Exploring How Adipose Tissue, Obesity, and Gender Influence the Immune Response to Vaccines: A Comprehensive Narrative Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
22
FONACIT. Ministry Science and Technology Venezuela
LX22NPO5103
National Institute of Virology and Bacterioloy EXCELES Project
CZ.02.1.01/0.0/0.0/16_019/0000868,
Ministry of Education, Youth, and Sports of the Czech Republic. ENOCH Project
PubMed
39859575
PubMed Central
PMC11765591
DOI
10.3390/ijms26020862
PII: ijms26020862
Knihovny.cz E-zdroje
- Klíčová slova
- adipokines, gender, immune response, inactivated vaccine, mRNA vaccines, obesity, recombinant vaccines, thyroid hormones, vaccine response,
- MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- obezita * imunologie MeSH
- sexuální faktory MeSH
- tuková tkáň * imunologie metabolismus MeSH
- vakcinace MeSH
- vakcíny * imunologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- vakcíny * MeSH
Vaccines represent an essential tool for the prevention of infectious diseases. Upon administration, a complex interaction occurs between the vaccine formulation and the recipient's immune system, ultimately resulting in protection against disease. Significant variability exists in individual and population responses to vaccination, and these differences remain the focus of the ongoing research. Notably, well-documented factors, such as age, gender, and genetic predisposition, influence immune responses. In contrast, the effects of overweight and obesity have not been as thoroughly investigated. The evidence indicates that a high body mass index (BMI) constitutes a significant risk factor for infections in general, with adipose tissue playing a crucial role in modulating the immune response. Furthermore, suboptimal levels of vaccine seroconversion have been observed among individuals with obesity. This review provides a plausible examination of the immunity and protection conferred by various vaccines in individuals with an overweight status, offering a comprehensive analysis of the mechanisms to enhance vaccination efficiency.
Zobrazit více v PubMed
Explaining How Vaccines Work. [(accessed on 8 December 2024)]; Available online: https://www.cdc.gov/vaccines/basics/explaining-how-vaccines-work.html.
Petrakis D., Margină D., Tsarouhas K., Tekos F., Stan M., Nikitovic D., Kouretas D., Spandidos D.A., Tsatsakis A. Obesity—A risk factor for increased COVID-19 prevalence, severity and lethality (Review) Mol. Med. Rep. 2020;22:9–19. doi: 10.3892/mmr.2020.11127. PubMed DOI PMC
Russo A., Pisaturo M., Zollo V., Martini S., Maggi P., Numis F.G., Gentile I., Sangiovanni N., Rossomando A.M., Bianco V., et al. Obesity as a Risk Factor of Severe Outcome of COVID-19: A Pair-Matched 1:2 Case–Control Study. J. Clin. Med. 2023;12:4055. doi: 10.3390/jcm12124055. PubMed DOI PMC
Nasr M.-J.C., Geerling E., Pinto A.K. Impact of Obesity on Vaccination to SARS-CoV-2. Front. Endocrinol. 2022;13:898810. doi: 10.3389/fendo.2022.898810. PubMed DOI PMC
Chauvin C., Retnakumar S.V., Bayry J. Obesity negatively impacts maintenance of antibody response to COVID-19 vaccines. Cell Rep. Med. 2023;4:101117. doi: 10.1016/j.xcrm.2023.101117. PubMed DOI PMC
van der Klaauw A.A., Horner E.C., Pereyra-Gerber P., Agrawal U., Foster W.S., Spencer S., Vergese B., Smith M., Henning E., Ramsay I.D., et al. Accelerated waning of the humoral response to COVID-19 vaccines in obesity. Nat. Med. 2023;29:1146–1154. doi: 10.1038/s41591-023-02343-2. PubMed DOI PMC
D’souza M., Keeshan A., Gravel C.A., Langlois M.-A., Cooper C.L. Obesity does not influence SARS-CoV-2 humoral vaccine immunogenicity. NPJ Vaccines. 2024;9:226. doi: 10.1038/s41541-024-01022-8. PubMed DOI PMC
Zwick R.K., Guerrero-Juarez C.F., Horsley V., Plikus M.V. Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Cell Metab. 2018;27:68–83. doi: 10.1016/j.cmet.2017.12.002. PubMed DOI PMC
Hagberg C.E., Spalding K.L. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat. Rev. Mol. Cell Biol. 2024;25:270–289. doi: 10.1038/s41580-023-00680-1. PubMed DOI
Richard A.J., White U., Elks C.M., Stephens J.M. Adipose Tissue: Physiology to Metabolic Dysfunction. [Updated 2020 Apr 4] In: Feingold K.R., Anawalt B., Blackman M.R., Boyce A., Chrousos G., Corpas E., de Herder W.W., Dhatariya K., Dungan K., Hofland J., et al., editors. Endotext [Internet] MDText.com, Inc.; South Dartmouth, MA, USA: 2000. [(accessed on 10 December 2024)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK555602/
Gavin K.M., Bessesen D.H. Sex Differences in Adipose Tissue Function. Endocrinol. Metab. Clin. North Am. 2020;49:215–228. doi: 10.1016/j.ecl.2020.02.008. PubMed DOI PMC
Luo L., Liu M. Adiponectin: Friend or foe in obesity and inflammation. Med. Rev. 2022;2:349–362. doi: 10.1515/mr-2022-0002. PubMed DOI PMC
Baldelli S., Aiello G., Di Martino E.M., Campaci D., Muthanna F.M.S., Lombardo M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients. 2024;16:2436. doi: 10.3390/nu16152436. PubMed DOI PMC
Dare A., Chen S.-Y. Adipsin in the pathogenesis of cardiovascular diseases. Vasc. Pharmacol. 2024;154:107270. doi: 10.1016/j.vph.2023.107270. PubMed DOI PMC
Han R., Huang H., Zhu J., Jin X., Wang Y., Xu Y., Xia Z. Adipokines and their potential impacts on susceptibility to myocardial ischemia/reperfusion injury in diabetes. Lipids Health Dis. 2024;23:372. doi: 10.1186/s12944-024-02357-w. PubMed DOI PMC
Boucher J., Masri B., Daviaud D., Gesta S., Guigné C., Mazzucotelli A., Castan-Laurell I., Tack I., Knibiehler B., Carpéné C., et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology. 2005;146:1764–1771. doi: 10.1210/en.2004-1427. PubMed DOI
Tan L., Lu X., Danser A.H.J., Verdonk K. The Role of Chemerin in Metabolic and Cardiovascular Disease: A Literature Review of Its Physiology and Pathology from a Nutritional Perspective. Nutrients. 2023;15:2878. doi: 10.3390/nu15132878. PubMed DOI PMC
Münzberg H., Heymsfield S.B., Berthoud H.-R., Morrison C.D. History and future of leptin: Discovery, regulation and signaling. Metab. Clin. Exp. 2024;161:156026. doi: 10.1016/j.metabol.2024.156026. PubMed DOI PMC
Perakakis N., Mantzoros C.S. Evidence from clinical studies of leptin: Current and future clinical applications in humans. Metab. Clin. Exp. 2024;161:156053. doi: 10.1016/j.metabol.2024.156053. PubMed DOI
Li Z., Gao Z., Sun T., Zhang S., Yang S., Zheng M., Shen H. Meteorin-like/Metrnl, a novel secreted protein implicated in inflammation, immunology, and metabolism: A comprehensive review of preclinical and clinical studies. Front. Immunol. 2023;14:1098570. doi: 10.3389/fimmu.2023.1098570. PubMed DOI PMC
Shi R., He M., Peng Y., Xia X. Homotherapy for heteropathy: Interleukin-41 and its biological functions. Immunology. 2024;173:1–13. doi: 10.1111/imm.13791. PubMed DOI
Sena C.M. Omentin: A Key Player in Glucose Homeostasis, Atheroprotection, and Anti-Inflammatory Potential for Cardiovascular Health in Obesity and Diabetes. Biomedicines. 2024;12:284. doi: 10.3390/biomedicines12020284. PubMed DOI PMC
Tripathi D., Kant S., Pandey S., Ehtesham N.Z. Resistin in metabolism, inflammation, and disease. FEBS J. 2020;287:3141–3149. doi: 10.1111/febs.15322. PubMed DOI
Radzik-Zając J., Wytrychowski K., Wiśniewski A., Barg W. The role of the novel adipokines vaspin and omentin in chronic inflammatory diseases. Pediatr. Endocrinol. Diabetes Metab. 2023;29:48–52. doi: 10.5114/pedm.2022.121371. PubMed DOI PMC
Dimova R., Tankova T. The role of vaspin in the development of metabolic and glucose tolerance disorders and atherosclerosis. BioMed Res. Int. 2015;2015:823481. doi: 10.1155/2015/823481. PubMed DOI PMC
Adeghate E. Visfatin: Structure, function and relation to diabetes mellitus and other dysfunctions. Curr. Med. Chem. 2008;15:1851–1862. doi: 10.2174/092986708785133004. PubMed DOI
Wu Y., Ma Y. CCL2-CCR2 signaling axis in obesity and metabolic diseases. J. Cell. Physiol. 2024;239:e31192. doi: 10.1002/jcp.31192. PubMed DOI
Chan P.-C., Lu C.-H., Chien H.-C., Tian Y.-F., Hsieh P.-S. Adipose Tissue-Derived CCL5 Enhances Local Pro-Inflammatory Monocytic MDSCs Accumulation and Inflammation via CCR5 Receptor in High-Fat Diet-Fed Mice. Int. J. Mol. Sci. 2022;23:14226. doi: 10.3390/ijms232214226. PubMed DOI PMC
Yuan Y., Hu R., Park J., Xiong S., Wang Z., Qian Y., Shi Z., Wu R., Han Z., Ong S.-G., et al. Macrophage-derived chemokine CCL22 establishes local LN-mediated adaptive thermogenesis and energy expenditure. Sci. Adv. 2024;10:eadn5229. doi: 10.1126/sciadv.adn5229. PubMed DOI PMC
Wueest S., Konrad D. The role of adipocyte-specific IL-6-type cytokine signaling in FFA and leptin release. Adipocyte. 2018;7:226–228. doi: 10.1080/21623945.2018.1493901. PubMed DOI PMC
Huang L.-Y., Chiu C.-J., Hsing C.-H., Hsu Y.-H. Interferon Family Cytokines in Obesity and Insulin Sensitivity. Cells. 2022;11:4041. doi: 10.3390/cells11244041. PubMed DOI PMC
Sewter C., Digby J., Blows F., Prins J., O’Rahilly S. Regulation of tumour necrosis factor-alpha release from human adipose tissue in vitro. J. Endocrinol. 1999;163:33–38. doi: 10.1677/joe.0.1630033. PubMed DOI
Engin A. Reappraisal of Adipose Tissue Inflammation in Obesity. Adv. Exper. Med. Biol. 2024;1460:297–327. doi: 10.1007/978-3-031-63657-8_10. PubMed DOI
Ghanbari M., Momen Maragheh S., Aghazadeh A., Mehrjuyan S.R., Hussen B.M., Abdoli Shadbad M., Dastmalchi N., Safaralizadeh R. Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. Int. Immunopharmacol. 2021;96:107765. doi: 10.1016/j.intimp.2021.107765. PubMed DOI
Hofwimmer K., Souza J.d.P., Subramanian N., Vujičić M., Rachid L., Méreau H., Zhao C., Dror E., Barreby E., Björkström N.K., et al. IL-1β promotes adipogenesis by directly targeting adipocyte precursors. Nat. Commun. 2024;15:7957. doi: 10.1038/s41467-024-51938-x. PubMed DOI PMC
Juge-Aubry C.E., Somm E., Giusti V., Pernin A., Chicheportiche R., Verdumo C., Rohner-Jeanrenaud F., Burger D., Dayer J.-M., Meier C.A. Adipose tissue is a major source of interleukin-1 receptor antagonist: Upregulation in obesity and inflammation. Diabetes. 2003;52:1104–1110. doi: 10.2337/diabetes.52.5.1104. PubMed DOI
Frühbeck G., Catalán V., Ramírez B., Valentí V., Becerril S., Rodríguez A., Moncada R., Baixauli J., Silva C., Escalada J., et al. Serum Levels of IL-1 RA Increase with Obesity and Type 2 Diabetes in Relation to Adipose Tissue Dysfunction and are Reduced After Bariatric Surgery in Parallel to Adiposity. J. Inflamm. Res. 2022;15:1331–1345. doi: 10.2147/JIR.S354095. PubMed DOI PMC
Barchetta I., Cimini F.A., Dule S., Cavallo M.G. Dipeptidyl Peptidase 4 (DPP4) as A Novel Adipokine: Role in Metabolism and Fat Homeostasis. Biomedicines. 2022;10:2306. doi: 10.3390/biomedicines10092306. PubMed DOI PMC
Cuevas-Ramos D., Mehta R., Aguilar-Salinas C.A. Fibroblast Growth Factor 21 and Browning of White Adipose Tissue. Front. Physiol. 2019;10:37. doi: 10.3389/fphys.2019.00037. PubMed DOI PMC
Flores-Cortez Y.A., Barragán-Bonilla M.I., Mendoza-Bello J.M., González-Calixto C., Flores-Alfaro E., Espinoza-Rojo M. Interplay of retinol binding protein 4 with obesity and associated chronic alterations (Review) Mol. Med. Rep. 2022;26:244. doi: 10.3892/mmr.2022.12760. PubMed DOI PMC
Zhang J., Wu Y., Zhang Y., LeRoith D., Bernlohr D.A., Chen X. The Role of Lipocalin 2 in the Regulation of Inflammation in Adipocytes and Macrophages. Mol. Endocrinol. 2008;22:1416–1426. doi: 10.1210/me.2007-0420. PubMed DOI PMC
Moschen A.R., Adolph T.E., Gerner R.R., Wieser V., Tilg H. Lipocalin-2: A master mediator of intestinal and metabolic inflammation. Trends Endocrinol. Metab. 2017;28:388–397. doi: 10.1016/j.tem.2017.01.003. PubMed DOI
Lee M.-J. Transforming growth factor beta superfamily regulation of adipose tissue biology in obesity. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2018;1864:1160–1171. doi: 10.1016/j.bbadis.2018.01.025. PubMed DOI
Flegal K.M., Kruszon-Moran D., Carroll M.D., Fryar C.D., Ogden C.L. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315:2284–2291. doi: 10.1001/jama.2016.6458. PubMed DOI PMC
Muscogiuri G., Verde L., Vetrani C., Barrea L., Savastano S., Colao A. Obesity: A gender-view. J. Endocrinol. Investig. 2023;47:299–306. doi: 10.1007/s40618-023-02196-z. PubMed DOI PMC
Tramunt B., Smati S., Grandgeorge N., Lenfant F., Arnal J.-F., Montagner A., Gourdy P. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia. 2020;63:453–461. doi: 10.1007/s00125-019-05040-3. PubMed DOI PMC
Guerra B., Fuentes T., Delgado-Guerra S., Guadalupe-Grau A., Olmedillas H., Santana A., Ponce-Gonzalez J.G., Dorado C., Calbet J.A.L. Gender dimorphism in skeletal muscle leptin receptors, serum leptin and insulin sensitivity. PLoS ONE. 2008;3:e3466. doi: 10.1371/journal.pone.0003466. PubMed DOI PMC
Rak A., Mellouk N., Froment P., Dupont J. Adiponectin and resistin: Potential metabolic signals affecting hypothalamo-pituitary gonadal axis in females and males of different species. Reproduction. 2017;153:R215–R226. doi: 10.1530/REP-17-0002. PubMed DOI
Sanchez-Rebordelo E., Cunarro J., Perez-Sieira S., Seoane L.M., Diéguez C., Nogueiras R., Tovar S. Regulation of Chemerin and CMKLR1 Expression by Nutritional Status, Postnatal Development, and Gender. Int. J. Mol. Sci. 2018;19:2905. doi: 10.3390/ijms19102905. PubMed DOI PMC
Kautzky-Willer A., Leutner M., Harreiter J. Sex differences in type 2 diabetes. Diabetologia. 2023;66:986–1002. doi: 10.1007/s00125-023-05891-x. PubMed DOI PMC
Koceva A., Herman R., Janez A., Rakusa M., Jensterle M. Sex- and Gender-Related Differences in Obesity: From Pathophysiological Mechanisms to Clinical Implications. Int. J. Mol. Sci. 2024;25:7342. doi: 10.3390/ijms25137342. PubMed DOI PMC
Luo L., Chen L., Song J., Ma X., Wang X. Association between systemic immune-inflammatory index and systemic inflammatory response index with body mass index in children and adolescents: A population-based study based on the National Health and Nutrition Examination Survey 2017–2020. Front. Endocrinol. 2024;15:1426404. doi: 10.3389/fendo.2024.1426404. PubMed DOI PMC
Silva J., Iwasaki A. Sex differences in postacute infection syndromes. Sci. Transl. Med. 2024;16:eado2102. doi: 10.1126/scitranslmed.ado2102. PubMed DOI
Cheng S., Ning Z., Huang K., Yuan Y., Tan X., Pan Y., Zhang R., Tian L., Lu Y., Wang X., et al. Analysis of sex-biased gene expression in a Eurasian admixed population. Brief. Bioinform. 2024;25:bbae451. doi: 10.1093/bib/bbae451. PubMed DOI PMC
Persons P.A., Williams L., Fields H., Mishra S., Mehta R. Weight gain during midlife: Does race/ethnicity influence risk? Maturitas. 2024;185:108013. doi: 10.1016/j.maturitas.2024.108013. PubMed DOI
Klein S.L., Flanagan K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016;16:626–638. doi: 10.1038/nri.2016.90. PubMed DOI
Wilkinson N.M., Chen H.-C., Lechner M.G., Su M.A. Sex Differences in Immunity. Annu. Rev. Immunol. 2022;40:75–94. doi: 10.1146/annurev-immunol-101320-125133. PubMed DOI PMC
Popotas A., Casimir G.J., Corazza F., Lefèvre N. Sex-related immunity: Could Toll-like receptors be the answer in acute inflammatory response? Front. Immunol. 2024;15:1379754. doi: 10.3389/fimmu.2024.1379754. PubMed DOI PMC
Wang P., Yang X., Zhang L., Sha S., Huang J., Peng J., Gu J., Pearson J.A., Hu Y., Zhao H., et al. Tlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis. Nat. Commun. 2024;15:4232. doi: 10.1038/s41467-024-48611-8. PubMed DOI PMC
Hamerman J.A., Barton G.M. The path ahead for understanding Toll-like receptor-driven systemic autoimmunity. Curr. Opin. Immunol. 2024;91:102482. doi: 10.1016/j.coi.2024.102482. PubMed DOI
Layug P.J., Vats H., Kannan K., Arsenio J. Sex differences in CD8+ T cell responses during adaptive immunity. WIREs Mech. Dis. 2024;16:e1645. doi: 10.1002/wsbm.1645. PubMed DOI
Forsyth K.S., Jiwrajka N., Lovell C.D., Toothacre N.E., Anguera M.C. The conneXion between sex and immune responses. Nat. Rev. Immunol. 2024;24:487–502. doi: 10.1038/s41577-024-00996-9. PubMed DOI PMC
Hoffmann J.P., Liu J.A., Seddu K., Klein S.L. Sex hormone signaling and regulation of immune function. Immunity. 2023;56:2472–2491. doi: 10.1016/j.immuni.2023.10.008. PubMed DOI
Sanyal D., Raychaudhuri M. Hypothyroidism and obesity: An intriguing link. Indian J. Endocrinol. Metab. 2016;20:554–557. doi: 10.4103/2230-8210.183454. PubMed DOI PMC
Yavuz S., del Prado S.S.N., Celi F.S. Thyroid Hormone Action and Energy Expenditure. J. Endocr. Soc. 2019;3:1345–1356. doi: 10.1210/js.2018-00423. PubMed DOI PMC
Sror-Turkel O., El-Khatib N., Sharabi-Nov A., Avraham Y., Merchavy S. Low TSH and low T3 hormone levels as a prognostic for mortality in COVID-19 intensive care patients. Front. Endocrinol. 2024;15:1322487. doi: 10.3389/fendo.2024.1322487. PubMed DOI PMC
Jafarzadeh A., Nemati M., Jafarzadeh S., Nozari P., Mortazavi S.M.J. Thyroid dysfunction following vaccination with COVID-19 vaccines: A basic review of the preliminary evidence. J. Endocrinol. Investig. 2022;45:1835–1863. doi: 10.1007/s40618-022-01786-7. PubMed DOI PMC
Ovčariček P.P., Görges R., Giovanella L. Autoimmune Thyroid Diseases. Semin. Nucl. Med. 2024;54:219–236. doi: 10.1053/j.semnuclmed.2023.11.002. PubMed DOI
Yang P., Shen G., Zhang H., Zhang C., Li J., Zhao F., Li Z., Liu Z., Wang M., Zhao J., et al. Incidence of thyroid dysfunction caused by immune checkpoint inhibitors combined with chemotherapy: A systematic review and meta-analysis. Int. Immunopharmacol. 2024;133:111961. doi: 10.1016/j.intimp.2024.111961. PubMed DOI
Barbagallo F., Cannarella R., Condorelli R.A., Cucinella L., La Vignera S., Nappi R., Calogero A.E. Thyroid diseases and female sexual dysfunctions. Sex. Med. Rev. 2024;12:321–333. doi: 10.1093/sxmrev/qeae021. PubMed DOI
Zierau O., Zenclussen A.C., Jensen F. Role of female sex hormones, estradiol and progesterone, in mast cell behavior. Front. Immunol. 2012;3:25406. doi: 10.3389/fimmu.2012.00169. PubMed DOI PMC
Kadel S., Kovats S. Sex Hormones Regulate Innate Immune Cells and Promote Sex Differences in Respiratory Virus Infection. Front. Immunol. 2018;9:1653. doi: 10.3389/fimmu.2018.01653. PubMed DOI PMC
Buendía-González F.O., Legorreta-Herrera M. The Similarities and Differences between the Effects of Testosterone and DHEA on the Innate and Adaptive Immune Response. Biomolecules. 2022;12:1768. doi: 10.3390/biom12121768. PubMed DOI PMC
Foyle K.L., A Robertson S. Gamma delta (γδ) T cells in the female reproductive tract: Active participants or indifferent bystanders in reproductive success? Discov. Immunol. 2024;3:kyae004. doi: 10.1093/discim/kyae004. PubMed DOI PMC
Montesinos M.d.M., Pellizas C.G. Thyroid Hormone Action on Innate Immunity. Front. Endocrinol. 2019;10:350. doi: 10.3389/fendo.2019.00350. PubMed DOI PMC
Landucci E., Laurino A., Cinci L., Gencarelli M., Raimondi L. Thyroid Hormone, Thyroid Hormone Metabolites and Mast Cells: A Less Explored Issue. Front. Cell. Neurosci. 2019;13:79. doi: 10.3389/fncel.2019.00079. PubMed DOI PMC
Adamska-Fita E., Śliwka P.W., Karbownik-Lewińska M., Lewiński A., Stasiak M. The Absence of Thyroid-Stimulating Hormone Receptor Expression on Natural Killer T Cells: Implications for the Immune–Endocrine Interaction. Int. J. Mol. Sci. 2024;25:11434. doi: 10.3390/ijms252111434. PubMed DOI PMC
Azimnasab-Sorkhabi P., Soltani-Asl M., Ekhtiyari M.S., Junior J.R.K. Landscape of unconventional γδ T cell subsets in cancer. Mol. Biol. Rep. 2024;51:238. doi: 10.1007/s11033-024-09267-1. PubMed DOI
Wenzek C., Boelen A., Westendorf A.M., Engel D.R., Moeller L.C., Führer D. The interplay of thyroid hormones and the immune system—Where we stand and why we need to know about it. Eur. J. Endocrinol. 2022;186:R65–R77. doi: 10.1530/EJE-21-1171. PubMed DOI PMC
Santana-Sánchez P., Vaquero-García R., Legorreta-Haquet M.V., Chávez-Sánchez L., Chávez-Rueda A.K. Hormones and B-cell development in health and autoimmunity. Front. Immunol. 2024;15:1385501. doi: 10.3389/fimmu.2024.1385501. PubMed DOI PMC
Brown E.D.L., Obeng-Gyasi B., Hall J.E., Shekhar S. The Thyroid Hormone Axis and Female Reproduction. Int. J. Mol. Sci. 2023;24:9815. doi: 10.3390/ijms24129815. PubMed DOI PMC
Kitahara C.M., Platz E.A., Ladenson P.W., Mondul A.M., Menke A., de González A.B. Body fatness and markers of thyroid function among U.S. men and women. PLoS ONE. 2012;7:e34979. doi: 10.1371/journal.pone.0034979. PubMed DOI PMC
Morenas R., Singh D., Hellstrom W.J.G. Thyroid disorders and male sexual dysfunction. Int. J. Impot. Res. 2024;36:333–338. doi: 10.1038/s41443-023-00768-4. PubMed DOI
Kirichenko T.V., Markina Y.V., Bogatyreva A.I., Tolstik T.V., Varaeva Y.R., Starodubova A.V. The Role of Adipokines in Inflammatory Mechanisms of Obesity. Int. J. Mol. Sci. 2022;23:14982. doi: 10.3390/ijms232314982. PubMed DOI PMC
Trim W.V., Lynch L. Immune and non-immune functions of adipose tissue leukocytes. Nat. Rev. Immunol. 2021;22:371–386. doi: 10.1038/s41577-021-00635-7. PubMed DOI
Xiao L., Yang X., Lin Y., Li S., Jiang J., Qian S., Tang Q., He R., Li X. Large adipocytes function as antigen-presenting cells to activate CD4+ T cells via upregulating MHCII in obesity. Int. J. Obes. 2015;40:112–120. doi: 10.1038/ijo.2015.145. PubMed DOI PMC
Chan C.C., Damen M.S., Alarcon P.C., Sanchez-Gurmaches J., Divanovic S. Inflammation and Immunity: From an Adipocyte’s Perspective. J. Interf. Cytokine Res. 2019;39:459–471. doi: 10.1089/jir.2019.0014. PubMed DOI PMC
Castoldi A., Sanin D.E., Bakker N.v.T., Aguiar C.F., Monteiro L.d.B., Rana N., Grzes K.M., Kabat A.M., Curtis J., Cameron A.M., et al. Metabolic and functional remodeling of colonic macrophages in response to high-fat diet-induced obesity. iScience. 2023;26:107719. doi: 10.1016/j.isci.2023.107719. PubMed DOI PMC
Chen X., Wang S., Huang Y., Zhao X., Jia X., Meng G., Zheng Q., Zhang M., Wu Y., Wang L. Obesity Reshapes Visceral Fat-Derived MHC I Associated-Immunopeptidomes and Generates Antigenic Peptides to Drive CD8+ T Cell Responses. iScience. 2020;23:100977. doi: 10.1016/j.isci.2020.100977. PubMed DOI PMC
Satoh M., Iizuka M., Majima M., Ohwa C., Hattori A., Van Kaer L., Iwabuchi K. Adipose invariant NKT cells interact with CD1d-expressing macrophages to regulate obesity-related inflammation. Immunology. 2022;165:414–427. doi: 10.1111/imm.13447. PubMed DOI
Satoh M., Iwabuchi K. Contribution of NKT cells and CD1d-expressing cells in obesity-associated adipose tissue inflammation. Front. Immunol. 2024;15:1365843. doi: 10.3389/fimmu.2024.1365843. PubMed DOI PMC
Andersen C.J., Murphy K.E., Fernandez M.L. Impact of Obesity and Metabolic Syndrome on Immunity. Adv. Nutr. 2016;7:66–75. doi: 10.3945/an.115.010207. PubMed DOI PMC
Kawai T., Autieri M.V., Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Physiol. 2020;320:C375–C391. doi: 10.1152/ajpcell.00379.2020. PubMed DOI PMC
Valentine Y., Nikolajczyk B.S. T cells in obesity-associated inflammation: The devil is in the details. Immunol. Rev. 2024;324:25–41. doi: 10.1111/imr.13354. PubMed DOI PMC
Ding S., Lund P.K. Role of intestinal inflammation as an early event in obesity and insulin resistance. Curr. Opin. Clin. Nutr. Metab. Care. 2011;14:328–333. doi: 10.1097/MCO.0b013e3283478727. PubMed DOI PMC
Brotfain E., Hadad N., Shapira Y., Avinoah E., Zlotnik A., Raichel L., Levy R. Neutrophil functions in morbidly obese subjects. Clin. Exp. Immunol. 2015;181:156–163. doi: 10.1111/cei.12631. PubMed DOI PMC
Gomez-Casado G., Jimenez-Gonzalez A., Rodriguez-Muñoz A., Tinahones F.J., González-Mesa E., Murri M., Ortega-Gomez A. Neutrophils as indicators of obesity-associated inflammation: A systematic review and meta-analysis. Obes. Rev. 2024:e13868. doi: 10.1111/obr.13868. PubMed DOI
Shantaram D., Hoyd R., Blaszczak A.M., Antwi L., Jalilvand A., Wright V.P., Liu J., Smith A.J., Bradley D., Lafuse W., et al. Obesity-associated microbiomes instigate visceral adipose tissue inflammation by recruitment of distinct neutrophils. Nat. Commun. 2024;15:5434. doi: 10.1038/s41467-024-48935-5. PubMed DOI PMC
Hu Y., Chakarov S. Eosinophils in obesity and obesity-associated disorders. Discov. Immunol. 2023;2:kyad022. doi: 10.1093/discim/kyad022. PubMed DOI PMC
Divoux A., Moutel S., Poitou C., Lacasa D., Veyrie N., Aissat A., Arock M., Guerre-Millo M., Clément K. Mast cells in human adipose tissue: Link with morbid obesity, inflammatory status, and diabetes. J. Clin. Endocrinol. Metab. 2012;97:E1677–E1685. doi: 10.1210/jc.2012-1532. PubMed DOI
Mukherjee S., Skrede S., Haugstøyl M., López M., Fernø J. Peripheral and central macrophages in obesity. Front. Endocrinol. 2023;14:1232171. doi: 10.3389/fendo.2023.1232171. PubMed DOI PMC
Wilkin C., Piette J., Legrand-Poels S. Unravelling metabolic factors impacting iNKT cell biology in obesity. Biochem. Pharmacol. 2024;228:116436. doi: 10.1016/j.bcp.2024.116436. PubMed DOI
Cui G., Abe S., Kato R., Ikuta K. Insights into the heterogeneity of iNKT cells: Tissue-resident and circulating subsets shaped by local microenvironmental cues. Front. Immunol. 2024;15:1349184. doi: 10.3389/fimmu.2024.1349184. PubMed DOI PMC
Canter R.J., Judge S.J., Collins C.P., Yoon D.J., Murphy W.J. Suppressive effects of obesity on NK cells: Is it time to incorporate obesity as a clinical variable for NK cell-based cancer immunotherapy regimens? J. Immunother. Cancer. 2024;12:e008443. doi: 10.1136/jitc-2023-008443. PubMed DOI PMC
De Barra C., O’Shea D., Hogan A.E. NK cells vs. obesity: A tale of dysfunction & redemption. Clin. Immunol. 2023;255:109744. doi: 10.1016/j.clim.2023.109744. PubMed DOI
Goldberg E.L., Shchukina I., Asher J.L., Sidorov S., Artyomov M.N., Dixit V.D. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat. Metab. 2020;2:50–61. doi: 10.1038/s42255-019-0160-6. PubMed DOI PMC
Frasca D., Romero M., Blomberg B.B. Similarities in B Cell Defects Between Aging and Obesity. J. Immunol. 2024;213:1407–1413. doi: 10.4049/jimmunol.2300670. PubMed DOI
Gao F., Litchfield B., Wu H. Adipose tissue lymphocytes and obesity. J. Cardiovasc. Aging. 2024;4:5. doi: 10.20517/jca.2023.38. PubMed DOI PMC
Meher A.K., McNamara C.A. B-1 lymphocytes in adipose tissue as innate modulators of inflammation linked to cardiometabolic disease. Immunol. Rev. 2024;324:95–103. doi: 10.1111/imr.13342. PubMed DOI PMC
Liu R., Nikolajczyk B.S. Tissue Immune Cells Fuel Obesity-Associated Inflammation in Adipose Tissue and Beyond. Front. Immunol. 2019;10:1587. doi: 10.3389/fimmu.2019.01587. PubMed DOI PMC
McLaughlin T., Liu L.-F., Lamendola C., Shen L., Morton J., Rivas H., Winer D., Tolentino L., Choi O., Zhang H., et al. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arter. Thromb. Vasc. Biol. 2014;34:2637–2643. doi: 10.1161/ATVBAHA.114.304636. PubMed DOI PMC
Zi C., Wang D., Gao Y., He L. The role of Th17 cells in endocrine organs: Involvement of the gut, adipose tissue, liver and bone. Front. Immunol. 2023;13:1104943. doi: 10.3389/fimmu.2022.1104943. PubMed DOI PMC
Kochumon S., Hasan A., Al-Rashed F., Sindhu S., Thomas R., Jacob T., Al-Sayyar A., Arefanian H., Al Madhoun A., Al-Ozairi E., et al. Increased Adipose Tissue Expression of IL-23 Associates with Inflammatory Markers in People with High LDL Cholesterol. Cells. 2022;11:3072. doi: 10.3390/cells11193072. PubMed DOI PMC
Fabbrini E., Cella M., Mccartney S.A., Fuchs A., Abumrad N.A., Pietka T.A., Chen Z., Finck B.N., Han D.H., Magkos F., et al. Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology. 2013;145:366–374.e3. doi: 10.1053/j.gastro.2013.04.010. PubMed DOI PMC
Wang Q., Wang Y., Xu D. The roles of T cells in obese adipose tissue inflammation. Adipocyte. 2021;10:435–445. doi: 10.1080/21623945.2021.1965314. PubMed DOI PMC
Delacher M., Schmidleithner L., Simon M., Stüve P., Sanderink L., Hotz-Wagenblatt A., Wuttke M., Schambeck K., Ruhland B., Hofmann V., et al. The effector program of human CD8 T cells supports tissue remodeling. J. Exp. Med. 2024;221:e20230488. doi: 10.1084/jem.20230488. PubMed DOI PMC
Magalhaes I., Pingris K., Poitou C., Bessoles S., Venteclef N., Kiaf B., Beaudoin L., Da Silva J., Allatif O., Rossjohn J., et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J. Clin. Investig. 2015;125:1752–1762. doi: 10.1172/JCI78941. PubMed DOI PMC
Kedia-Mehta N., Hogan A.E. MAITabolism2—The emerging understanding of MAIT cell metabolism and their role in metabolic disease. Front. Immunol. 2022;13:1108071. doi: 10.3389/fimmu.2022.1108071. PubMed DOI PMC
Sage P.T., Sharpe A.H. T follicular regulatory cells in the regulation of B cell responses. Trends Immunol. 2015;36:410–418. doi: 10.1016/j.it.2015.05.005. PubMed DOI PMC
Hildreth A.D., Ma F., Wong Y.Y., Sun R., Pellegrini M., O’sullivan T.E. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat. Immunol. 2021;22:639–653. doi: 10.1038/s41590-021-00922-4. PubMed DOI PMC
Frasca D., Diaz A., Romero M., Vazquez T., Blomberg B.B. Obesity induces pro-inflammatory B cells and impairs B cell function in old mice. Mech. Ageing Dev. 2017;162:91–99. doi: 10.1016/j.mad.2017.01.004. PubMed DOI PMC
Park M.-J., Kwok S.-K., Lee S.-H., Kim E.-K., Park S.-H., Cho M.-L. Adipose tissue-derived mesenchymal stem cells induce expansion of interleukin-10-producing regulatory B cells and ameliorate autoimmunity in a murine model of systemic lupus erythematosus. Cell Transplant. 2015;24:2367–2377. doi: 10.3727/096368914X685645. PubMed DOI
Hong C., Li X., Zhang K., Huang Q., Li B., Xin H., Hu B., Meng F., Zhu X., Tang D., et al. Novel perspectives on autophagy-oxidative stress-inflammation axis in the orchestration of adipogenesis. Front. Endocrinol. 2024;15:1404697. doi: 10.3389/fendo.2024.1404697. PubMed DOI PMC
Yang Q., Zhang F., Chen H., Hu Y., Yang N., Yang W., Wang J., Yang Y., Xu R., Xu C. The differentiation courses of the Tfh cells: A new perspective on autoimmune disease pathogenesis and treatment. Biosci. Rep. 2024;44:BSR20231723. doi: 10.1042/BSR20231723. PubMed DOI PMC
Zhang Y., Chua S., Jr. Leptin Function and Regulation. Compr. Physiol. 2017;8:351–369. doi: 10.1002/cphy.c160041. PubMed DOI
Kiernan K., MacIver N.J. The Role of the Adipokine Leptin in Immune Cell Function in Health and Disease. Front. Immunol. 2021;11:622468. doi: 10.3389/fimmu.2020.622468. PubMed DOI PMC
Deng J., Chen Q., Chen Z., Liang K., Gao X., Wang X., Makota F.V., Ong H.S., Wan Y., Luo K., et al. The metabolic hormone leptin promotes the function of TFH cells and supports vaccine responses. Nat. Commun. 2021;12:3073. doi: 10.1038/s41467-021-23220-x. PubMed DOI PMC
Park J., Sohn J.H., Han S.M., Park Y.J., Huh J.Y., Choe S.S., Kim J.B. Adipocytes Are the Control Tower That Manages Adipose Tissue Immunity by Regulating Lipid Metabolism. Front. Immunol. 2021;11:598566. doi: 10.3389/fimmu.2020.598566. PubMed DOI PMC
Shaikh S.R., Beck M.A., Alwarawrah Y., MacIver N.J. Emerging mechanisms of obesity-associated immune dysfunction. Nat. Rev. Endocrinol. 2023;20:136–148. doi: 10.1038/s41574-023-00932-2. PubMed DOI
Soták M., Clark M., Suur B.E., Börgeson E. Inflammation and resolution in obesity. Nat. Rev. Endocrinol. 2025;21:45–61. doi: 10.1038/s41574-024-01047-y. PubMed DOI
Lee M.-J., Kim J. The pathophysiology of visceral adipose tissues in cardiometabolic diseases. Biochem. Pharmacol. 2024;222:116116. doi: 10.1016/j.bcp.2024.116116. PubMed DOI PMC
McTavish P.V., Mutch D.M. Omega-3 fatty acid regulation of lipoprotein lipase and FAT/CD36 and its impact on white adipose tissue lipid uptake. Lipids Health Dis. 2024;23:386. doi: 10.1186/s12944-024-02376-7. PubMed DOI PMC
Lima G.B., Figueiredo N., Kattah F.M., Oliveira E.S., Horst M.A., Dâmaso A.R., Oyama L.M., Whitton R.G.M., de Souza G.I.M.H., Lima G.C., et al. Serum Fatty Acids and Inflammatory Patterns in Severe Obesity: A Preliminary Investigation in Women. Biomedicines. 2024;12:2248. doi: 10.3390/biomedicines12102248. PubMed DOI PMC
Childs B.G., Gluscevic M., Baker D.J., Laberge R.-M., Marquess D., Dananberg J., van Deursen J.M. Senescent cells: An emerging target for diseases of ageing. Nat. Rev. Drug Discov. 2017;16:718–735. doi: 10.1038/nrd.2017.116. PubMed DOI PMC
Liu Z., Liang Q., Ren Y., Guo C., Ge X., Wang L., Cheng Q., Luo P., Zhang Y., Han X. Immunosenescence: Molecular mechanisms and diseases. Signal Transduct. Target. Ther. 2023;8:200. doi: 10.1038/s41392-023-01451-2. PubMed DOI PMC
Shirakawa K., Sano M. T Cell Immunosenescence in Aging, Obesity, and Cardiovascular Disease. Cells. 2021;10:2435. doi: 10.3390/cells10092435. PubMed DOI PMC
Wang Y., Dong C., Han Y., Gu Z., Sun C. Immunosenescence, aging and successful aging. Front. Immunol. 2022;13:942796. doi: 10.3389/fimmu.2022.942796. PubMed DOI PMC
Shimi G., Sohouli M.H., Ghorbani A., Shakery A., Zand H. The interplay between obesity, immunosenescence, and insulin resistance. Immun. Ageing. 2024;21:13. doi: 10.1186/s12979-024-00414-7. PubMed DOI PMC
Frasca D., Diaz A., Romero M., Garcia D., Blomberg B.B. B Cell Immunosenescence. Annu. Rev. Cell Dev. Biol. 2020;36:551–574. doi: 10.1146/annurev-cellbio-011620-034148. PubMed DOI PMC
Garmendia J.V., Moreno D., Garcia A.H., De Sanctis J.B. Metabolic syndrome and asthma. Recent Pat. Endocr. Metab. Immune Drug Discov. 2014;8:60–66. doi: 10.2174/1872214807666140107151023. PubMed DOI
Kudlova N., De Sanctis J.B., Hajduch M. Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. Int. J. Mol. Sci. 2022;23:4168. doi: 10.3390/ijms23084168. PubMed DOI PMC
Valentino T.R., Chen N., Makhijani P., Khan S., Winer S., Revelo X.S., Winer D.A. The role of autoantibodies in bridging obesity, aging, and immunosenescence. Immun. Ageing. 2024;21:85. doi: 10.1186/s12979-024-00489-2. PubMed DOI PMC
Zhou Z., Tao Y., Zhao H., Wang Q. Adipose Extracellular Vesicles: Messengers from and to Macrophages in Regulating Immunometabolic Homeostasis or Disorders. Front. Immunol. 2021;12:666344. doi: 10.3389/fimmu.2021.666344. PubMed DOI PMC
Kwan H.Y., Chen M., Xu K., Chen B. The impact of obesity on adipocyte-derived extracellular vesicles. Cell. Mol. Life Sci. 2021;78:7275–7288. doi: 10.1007/s00018-021-03973-w. PubMed DOI PMC
Matilainen J., Berg V., Vaittinen M., Impola U., Mustonen A.-M., Männistö V., Malinen M., Luukkonen V., Rosso N., Turunen T., et al. Increased secretion of adipocyte-derived extracellular vesicles is associated with adipose tissue inflammation and the mobilization of excess lipid in human obesity. J. Transl. Med. 2024;22:623. doi: 10.1186/s12967-024-05249-w. PubMed DOI PMC
Rakib A., Kiran S., Mandal M., Singh U.P. MicroRNAs: A crossroad that connects obesity to immunity and aging. Immun. Ageing. 2022;19:64. doi: 10.1186/s12979-022-00320-w. PubMed DOI PMC
Mendivil-Alvarado H., Sosa-León L.A., Carvajal-Millan E., Astiazaran-Garcia H. Malnutrition and Biomarkers: A Journey through Extracellular Vesicles. Nutrients. 2022;14:1002. doi: 10.3390/nu14051002. PubMed DOI PMC
Leocádio P.C.L., Oriá R.B., Crespo-Lopez M.E., Alvarez-Leite J.I. Obesity: More Than an Inflammatory, an Infectious Disease? Front. Immunol. 2020;10:3092. doi: 10.3389/fimmu.2019.03092. PubMed DOI PMC
Pugliese G., Liccardi A., Graziadio C., Barrea L., Muscogiuri G., Colao A. Obesity and infectious diseases: Pathophysiology and epidemiology of a double pandemic condition. Int. J. Obes. 2022;46:449–465. doi: 10.1038/s41366-021-01035-6. PubMed DOI
Cristancho C., Mogensen K.M., Robinson M.K. Malnutrition in patients with obesity: An overview perspective. Nutr. Clin. Pract. 2024;39:1300–1316. doi: 10.1002/ncp.11228. PubMed DOI
Crespo F.I., Mayora S.J., De Sanctis J.B., Martínez W.Y., Zabaleta-Lanz M.E., Toro F.I., Deibis L.H., García A.H. SARS-CoV-2 Infection in Venezuelan Pediatric Patients—A Single Center Prospective Observational Study. Biomedicines. 2023;11:1409. doi: 10.3390/biomedicines11051409. PubMed DOI PMC
García A.H., Crespo F.I., Mayora S.J., Martinez W.Y., Belisario I., Medina C., De Sanctis J.B. Role of Micronutrients in the Response to SARS-CoV-2 Infection in Pediatric Patients. Immuno. 2024;4:211–225. doi: 10.3390/immuno4030014. DOI
Cordeiro A., Luna M., Pereira S.E., Saboya C.J., Ramalho A. Impairment of Vitamin D Nutritional Status and Metabolic Profile Are Associated with Worsening of Obesity According to the Edmonton Obesity Staging System. Int. J. Mol. Sci. 2022;23:14705. doi: 10.3390/ijms232314705. PubMed DOI PMC
Bennour I., Haroun N., Sicard F., Mounien L., Landrier J.-F. Vitamin D and Obesity/Adiposity—A Brief Overview of Recent Studies. Nutrients. 2022;14:2049. doi: 10.3390/nu14102049. PubMed DOI PMC
Keto J., Feuth T., Linna M., Saaresranta T. Lower respiratory tract infections among newly diagnosed sleep apnea patients. BMC Pulm. Med. 2023;23:332. doi: 10.1186/s12890-023-02623-0. PubMed DOI PMC
Alvarez J.A., Yang C.-A., Ojuri V., Buckley K., Bedi B., Musonge-Effoe J., Soibi-Harry A., Lahiri C.D. Sex Differences in Metabolic Disorders of Aging and Obesity in People with HIV. Curr. HIV/AIDS Rep. 2024;22:3. doi: 10.1007/s11904-024-00711-2. PubMed DOI PMC
Cancelier A.C.L., Schuelter-Trevisol F., Trevisol D.J., Atkinson R.L. Adenovirus 36 infection and obesity risk: Current understanding and future therapeutic strategies. Expert Rev. Endocrinol. Metab. 2022;17:143–152. doi: 10.1080/17446651.2022.2044303. PubMed DOI
Hameed M., Geerling E., Pinto A.K., Miraj I., Weger-Lucarelli J. Immune response to arbovirus infection in obesity. Front. Immunol. 2022;13:968582. doi: 10.3389/fimmu.2022.968582. PubMed DOI PMC
Tian Y., Jennings J., Gong Y., Sang Y. Viral Infections and Interferons in the Development of Obesity. Biomolecules. 2019;9:726. doi: 10.3390/biom9110726. PubMed DOI PMC
Gallagher P., Chan K.R., Rivino L., Yacoub S. The association of obesity and severe dengue: Possible pathophysiological mechanisms. J. Infect. 2020;81:10–16. doi: 10.1016/j.jinf.2020.04.039. PubMed DOI
Chen C.-Y., Chiu Y.-Y., Chen Y.-C., Huang C.-H., Wang W.-H., Chen Y.-H., Lin C.-Y. Obesity as a clinical predictor for severe manifestation of dengue: A systematic review and meta-analysis. BMC Infect. Dis. 2023;23:502. doi: 10.1186/s12879-023-08481-9. PubMed DOI PMC
Molokwu J.C., Penaranda E., Lopez D.S., Dwivedi A., Dodoo C., Shokar N. Association of Metabolic Syndrome and Human Papillomavirus Infection in Men and Women Residing in the United States. Cancer Epidemiol. Biomark. Prev. 2017;26:1321–1327. doi: 10.1158/1055-9965.EPI-17-0129. PubMed DOI
Huang X., Zhao Q., Yang P., Li Y., Yuan H., Wu L., Chen Z. Metabolic Syndrome and Risk of Cervical Human Papillomavirus Incident and Persistent Infection. Medicine. 2016;95:e2905. doi: 10.1097/MD.0000000000002905. PubMed DOI PMC
Shin H.S., Jun B.G., Yi S.-W. Impact of diabetes, obesity, and dyslipidemia on the risk of hepatocellular carcinoma in patients with chronic liver diseases. Clin. Mol. Hepatol. 2022;28:773–789. doi: 10.3350/cmh.2021.0383. PubMed DOI PMC
Markakis K., Tsachouridou O., Georgianou E., Pilalas D., Nanoudis S., Metallidis S. Weight Gain in HIV Adults Receiving Antiretroviral Treatment: Current Knowledge and Future Perspectives. Life. 2024;14:1367. doi: 10.3390/life14111367. PubMed DOI PMC
Cáceres C., Castillo M., Carrillo K., Tapia C.V., Valderrama G., Maquilón C., Toro-Ascuy D., Zorondo-Rodríguez F., Fuenzalida L.F. Overnutrition as a risk factor for more serious respiratory viral infections in children: A retrospective study in hospitalized patients. Endocrinol. Diabetes Nutr. 2023;70:476–483. doi: 10.1016/j.endinu.2023.05.001. PubMed DOI
Ramaswamy M., Shi L., Monick M.M., Hunninghake G.W., Look D.C. Specific inhibition of type I interferon signal transduction by respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol. 2004;30:893–900. doi: 10.1165/rcmb.2003-0410OC. PubMed DOI
Mîndru D.E., Țarcă E., Adumitrăchioaiei H., Anton-Păduraru D.T., Ștreangă V., Frăsinariu O.E., Sidoreac A., Stoica C., Bernic V., Luca A.-C. Obesity as a Risk Factor for the Severity of COVID-19 in Pediatric Patients: Possible Mechanisms—A Narrative Review. Children. 2024;11:1203. doi: 10.3390/children11101203. PubMed DOI PMC
Jang S., Hong W., Moon Y. Obesity-compromised immunity in post-COVID-19 condition: A critical control point of chronicity. Front. Immunol. 2024;15:1433531. doi: 10.3389/fimmu.2024.1433531. PubMed DOI PMC
Miron V.D., Drăgănescu A.C., Pițigoi D., Aramă V., Streinu-Cercel A., Săndulescu O. The Impact of Obesity on the Host–Pathogen Interaction with Influenza Viruses—Novel Insights: Narrative Review. Diabetes Metab. Syndr. Obes. 2024;17:769–777. doi: 10.2147/DMSO.S434115. PubMed DOI PMC
Chiang C.-H. Association between metabolic factors and chronic hepatitis B virus infection. World J. Gastroenterol. 2014;20:7213–7216. doi: 10.3748/wjg.v20.i23.7213. PubMed DOI PMC
Hornung F., Rogal J., Loskill P., Löffler B., Deinhardt-Emmer S. The Inflammatory Profile of Obesity and the Role on Pulmonary Bacterial and Viral Infections. Int. J. Mol. Sci. 2021;22:3456. doi: 10.3390/ijms22073456. PubMed DOI PMC
Hales C., Burnet L., Coombs M., Collins A.M., Ferreira D.M. Obesity, leptin and host defence of Streptococcus pneumoniae: The case for more human research. Eur. Respir. Rev. 2022;31:220055. doi: 10.1183/16000617.0055-2022. PubMed DOI PMC
Li C., Huang H., Xia Q., Zhang L. Correlation between body mass index and gender-specific 28-day mortality in patients with sepsis: A retrospective cohort study. Front. Med. 2024;11:1462637. doi: 10.3389/fmed.2024.1462637. PubMed DOI PMC
Weber D.J., Rutala W.A., Samsa G.P., Santimaw J.E., Lemon S.M. Obesity as a predictor of poor antibody response to hepatitis B plasma vaccine. JAMA. 1985;254:3187–3189. doi: 10.1001/jama.1985.03360220053027. PubMed DOI
CDC Pink Book. [(accessed on 10 January 2025)]; Available online: https://www.cdc.gov/pinkbook/site.html.
Callahan S.T., Wolff M., Hill H.R., Edwards K.M., NIAID Vaccine and Treatment Evaluation Unit (VTEU) Pandemic H1N1 Vaccine Study Group Impact of body mass index on immunogenicity of pandemic H1N1 vaccine in children and adults. J. Infect. Dis. 2014;210:1270–1274. doi: 10.1093/infdis/jiu245. PubMed DOI PMC
Clarke M., Mathew S.M., Giles L.C., Pena A.S., Barr I.G., Richmond P.C., Marshall H.S. A Prospective Study Investigating the Impact of Obesity on the Immune Response to the Quadrivalent Influenza Vaccine in Children and Adolescents. Vaccines. 2022;10:699. doi: 10.3390/vaccines10050699. PubMed DOI PMC
Sheridan P.A., Paich H.A., Handy J., Karlsson E.A., Hudgens M.G., Sammon A.B., Holland L.A., Weir S., Noah T.L., Beck M.A. Obesity is associated with impaired immune response to influenza vaccination in humans. Int. J. Obes. 2012;36:1072–1077. doi: 10.1038/ijo.2011.208. PubMed DOI PMC
Huang J.Y., Kaur B.P., Seth D., Pansare M.V., Kamat D., McGrath E., Secord E.A., Poowuttikul P. Can Obesity Alter the Immune Response to Childhood Vaccinations? J. Allergy Clin. Immunol. 2019;143:AB299. doi: 10.1016/j.jaci.2018.12.913. DOI
Huang J., Kaur B., Farooqi A., Miah T., McGrath E., Seth D., Secord E., Poowuttikul P. Elevated Glycated Hemoglobin Is Associated with Reduced Antibody Responses to Vaccinations in Children. Pediatr. Allergy Immunol. Pulmonol. 2020;33:193–198. doi: 10.1089/ped.2020.1160. PubMed DOI PMC
Zimmermann P., Curtis N. Factors That Influence the Immune Response to Vaccination. Clin. Microbiol. Rev. 2019;32:e00084-18. doi: 10.1128/CMR.00084-18. PubMed DOI PMC
Vashishtha V.M., Kumar P. The durability of vaccine-induced protection: An overview. Expert Rev. Vaccines. 2024;23:389–408. doi: 10.1080/14760584.2024.2331065. PubMed DOI
Dumrisilp T., Wongpiyabovorn J., Buranapraditkun S., Tubjaroen C., Chaijitraruch N., Prachuapthunyachart S., Sintusek P., Chongsrisawat V. Impact of Obesity and Being Overweight on the Immunogenicity to Live Attenuated Hepatitis A Vaccine in Children and Young Adults. Vaccines. 2021;9:130. doi: 10.3390/vaccines9020130. PubMed DOI PMC
Soponkanabhorn T., Suratannon N., Buranapraditkun S., Tubjareon C., Prachuapthunyachart S., Eiamkulbutr S., Chongsrisawat V. Cellular immune response to a single dose of live attenuated hepatitis a virus vaccine in obese children and adolescents. Heliyon. 2000;10:e36610. doi: 10.1016/j.heliyon.2024.e36610. PubMed DOI PMC
Fonzo M., Nicolli A., Maso S., Carrer L., Trevisan A., Bertoncello C. Body Mass Index and Antibody Persistence after Measles, Mumps, Rubella and Hepatitis B Vaccinations. Vaccines. 2022;10:1152. doi: 10.3390/vaccines10071152. PubMed DOI PMC
Kara Z., Akçin R., Demir A.N., Dinç H., Taşkın H.E., Kocazeybek B., Yumuk V.D. Antibody Response to SARS-CoV-2 Vaccines in People with Severe Obesity. Obes. Surg. 2022;32:2987–2993. doi: 10.1007/s11695-022-06181-y. PubMed DOI PMC
Drożdżyńska J., Jakubowska W., Kemuś M., Krokowska M., Karpezo K., Wiśniewska M., Bogdański P., Skrypnik D. SARS-CoV-2 and Influenza Vaccines in People with Excessive Body Mass—A Narrative Review. Life. 2022;12:1617. doi: 10.3390/life12101617. PubMed DOI PMC
Frasca D., Romero M., Diaz A., Blomberg B.B. Obesity accelerates age defects in B cells, and weight loss improves B cell function. Immun. Ageing. 2023;20:35. doi: 10.1186/s12979-023-00361-9. PubMed DOI PMC
Gote V., Bolla P.K., Kommineni N., Butreddy A., Nukala P.K., Palakurthi S.S., Khan W. A Comprehensive Review of mRNA Vaccines. Int. J. Mol. Sci. 2023;24:2700. doi: 10.3390/ijms24032700. PubMed DOI PMC
Brisse M., Vrba S.M., Kirk N., Liang Y., Ly H. Emerging Concepts and Technologies in Vaccine Development. Front. Immunol. 2020;11:583077. doi: 10.3389/fimmu.2020.583077. PubMed DOI PMC
Xue P., Merikanto I., Delale E.A., Bjelajac A., Yordanova J., Chan R.N.Y., Korman M., Mota-Rolim S.A., Landtblom A.-M., Matsui K., et al. Associations between obesity, a composite risk score for probable long COVID, and sleep problems in SARS-CoV-2 vaccinated individuals. Int. J. Obes. 2024;48:1300–1306. doi: 10.1038/s41366-024-01556-w. PubMed DOI PMC
Ou X., Jiang J., Lin B., Liu Q., Lin W., Chen G., Wen J. Antibody responses to COVID-19 vaccination in people with obesity: A systematic review and meta-analysis. Influ. Other Respir. Viruses. 2023;17:e13078. doi: 10.1111/irv.13078. PubMed DOI PMC
Faizo A.A., Qashqari F.S., El-Kafrawy S.A., Barasheed O., Almashjary M.N., Alfelali M., Bawazir A.A., Albarakati B.M., Khayyat S.A., Hassan A.M., et al. A potential association between obesity and reduced effectiveness of COVID-19 vaccine-induced neutralizing humoral immunity. J. Med. Virol. 2022;95:e28130. doi: 10.1002/jmv.28130. PubMed DOI PMC
Shaw R.H., Greenland M., Stuart A.S., Aley P.K., Andrews N.J., Cameron J.C., Charlton S., Clutterbuck E.A., Collins A.M., Darton T., et al. Persistence of immune response in heterologous COVID vaccination schedules in the Com-COV2 study—A single-blind, randomised trial incorporating mRNA, viral-vector and protein-adjuvant vaccines. J. Infect. 2023;86:574–583. doi: 10.1016/j.jinf.2023.03.027. PubMed DOI PMC
Sheehan J., Ardizzone C.M., Khanna M., Trauth A.J., Hagensee M.E., Ramsay A.J. Dynamics of Serum-Neutralizing Antibody Responses in Vaccinees through Multiple Doses of the BNT162b2 Vaccine. Vaccines. 2023;11:1720. doi: 10.3390/vaccines11111720. PubMed DOI PMC
Klein S.L., Marriott I., Fish E.N. Sex-based differences in immune function and responses to vaccination. Trans. R. Soc. Trop. Med. Hyg. 2015;109:9–15. doi: 10.1093/trstmh/tru167. PubMed DOI PMC
Yin A., Wang N., Shea P.J., Rosser E.N., Kuo H., Shapiro J.R., Fenstermacher K.Z., Pekosz A., Rothman R.E., Klein S.L., et al. Sex and gender differences in adverse events following influenza and COVID-19 vaccination. Biol. Sex Differ. 2024;15:50. doi: 10.1186/s13293-024-00625-z. PubMed DOI PMC
Arora M., Lakshmi R. Vaccines–safety in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2021;76:23–40. doi: 10.1016/j.bpobgyn.2021.02.002. PubMed DOI PMC
Feng Z., Liao M., Zhang L. Sex differences in disease: Sex chromosome and immunity. J. Transl. Med. 2024;22:1150. doi: 10.1186/s12967-024-05990-2. PubMed DOI PMC
Tadount F., Kiely M., Assi A., Rafferty E., Sadarangani M., E MacDonald S., Quach C. Sex Differences in the Immunogenicity and Efficacy of Seasonal Influenza Vaccines: A Meta-analysis of Randomized Controlled Trials. Open Forum Infect. Dis. 2024;11:ofae222. doi: 10.1093/ofid/ofae222. PubMed DOI PMC
Lindsey N.P., Schroeder B.A., Miller E.R., Braun M.M., Hinckley A.F., Marano N., Slade B.A., Barnett E.D., Brunette G.W., Horan K., et al. Adverse event reports following yellow fever vaccination. Vaccine. 2008;26:6077–6082. doi: 10.1016/j.vaccine.2008.09.009. PubMed DOI
Querec T.D., Akondy R.S., Lee E.K., Cao W., Nakaya H.I., Teuwen D., Pirani A., Gernert K., Deng J., Marzolf B., et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 2009;10:116–125. doi: 10.1038/ni.1688. PubMed DOI PMC
Gaucher D., Therrien R., Kettaf N., Angermann B.R., Boucher G., Filali-Mouhim A., Moser J.M., Mehta R.S., Drake D.R., 3rd, Castro E., et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J. Exp. Med. 2008;205:3119–3131. doi: 10.1084/jem.20082292. PubMed DOI PMC
Peer V., Schwartz N., Green M.S. A multi-country, multi-year, meta-analytic evaluation of the sex differences in age-specific pertussis incidence rates. PLoS ONE. 2020;15:e0231570. doi: 10.1371/journal.pone.0231570. PubMed DOI PMC
Boef A.G., van der Klis F.R., Berbers G.A., Buisman A.-M., Sanders E.A., Kemmeren J.M., van der Ende A., de Melker H.E., Rots N.Y., Knol M.J. Differences by sex in IgG levels following infant and childhood vaccinations: An individual participant data meta-analysis of vaccination studies. Vaccine. 2018;36:400–407. doi: 10.1016/j.vaccine.2017.11.070. PubMed DOI
Sinha R.A., Yen P.M. Metabolic Messengers: Thyroid Hormones. Nat. Metab. 2024;6:639–650. doi: 10.1038/s42255-024-00986-0. PubMed DOI PMC
Paschou S.A., Karalis V., Psaltopoulou T., Vasileiou V., Charitaki I., Bagratuni T., Ktena V., Papandroulaki F., Gumeni S., Kassi G.N., et al. Patients With Autoimmune Thyroiditis Present Similar Immunological Response to COVID-19 BNT162b2 mRNA Vaccine With Healthy Subjects, While Vaccination May Affect Thyroid Function: A Clinical Study. Front. Endocrinol. 2022;13:840668. doi: 10.3389/fendo.2022.840668. PubMed DOI PMC
Polymeris A., Papapetrou P.D., Psachna S., Ioannidis D., Lilis D., Drakou M., Vaiopoulos A., Polymerou V., Spanos G. Patients with Hashimoto’s thyroiditis present higher immune response to COVID-19 mRNA vaccine compared to normal individuals. Hormones. 2024;23:89–95. doi: 10.1007/s42000-023-00470-6. PubMed DOI
Lynn D.J., Benson S.C., Lynn M.A., Pulendran B. Modulation of immune responses to vaccination by the microbiota: Implications and potential mechanisms. Nat. Rev. Immunol. 2021;22:33–46. doi: 10.1038/s41577-021-00554-7. PubMed DOI PMC
Rio P., Caldarelli M., Chiantore M., Ocarino F., Candelli M., Gasbarrini A., Gambassi G., Cianci R. Immune Cells, Gut Microbiota, and Vaccines: A Gender Perspective. Cells. 2024;13:526. doi: 10.3390/cells13060526. PubMed DOI PMC
Syromyatnikov M., Nesterova E., Gladkikh M., Smirnova Y., Gryaznova M., Popov V. Characteristics of the Gut Bacterial Composition in People of Different Nationalities and Religions. Microorganisms. 2022;10:1866. doi: 10.3390/microorganisms10091866. PubMed DOI PMC
World Health Organization Obesity Epidemiological Data. [(accessed on 10 January 2025)]. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-overweight-among-adults-bmi--25-(age-standardized-estimate)-(-)
Health Statistics of the National Institute of Diabetes and Digestive and Kidney Diseases. [(accessed on 10 January 2025)]; Available online: https://www.niddk.nih.gov/health-information/health-statistics/overweight-obesity#:~:text=the%20above%20table-
Lofton H., Ard J.D., Hunt R.R., Knight M.G. Obesity among African American people in the United States: A review. Obesity. 2023;31:306–315. doi: 10.1002/oby.23640. PubMed DOI PMC
Zare H., Aazami A., Shalby N., Gilmore D.R., Thorpe R.J. Measuring Racial Differences in Obesity Risk Factors in Non-Hispanic Black and White Men Aged 20 Years or Older. Am. J. Men’s Health. 2023;17:15579883231205845. doi: 10.1177/15579883231205845. PubMed DOI PMC
Stanislawski M.A., Dabelea D., Lange L.A., Wagner B.D., Lozupone C.A. Gut microbiota phenotypes of obesity. NPJ Biofilms Microbiomes. 2019;5:18. doi: 10.1038/s41522-019-0091-8. PubMed DOI PMC
Norton T., Lynn M.A., Rossouw C., Abayasingam A., Perkins G., Hissaria P., Bull R.A., Lynn D.J. B and T cell responses to the BNT162b2 COVID-19 mRNA vaccine are not impaired in germ-free or antibiotic-treated mice. Gut. 2023;73:1222–1224. doi: 10.1136/gutjnl-2023-329810. PubMed DOI PMC
Singer J., Tunbridge M.J., Shi B., Perkins G.B., Chai C.S., Salehi T., Sim B.Z., Kireta S., Johnston J.K., Akerman A., et al. Dietary Inulin to Improve SARS-CoV-2 Vaccine Response in Kidney Transplant Recipients: The RIVASTIM-Inulin Randomised Controlled Trial. Vaccines. 2024;12:608. doi: 10.3390/vaccines12060608. PubMed DOI PMC
Hitch T.C., Hall L.J., Walsh S.K., Leventhal G.E., Slack E., de Wouters T., Walter J., Clavel T. Microbiome-based interventions to modulate gut ecology and the immune system. Mucosal Immunol. 2022;15:1095–1113. doi: 10.1038/s41385-022-00564-1. PubMed DOI PMC
Jiang W., Lu G., Gao D., Lv Z., Li D. The relationships between the gut microbiota and its metabolites with thyroid diseases. Front. Endocrinol. 2022;13:943408. doi: 10.3389/fendo.2022.943408. PubMed DOI PMC
Yan K., Sun X., Fan C., Wang X., Yu H. Unveiling the Role of Gut Microbiota and Metabolites in Autoimmune Thyroid Diseases: Emerging Perspectives. Int. J. Mol. Sci. 2024;25:10918. doi: 10.3390/ijms252010918. PubMed DOI PMC
Mendoza-León M.J., Mangalam A.K., Regaldiz A., González-Madrid E., Rangel-Ramírez M.A., Álvarez-Mardonez O., Vallejos O.P., Méndez C., Bueno S.M., Melo-González F., et al. Gut microbiota short-chain fatty acids and their impact on the host thyroid function and diseases. Front. Endocrinol. 2023;14:1192216. doi: 10.3389/fendo.2023.1192216. PubMed DOI PMC
García A., De Sanctis J.B. An overview of adjuvant formulations and delivery systems. APMIS. 2013;122:257–267. doi: 10.1111/apm.12143. PubMed DOI
White S.J., Taylor M.J., Hurt R.T., Jensen M.D., Poland G.A. Leptin-based adjuvants: An innovative approach to improve vaccine response. Vaccine. 2013;31:1666–1672. doi: 10.1016/j.vaccine.2013.01.032. PubMed DOI PMC
Ben Nasr M., Usuelli V., Dellepiane S., Seelam A.J., Fiorentino T.V., D’addio F., Fiorina E., Xu C., Xie Y., Balasubramanian H.B., et al. Glucagon-like peptide 1 receptor is a T cell-negative costimulatory molecule. Cell Metab. 2024;36:1302–1319.e12. doi: 10.1016/j.cmet.2024.05.001. PubMed DOI
van Niekerk G., Coelmont L., Alpizar Y.A., Kelchtermans L., Broeckhoven E., Dallmeier K. GLP-1R agonist therapy and vaccine response: Neglected implications. Cytokine Growth Factor Rev. 2024;78:14–24. doi: 10.1016/j.cytogfr.2024.07.006. PubMed DOI
Garmendia J.V., García A.H., De Sanctis C.V., Hajdúch M., De Sanctis J.B. Autoimmunity and Immunodeficiency in Severe SARS-CoV-2 Infection and Prolonged COVID-19. Curr. Issues Mol. Biol. 2022;45:33–50. doi: 10.3390/cimb45010003. PubMed DOI PMC
García A.H., De Sanctis J.B. Exploring the Contrasts and Similarities of Dengue and SARS-CoV-2 Infections During the COVID-19 Era. Int. J. Mol. Sci. 2024;25:11624. doi: 10.3390/ijms252111624. PubMed DOI PMC
Jha S.K., Imran M., Jha L.A., Hasan N., Panthi V.K., Paudel K.R., Almalki W.H., Mohammed Y., Kesharwani P. A Comprehensive review on Pharmacokinetic Studies of Vaccines: Impact of delivery route, carrier-and its modulation on immune response. Pt 2Environ. Res. 2023;236:116823. doi: 10.1016/j.envres.2023.116823. PubMed DOI
Jiang G., Zou Y., Zhao D., Yu J. Optimising vaccine immunogenicity in ageing populations: Key strategies. Lancet Infect. Dis. 2025;25:e23–e33. doi: 10.1016/S1473-3099(24)00497-3. PubMed DOI