 2016:67(2):515–531. 10.1093/jxb/erv533. PubMed DOI

Langfelder  P, Horvath  S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008:9(1):559. 10.1186/1471-2105-9-559. PubMed DOI PMC

Lee  JS, Kim  KR, Ha  B-K, Kang  S. Identification of SNPs tightly linked to the QTL for pod shattering in soybean. Mol Breed. 2017:37(4):54. 10.1007/s11032-017-0656-2. DOI

Lenser  T, Theißen  G. Molecular mechanisms involved in convergent crop domestication. Trends Plant Sci. 2013:18(12):704–714. 10.1016/j.tplants.2013.08.007. PubMed DOI

Li  T, Liu  Z, Lv  T, Xu  Y, Wei  Y, Liu  W, Wei  Y, Liu  L, Wang  A. Phosphorylation of MdCYTOKININ RESPONSE FACTOR4 suppresses ethylene biosynthesis during apple fruit ripening. Plant Physiol. 2023:191(1):694–714. 10.1093/plphys/kiac498. PubMed DOI PMC

Liao  Y, Smyth  GK, Shi  W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014:30(7):923–930. 10.1093/bioinformatics/btt656. PubMed DOI

Liljegren  SJ, Ditta  GS, Eshed  Y, Savidge  B, Bowman  JL, Yanofsky  MF. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature. 2000:404(6779):766–770. 10.1038/35008089. PubMed DOI

Liljegren  SJ, Roeder  AH, Kempin  SA, Gremski  K, Østergaard  L, Guimil  S, Reyes  DK, Yanofsky  MF. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell. 2004:116(6):843–853. 10.1016/S0092-8674(04)00217-X. PubMed DOI

Liu  C, Ma  T, Yuan  D, Zhou  Y, Long  Y, Li  Z, Dong  Z, Duan  M, Yu  D, Jing  Y, et al.  The OsEIL1-OsERF115-target gene regulatory module controls grain size and weight in rice. Plant Biotechnol J. 2022:20(8):1470–1486. 10.1111/pbi.13825. PubMed DOI PMC

Lo  S, Muñoz-Amatriaín  M, Boukar  O, Herniter  I, Cisse  N, Guo  Y-N, Roberts  PA, Xu  S, Fatokun  C, Close  TJ. Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Sci Rep. 2018:8(1):6261. 10.1038/s41598-018-24349-4. PubMed DOI PMC

Lyu  X, Li  Y-H, Li  Y, Li  D, Han  C, Hong  H, Tian  Y, Han  L, Liu  B, Qiu  L-J. The domestication-associated L1 gene encodes a eucomic acid synthase pleiotropically modulating pod pigmentation and shattering in soybean. Mol Plant. 2023:16(7):1178–1191. 10.1016/j.molp.2023.06.003. PubMed DOI

Maity  A, Lamichaney  A, Joshi  DC, Bajwa  A, Subramanian  N, Walsh  M, Bagavathiannan  M. Seed shattering: a trait of evolutionary importance in plants. Front Plant Sci. 2021:12:657773. 10.3389/fpls.2021.657773. PubMed DOI PMC

Marsh  JI, Nestor  BJ, Petereit  J, Tay Fernandez  CG, Bayer  PE, Batley  J, Edwards  D. Legume-wide comparative analysis of pod shatter locus PDH1 reveals phaseoloid specificity, high cowpea expression, and stress responsive genomic context. Plant J. 2023:115(1):68–80. 10.1111/tpj.16209. PubMed DOI

Masel  J, Siegal  ML. Robustness: mechanisms and consequences. Trends Genet. 2009:25(9):395–403. 10.1016/j.tig.2009.07.005. PubMed DOI PMC

McCahill  IW, Hazen  SP. Regulation of cell wall thickening by a medley of mechanisms. Trends Plant Sci. 2019:24(9):853–866. 10.1016/j.tplants.2019.05.012. PubMed DOI

Meiklejohn  CD, Hartl  DL. A single mode of canalization. Trends Ecol Evol. 2002:17(10):468–473. 10.1016/S0169-5347(02)02596-X. DOI

Miranda  C, Culp  C, Škrabišová  M, Joshi  T, Belzile  F, Grant  D, Bilyeu  K. Molecular tools for detecting Pdh1 can improve soybean breeding efficiency by reducing yield losses due to pod shatter. Mol Breeding. 2019:39(2):27. 10.1007/s11032-019-0935-1. DOI

Mitsuda  N, Ohme-Takagi  M. NAC transcription factors NST1 and NST3 regulate pod shattering in a partially redundant manner by promoting secondary wall formation after the establishment of tissue identity. Plant J. 2008:56(5):768–778. 10.1111/j.1365-313X.2008.03633.x. PubMed DOI

Moghaddam  SM, Mamidi  S, Osorno  JM, Lee  R, Brick  M, Kelly  J, Miklas  P, Urrea  C, Song  Q, Cregan  P, et al.  Genome-wide association study identifies candidate loci underlying agronomic traits in a middle American diversity panel of common bean. Plant Genome. 2016:9(3):1–21. 10.3835/plantgenome2016.02.0012. PubMed DOI

Murgia  ML, Attene  G, Rodriguez  M, Bitocchi  E, Bellucci  E, Fois  D, Nanni  L, Gioia  T, Albani  DM, Papa  R, et al.  A comprehensive phenotypic investigation of the “pod-shattering syndrome” in common bean. Front Plant Sci. 2017:8:251. 10.3389/fpls.2017.00251. PubMed DOI PMC

Nelson  AS, Gelambi  M, Morales-M  E, Whitehead  SR. Fruit secondary metabolites alter the quantity and quality of a seed dispersal mutualism. Ecology. 2023:104(5):e4032. 10.1002/ecy.4032. PubMed DOI

Nelson  AS, Whitehead  SR. Fruit secondary metabolites shape seed dispersal effectiveness. Trends Ecol Evol. 2021:36(12):1113–1123. 10.1016/j.tree.2021.08.005. PubMed DOI

Nguyen  L-T, Schmidt  HA, von Haeseler  A, Minh  BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015:32(1):268–274. 10.1093/molbev/msu300. PubMed DOI PMC

Ogutcen  E, Pandey  A, Khan  MK, Marques  E, Penmetsa  RV, Kahraman  A, Von Wettberg  EJB. Pod shattering: a homologous series of variation underlying domestication and an avenue for crop improvement. Agronomy. 2018:8(8):137. 10.3390/agronomy8080137. DOI

Parker  TA, Berny Mier Y Teran  JC, Palkovic  A, Jernstedt  J, Gepts  P. Pod indehiscence is a domestication and aridity resilience trait in common bean. New Phytol. 2020:225(1):558–570. 10.1111/nph.16164. PubMed DOI

Parker  TA, de Sousa  LL, de Oliveira Floriani  T, Palkovic  A, Gepts  P. Toward the introgression of PvPdh1 for increased resistance to pod shattering in common bean. Theor Appl Genet. 2021:134(1):313–325. 10.1007/s00122-020-03698-7. PubMed DOI

Parker  TA, Lo  S, Gepts  P. Pod shattering in grain legumes: emerging genetic and environment-related patterns. Plant Cell. 2021:33(2):179–199. 10.1093/plcell/koaa025. PubMed DOI PMC

Pérez-Antón  M, Schneider  I, Kroll  P, Hofhuis  H, Metzger  S, Pauly  M, Hay  A. Explosive seed dispersal depends on SPL7 to ensure sufficient copper for localized lignin deposition via laccases. Proc Natl Acad Sci U S A. 2022:119(24):e2202287119. 10.1073/pnas.2202287119. PubMed DOI PMC

Pichersky  E, Noel  JP, Dudareva  N. Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science. 2006:311(5762):808. 10.1126/science.1118510. PubMed DOI PMC

Pourkheirandish  M, Hensel  G, Kilian  B, Senthil  N, Chen  G, Sameri  M, Azhaguvel  P, Sakuma  S, Dhanagond  S, Sharma  R, et al.  Evolution of the grain dispersal system in barley. Cell. 2015:162(3):527–539. 10.1016/j.cell.2015.07.002. PubMed DOI

Qi  X, Liu  L, Liu  C, Song  L, Dong  Y, Chen  L, Li  M. Sweet cherry AP2/ERF transcription factor, PavRAV2, negatively modulates fruit size by directly repressing PavKLUH expression. Physiol Plant. 2023:175(6):e14065. 10.1111/ppl.14065. PubMed DOI

Qiao  X, Li  Q, Yin  H, Qi  K, Li  L, Wang  R, Zhang  S, Paterson  AH. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Bio. 2019:20(1):38. 10.1186/s13059-019-1650-2. PubMed DOI PMC

R Core Team . R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; 2020. https://www.R-project.org/.

Rajani  S, Sundaresan  V. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence. Curr Biol. 2001:11(24):1914–1922. 10.1016/S0960-9822(01)00593-0. PubMed DOI

Rau  D, Murgia  ML, Rodriguez  M, Bitocchi  E, Bellucci  E, Fois  D, Albani  D, Nanni  L, Gioia  T, Santo  D, et al.  Genomic dissection of pod shattering in common bean: mutations at non-orthologous loci at the basis of convergent phenotypic evolution under domestication of leguminous species. Plant J. 2019:97(4):693–714. 10.1111/tpj.14155. PubMed DOI

Ripoll  JJ, Roeder  AH, Ditta  GS, Yanofsky  MF. A novel role for the floral homeotic gene APETALA2 during Arabidopsis fruit development. Development. 2011:138(23):5167–5176. 10.1242/dev.073031. PubMed DOI

Rodríguez  A, Alquézar  B, Peña  L. Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytol. 2013:197(1):36–48. 10.1111/j.1469-8137.2012.04382.x. PubMed DOI

Selby  R, Jones  DS. Complex peptide hormone signaling in plant stem cells. Curr Opin Plant Biol. 2023:75:102442. 10.1016/j.pbi.2023.102442. PubMed DOI

Seo  J-H, Kang  B-K, Dhungana  SK, Oh  J-H, Choi  M-S, Park  J-H, Shin  S-O, Kim  H-S, Baek  I-Y, Sung  J-S, et al.  QTL mapping and candidate gene analysis for pod shattering tolerance in soybean (Glycine max). Plants. 2020:9(9):1163. 10.3390/plants9091163. PubMed DOI PMC

Shannon  P, Markiel  A, Ozier  O, Baliga  NS, Wang  JT, Ramage  D, Amin  N, Schwikowski  B, Ideker  T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003:13(11):2498–2504. 10.1101/gr.1239303. PubMed DOI PMC

Sharma  D, Koul  A, Kaul  S, Dhar  MK. Tissue-specific transcriptional regulation and metabolite accumulation in tomato (Solanum lycopersicum L.). Protoplasma. 2020:257(4):1093–1108. 10.1007/s00709-020-01492-2. PubMed DOI

Shi  Y, Li  BJ, Su  G, Zhang  M, Grierson  D, Chen  KS. Transcriptional regulation of fleshy fruit texture. J Integr Plant Biol. 2022:64(9):1649–1672. 10.1111/jipb.13316. PubMed DOI

Smýkal  P, Parker  T. Domestication-related changes in seed dispersal and pigmentation: visual selection and functional trait?  Mol Plant. 2023:16(8):1240–1242. 10.1016/j.molp.2023.07.007. PubMed DOI

Steigemann  P, Gerlich  DW. Cytokinetic abscission: cellular dynamics at the midbody. Trends Cell Biol. 2009:19(11):606–616. 10.1016/j.tcb.2009.07.008. PubMed DOI

Suzuki  IK, Gacquer  D, Van Heurck  R, Kumar  D, Wojno  M, Bilheu  A, Herpoel  A, Lambert  N, Cheron  J, Polleux  F, et al.  Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation. Cell. 2018:173(6):1370–1384.e16. 10.1016/j.cell.2018.03.067. PubMed DOI PMC

Takahashi  Y, Kongjaimun  A, Muto  C, Kobayashi  Y, Kumagai  M, Sakai  H, Satou  K, Teruya  K, Shiroma  A, Shimoji  M, et al.  Same locus for non-shattering seed pod in two independently domesticated legumes, Vigna angularis and Vigna unguiculata. Front Genet. 2020:11:748. 10.3389/fgene.2020.00748. PubMed DOI PMC

Tang  D, Gallusci  P, Lang  Z. Fruit development and epigenetic modifications. New Phytol. 2020:228(3):839–844. 10.1111/nph.16724. PubMed DOI

Tang  H, Bowers  JE, Wang  X, Ming  R, Alam  M, Paterson  AH. Synteny and collinearity in plant genomes. Science. 2008:320(5875):486–488. 10.1126/science.1153917. PubMed DOI

Tohge  T, Alseekh  S, Fernie  AR. On the regulation and function of secondary metabolism during fruit development and ripening. J Exp Bot. 2014:65(16):4599–4611. 10.1093/jxb/ert443. PubMed DOI

Vanholme  R, De Meester  B, Ralph  J, Boerjan  W. Lignin biosynthesis and its integration into metabolism. Curr Opin Biotechnol. 2019:56:230–239. 10.1016/j.copbio.2019.02.018. PubMed DOI

Wang  D, Seymour  GB. Molecular and biochemical basis of softening in tomato. Mol Hortic. 2022:2(1):5. 10.1186/s43897-022-00026-z. PubMed DOI PMC

Wang  L, Liu  X, Li  Q, Xu  N, He  C. A lineage-specific arginine in POS1 is required for fruit size control in Physaleae (Solanaceae) via gene co-option. Plant J. 2022:111(1):183–204. 10.1111/tpj.15786. PubMed DOI

Wang  W-N, Wei  Y-T, Zhao  S-T, Yu  F-H, Wang  J-W, Gu  C-Y, Liu  X-R, Sai  N, Zhu  J-L, Wang  QM, et al.  ABSCISIC ACID-INSENSITIVE 5-KIP-RELATED PROTEIN 1-SHOOT MERISTEMLESS modulates reproductive development of Arabidopsis. Plant Physiol. 2024:195(3):2309–2322. 10.1093/plphys/kiae146. PubMed DOI

Weeden  NF. Genetic changes accompanying the domestication of Pisum sativum: is there a common genetic basis to the ‘domestication syndrome’ for legumes?  Ann Bot. 2007:100(5):1017–1025. 10.1093/aob/mcm122. PubMed DOI PMC

Weeden  NF, Brauner  S, Przyborowski  JA. Genetic analysis of pod dehiscence in pea (Pisum sativum L.). Cell Mol Biol Lett. 2002:7(2B):657–663. https://api.semanticscholar.org/CorpusID:13872236. PubMed

Wu  H, He  Q, He  B, He  S, Zeng  L, Yang  L, Zhang  H, Wei  Z, Hu  X, Hu  J, et al.  Gibberellin signaling regulates lignin biosynthesis to modulate rice seed shattering. Plant Cell. 2023:35(12):4383–4404. 10.1093/plcell/koad244. PubMed DOI PMC

Wu  H, He  Q, Wang  Q. Advances in rice seed shattering. Int J Mol Sci. 2023:24(10):8889. 10.3390/ijms24108889. PubMed DOI PMC

Wu  T, Hu  E, Xu  S, Chen  M, Guo  P, Dai  Z, Feng  T, Zhou  L, Tang  W, Zhan  L, et al.  clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021:2(3):100141. 10.1016/j.xinn.2021.100141. PubMed DOI PMC

Xu  B, Yang  Z. PAMLX: a graphical user interface for PAML. Mol Biol Evol. 2013:30(12):2723–2724. 10.1093/molbev/mst179. PubMed DOI

Yang  C, Song  J, Ferguson  AC, Klisch  D, Simpson  K, Mo  R, Taylor  B, Mitsuda  N, Wilson  ZA. Transcription factor MYB26 is key to spatial specificity in anther secondary thickening formation. Plant Physiol. 2017:175(1):333–350. 10.1104/pp.17.00719. PubMed DOI PMC

Yang  JH, Wang  H. Molecular mechanisms for vascular development and secondary cell wall formation. Front Plant Sci. 2016:7:356. 10.3389/fpls.2016.00356. PubMed DOI PMC

Yang  SW, Jin  E, Chung  IK, Kim  WT. Cell cycle-dependent regulation of telomerase activity by auxin, abscisic acid and protein phosphorylation in tobacco BY-2 suspension culture cells. Plant J. 2002:29(5):617–626. 10.1046/j.0960-7412.2001.01244.x. PubMed DOI

Yong  B, Zhu  W, Wei  S, Li  B, Wang  Y, Xu  N, Lu  J, Chen  Q, He  C. Parallel selection of loss-of-function alleles of Pdh1 orthologous genes in warm-season legumes for pod indehiscence and plasticity is related to precipitation. New Phytol. 2023:240(2):863–879. 10.1111/nph.19150. PubMed DOI

Yuan  L, Grotewold  E. Plant specialized metabolism. Plant Sci. 2020:298:110579. 10.1016/j.plantsci.2020.110579. PubMed DOI

Zablatzká  L, Balarynová  J, Klčová  B, Kopecký  P, Smýkal  P. Anatomy and histochemistry of seed coat development of wild (Pisum sativum subsp. elatius (M. Bieb.) Asch. et Graebn. and domesticated pea (Pisum sativum subsp. sativum L.). Int J Mol Sci. 2021:22(9):4602. 10.3390/ijms22094602. PubMed DOI PMC

Zeng  JK, Li  X, Xu  Q, Chen  JY, Yin  XR, Ferguson  IB, Chen  KS. EjAP2-1, an AP2/ERF gene, is a novel regulator of fruit lignification induced by chilling injury, via interaction with EjMYB transcription factors. Plant Biotechnol J. 2015:13(9):1325–1334. 10.1111/pbi.12351. PubMed DOI

Zhai  Y, Fan  Z, Cui  Y, Gu  X, Chen  S, Ma  H. APETALA2/ethylene responsive factor in fruit ripening: roles, interactions and expression regulation. Front Plant Sci. 2022:13:979348. 10.3389/fpls.2022.979348. PubMed DOI PMC

Zhang  QY, Tu  BJ, Liu  CK, Liu  XB. Pod anatomy, morphology and dehiscing forces in pod dehiscence of soybean (Glycine max (L.) Merrill). Flora. 2018:248:48–53. 10.1016/j.flora.2018.08.014. DOI

Zhao  Y, Zhang  R, Jiang  K-W, Qi  J, Hu  Y, Guo  J, Zhu  R, Zhang  T, Egan  AN, Yi  T-S, et al.  Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Mol Plant. 2021:14(5):748–773. 10.1016/j.molp.2021.02.006. PubMed DOI

Zhong  R, Demura  T, Ye  Z-H. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell. 2006:18(11):3158–3170. 10.1105/tpc.106.047399. PubMed DOI PMC

Zhou  Y, Lu  D, Li  C, Luo  J, Zhu  B-F, Zhu  J, Shangguan  Y, Wang  Z, Sang  T, Zhou  B, et al.  Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1. Plant Cell. 2012:24(3):1034–1048. 10.1105/tpc.111.094383. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...