Exploring How Adipose Tissue, Obesity, and Gender Influence the Immune Response to Vaccines: A Comprehensive Narrative Review

. 2025 Jan 20 ; 26 (2) : . [epub] 20250120

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39859575

Grantová podpora
22 FONACIT. Ministry Science and Technology Venezuela
LX22NPO5103 National Institute of Virology and Bacterioloy EXCELES Project
CZ.02.1.01/0.0/0.0/16_019/0000868, Ministry of Education, Youth, and Sports of the Czech Republic. ENOCH Project

Vaccines represent an essential tool for the prevention of infectious diseases. Upon administration, a complex interaction occurs between the vaccine formulation and the recipient's immune system, ultimately resulting in protection against disease. Significant variability exists in individual and population responses to vaccination, and these differences remain the focus of the ongoing research. Notably, well-documented factors, such as age, gender, and genetic predisposition, influence immune responses. In contrast, the effects of overweight and obesity have not been as thoroughly investigated. The evidence indicates that a high body mass index (BMI) constitutes a significant risk factor for infections in general, with adipose tissue playing a crucial role in modulating the immune response. Furthermore, suboptimal levels of vaccine seroconversion have been observed among individuals with obesity. This review provides a plausible examination of the immunity and protection conferred by various vaccines in individuals with an overweight status, offering a comprehensive analysis of the mechanisms to enhance vaccination efficiency.

Zobrazit více v PubMed

Explaining How Vaccines Work. [(accessed on 8 December 2024)]; Available online: https://www.cdc.gov/vaccines/basics/explaining-how-vaccines-work.html.

Petrakis D., Margină D., Tsarouhas K., Tekos F., Stan M., Nikitovic D., Kouretas D., Spandidos D.A., Tsatsakis A. Obesity—A risk factor for increased COVID-19 prevalence, severity and lethality (Review) Mol. Med. Rep. 2020;22:9–19. doi: 10.3892/mmr.2020.11127. PubMed DOI PMC

Russo A., Pisaturo M., Zollo V., Martini S., Maggi P., Numis F.G., Gentile I., Sangiovanni N., Rossomando A.M., Bianco V., et al. Obesity as a Risk Factor of Severe Outcome of COVID-19: A Pair-Matched 1:2 Case–Control Study. J. Clin. Med. 2023;12:4055. doi: 10.3390/jcm12124055. PubMed DOI PMC

Nasr M.-J.C., Geerling E., Pinto A.K. Impact of Obesity on Vaccination to SARS-CoV-2. Front. Endocrinol. 2022;13:898810. doi: 10.3389/fendo.2022.898810. PubMed DOI PMC

Chauvin C., Retnakumar S.V., Bayry J. Obesity negatively impacts maintenance of antibody response to COVID-19 vaccines. Cell Rep. Med. 2023;4:101117. doi: 10.1016/j.xcrm.2023.101117. PubMed DOI PMC

van der Klaauw A.A., Horner E.C., Pereyra-Gerber P., Agrawal U., Foster W.S., Spencer S., Vergese B., Smith M., Henning E., Ramsay I.D., et al. Accelerated waning of the humoral response to COVID-19 vaccines in obesity. Nat. Med. 2023;29:1146–1154. doi: 10.1038/s41591-023-02343-2. PubMed DOI PMC

D’souza M., Keeshan A., Gravel C.A., Langlois M.-A., Cooper C.L. Obesity does not influence SARS-CoV-2 humoral vaccine immunogenicity. NPJ Vaccines. 2024;9:226. doi: 10.1038/s41541-024-01022-8. PubMed DOI PMC

Zwick R.K., Guerrero-Juarez C.F., Horsley V., Plikus M.V. Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Cell Metab. 2018;27:68–83. doi: 10.1016/j.cmet.2017.12.002. PubMed DOI PMC

Hagberg C.E., Spalding K.L. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat. Rev. Mol. Cell Biol. 2024;25:270–289. doi: 10.1038/s41580-023-00680-1. PubMed DOI

Richard A.J., White U., Elks C.M., Stephens J.M. Adipose Tissue: Physiology to Metabolic Dysfunction. [Updated 2020 Apr 4] In: Feingold K.R., Anawalt B., Blackman M.R., Boyce A., Chrousos G., Corpas E., de Herder W.W., Dhatariya K., Dungan K., Hofland J., et al., editors. Endotext [Internet] MDText.com, Inc.; South Dartmouth, MA, USA: 2000. [(accessed on 10 December 2024)]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK555602/

Gavin K.M., Bessesen D.H. Sex Differences in Adipose Tissue Function. Endocrinol. Metab. Clin. North Am. 2020;49:215–228. doi: 10.1016/j.ecl.2020.02.008. PubMed DOI PMC

Luo L., Liu M. Adiponectin: Friend or foe in obesity and inflammation. Med. Rev. 2022;2:349–362. doi: 10.1515/mr-2022-0002. PubMed DOI PMC

Baldelli S., Aiello G., Di Martino E.M., Campaci D., Muthanna F.M.S., Lombardo M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients. 2024;16:2436. doi: 10.3390/nu16152436. PubMed DOI PMC

Dare A., Chen S.-Y. Adipsin in the pathogenesis of cardiovascular diseases. Vasc. Pharmacol. 2024;154:107270. doi: 10.1016/j.vph.2023.107270. PubMed DOI PMC

Han R., Huang H., Zhu J., Jin X., Wang Y., Xu Y., Xia Z. Adipokines and their potential impacts on susceptibility to myocardial ischemia/reperfusion injury in diabetes. Lipids Health Dis. 2024;23:372. doi: 10.1186/s12944-024-02357-w. PubMed DOI PMC

Boucher J., Masri B., Daviaud D., Gesta S., Guigné C., Mazzucotelli A., Castan-Laurell I., Tack I., Knibiehler B., Carpéné C., et al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology. 2005;146:1764–1771. doi: 10.1210/en.2004-1427. PubMed DOI

Tan L., Lu X., Danser A.H.J., Verdonk K. The Role of Chemerin in Metabolic and Cardiovascular Disease: A Literature Review of Its Physiology and Pathology from a Nutritional Perspective. Nutrients. 2023;15:2878. doi: 10.3390/nu15132878. PubMed DOI PMC

Münzberg H., Heymsfield S.B., Berthoud H.-R., Morrison C.D. History and future of leptin: Discovery, regulation and signaling. Metab. Clin. Exp. 2024;161:156026. doi: 10.1016/j.metabol.2024.156026. PubMed DOI PMC

Perakakis N., Mantzoros C.S. Evidence from clinical studies of leptin: Current and future clinical applications in humans. Metab. Clin. Exp. 2024;161:156053. doi: 10.1016/j.metabol.2024.156053. PubMed DOI

Li Z., Gao Z., Sun T., Zhang S., Yang S., Zheng M., Shen H. Meteorin-like/Metrnl, a novel secreted protein implicated in inflammation, immunology, and metabolism: A comprehensive review of preclinical and clinical studies. Front. Immunol. 2023;14:1098570. doi: 10.3389/fimmu.2023.1098570. PubMed DOI PMC

Shi R., He M., Peng Y., Xia X. Homotherapy for heteropathy: Interleukin-41 and its biological functions. Immunology. 2024;173:1–13. doi: 10.1111/imm.13791. PubMed DOI

Sena C.M. Omentin: A Key Player in Glucose Homeostasis, Atheroprotection, and Anti-Inflammatory Potential for Cardiovascular Health in Obesity and Diabetes. Biomedicines. 2024;12:284. doi: 10.3390/biomedicines12020284. PubMed DOI PMC

Tripathi D., Kant S., Pandey S., Ehtesham N.Z. Resistin in metabolism, inflammation, and disease. FEBS J. 2020;287:3141–3149. doi: 10.1111/febs.15322. PubMed DOI

Radzik-Zając J., Wytrychowski K., Wiśniewski A., Barg W. The role of the novel adipokines vaspin and omentin in chronic inflammatory diseases. Pediatr. Endocrinol. Diabetes Metab. 2023;29:48–52. doi: 10.5114/pedm.2022.121371. PubMed DOI PMC

Dimova R., Tankova T. The role of vaspin in the development of metabolic and glucose tolerance disorders and atherosclerosis. BioMed Res. Int. 2015;2015:823481. doi: 10.1155/2015/823481. PubMed DOI PMC

Adeghate E. Visfatin: Structure, function and relation to diabetes mellitus and other dysfunctions. Curr. Med. Chem. 2008;15:1851–1862. doi: 10.2174/092986708785133004. PubMed DOI

Wu Y., Ma Y. CCL2-CCR2 signaling axis in obesity and metabolic diseases. J. Cell. Physiol. 2024;239:e31192. doi: 10.1002/jcp.31192. PubMed DOI

Chan P.-C., Lu C.-H., Chien H.-C., Tian Y.-F., Hsieh P.-S. Adipose Tissue-Derived CCL5 Enhances Local Pro-Inflammatory Monocytic MDSCs Accumulation and Inflammation via CCR5 Receptor in High-Fat Diet-Fed Mice. Int. J. Mol. Sci. 2022;23:14226. doi: 10.3390/ijms232214226. PubMed DOI PMC

Yuan Y., Hu R., Park J., Xiong S., Wang Z., Qian Y., Shi Z., Wu R., Han Z., Ong S.-G., et al. Macrophage-derived chemokine CCL22 establishes local LN-mediated adaptive thermogenesis and energy expenditure. Sci. Adv. 2024;10:eadn5229. doi: 10.1126/sciadv.adn5229. PubMed DOI PMC

Wueest S., Konrad D. The role of adipocyte-specific IL-6-type cytokine signaling in FFA and leptin release. Adipocyte. 2018;7:226–228. doi: 10.1080/21623945.2018.1493901. PubMed DOI PMC

Huang L.-Y., Chiu C.-J., Hsing C.-H., Hsu Y.-H. Interferon Family Cytokines in Obesity and Insulin Sensitivity. Cells. 2022;11:4041. doi: 10.3390/cells11244041. PubMed DOI PMC

Sewter C., Digby J., Blows F., Prins J., O’Rahilly S. Regulation of tumour necrosis factor-alpha release from human adipose tissue in vitro. J. Endocrinol. 1999;163:33–38. doi: 10.1677/joe.0.1630033. PubMed DOI

Engin A. Reappraisal of Adipose Tissue Inflammation in Obesity. Adv. Exper. Med. Biol. 2024;1460:297–327. doi: 10.1007/978-3-031-63657-8_10. PubMed DOI

Ghanbari M., Momen Maragheh S., Aghazadeh A., Mehrjuyan S.R., Hussen B.M., Abdoli Shadbad M., Dastmalchi N., Safaralizadeh R. Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. Int. Immunopharmacol. 2021;96:107765. doi: 10.1016/j.intimp.2021.107765. PubMed DOI

Hofwimmer K., Souza J.d.P., Subramanian N., Vujičić M., Rachid L., Méreau H., Zhao C., Dror E., Barreby E., Björkström N.K., et al. IL-1β promotes adipogenesis by directly targeting adipocyte precursors. Nat. Commun. 2024;15:7957. doi: 10.1038/s41467-024-51938-x. PubMed DOI PMC

Juge-Aubry C.E., Somm E., Giusti V., Pernin A., Chicheportiche R., Verdumo C., Rohner-Jeanrenaud F., Burger D., Dayer J.-M., Meier C.A. Adipose tissue is a major source of interleukin-1 receptor antagonist: Upregulation in obesity and inflammation. Diabetes. 2003;52:1104–1110. doi: 10.2337/diabetes.52.5.1104. PubMed DOI

Frühbeck G., Catalán V., Ramírez B., Valentí V., Becerril S., Rodríguez A., Moncada R., Baixauli J., Silva C., Escalada J., et al. Serum Levels of IL-1 RA Increase with Obesity and Type 2 Diabetes in Relation to Adipose Tissue Dysfunction and are Reduced After Bariatric Surgery in Parallel to Adiposity. J. Inflamm. Res. 2022;15:1331–1345. doi: 10.2147/JIR.S354095. PubMed DOI PMC

Barchetta I., Cimini F.A., Dule S., Cavallo M.G. Dipeptidyl Peptidase 4 (DPP4) as A Novel Adipokine: Role in Metabolism and Fat Homeostasis. Biomedicines. 2022;10:2306. doi: 10.3390/biomedicines10092306. PubMed DOI PMC

Cuevas-Ramos D., Mehta R., Aguilar-Salinas C.A. Fibroblast Growth Factor 21 and Browning of White Adipose Tissue. Front. Physiol. 2019;10:37. doi: 10.3389/fphys.2019.00037. PubMed DOI PMC

Flores-Cortez Y.A., Barragán-Bonilla M.I., Mendoza-Bello J.M., González-Calixto C., Flores-Alfaro E., Espinoza-Rojo M. Interplay of retinol binding protein 4 with obesity and associated chronic alterations (Review) Mol. Med. Rep. 2022;26:244. doi: 10.3892/mmr.2022.12760. PubMed DOI PMC

Zhang J., Wu Y., Zhang Y., LeRoith D., Bernlohr D.A., Chen X. The Role of Lipocalin 2 in the Regulation of Inflammation in Adipocytes and Macrophages. Mol. Endocrinol. 2008;22:1416–1426. doi: 10.1210/me.2007-0420. PubMed DOI PMC

Moschen A.R., Adolph T.E., Gerner R.R., Wieser V., Tilg H. Lipocalin-2: A master mediator of intestinal and metabolic inflammation. Trends Endocrinol. Metab. 2017;28:388–397. doi: 10.1016/j.tem.2017.01.003. PubMed DOI

Lee M.-J. Transforming growth factor beta superfamily regulation of adipose tissue biology in obesity. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2018;1864:1160–1171. doi: 10.1016/j.bbadis.2018.01.025. PubMed DOI

Flegal K.M., Kruszon-Moran D., Carroll M.D., Fryar C.D., Ogden C.L. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315:2284–2291. doi: 10.1001/jama.2016.6458. PubMed DOI PMC

Muscogiuri G., Verde L., Vetrani C., Barrea L., Savastano S., Colao A. Obesity: A gender-view. J. Endocrinol. Investig. 2023;47:299–306. doi: 10.1007/s40618-023-02196-z. PubMed DOI PMC

Tramunt B., Smati S., Grandgeorge N., Lenfant F., Arnal J.-F., Montagner A., Gourdy P. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia. 2020;63:453–461. doi: 10.1007/s00125-019-05040-3. PubMed DOI PMC

Guerra B., Fuentes T., Delgado-Guerra S., Guadalupe-Grau A., Olmedillas H., Santana A., Ponce-Gonzalez J.G., Dorado C., Calbet J.A.L. Gender dimorphism in skeletal muscle leptin receptors, serum leptin and insulin sensitivity. PLoS ONE. 2008;3:e3466. doi: 10.1371/journal.pone.0003466. PubMed DOI PMC

Rak A., Mellouk N., Froment P., Dupont J. Adiponectin and resistin: Potential metabolic signals affecting hypothalamo-pituitary gonadal axis in females and males of different species. Reproduction. 2017;153:R215–R226. doi: 10.1530/REP-17-0002. PubMed DOI

Sanchez-Rebordelo E., Cunarro J., Perez-Sieira S., Seoane L.M., Diéguez C., Nogueiras R., Tovar S. Regulation of Chemerin and CMKLR1 Expression by Nutritional Status, Postnatal Development, and Gender. Int. J. Mol. Sci. 2018;19:2905. doi: 10.3390/ijms19102905. PubMed DOI PMC

Kautzky-Willer A., Leutner M., Harreiter J. Sex differences in type 2 diabetes. Diabetologia. 2023;66:986–1002. doi: 10.1007/s00125-023-05891-x. PubMed DOI PMC

Koceva A., Herman R., Janez A., Rakusa M., Jensterle M. Sex- and Gender-Related Differences in Obesity: From Pathophysiological Mechanisms to Clinical Implications. Int. J. Mol. Sci. 2024;25:7342. doi: 10.3390/ijms25137342. PubMed DOI PMC

Luo L., Chen L., Song J., Ma X., Wang X. Association between systemic immune-inflammatory index and systemic inflammatory response index with body mass index in children and adolescents: A population-based study based on the National Health and Nutrition Examination Survey 2017–2020. Front. Endocrinol. 2024;15:1426404. doi: 10.3389/fendo.2024.1426404. PubMed DOI PMC

Silva J., Iwasaki A. Sex differences in postacute infection syndromes. Sci. Transl. Med. 2024;16:eado2102. doi: 10.1126/scitranslmed.ado2102. PubMed DOI

Cheng S., Ning Z., Huang K., Yuan Y., Tan X., Pan Y., Zhang R., Tian L., Lu Y., Wang X., et al. Analysis of sex-biased gene expression in a Eurasian admixed population. Brief. Bioinform. 2024;25:bbae451. doi: 10.1093/bib/bbae451. PubMed DOI PMC

Persons P.A., Williams L., Fields H., Mishra S., Mehta R. Weight gain during midlife: Does race/ethnicity influence risk? Maturitas. 2024;185:108013. doi: 10.1016/j.maturitas.2024.108013. PubMed DOI

Klein S.L., Flanagan K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016;16:626–638. doi: 10.1038/nri.2016.90. PubMed DOI

Wilkinson N.M., Chen H.-C., Lechner M.G., Su M.A. Sex Differences in Immunity. Annu. Rev. Immunol. 2022;40:75–94. doi: 10.1146/annurev-immunol-101320-125133. PubMed DOI PMC

Popotas A., Casimir G.J., Corazza F., Lefèvre N. Sex-related immunity: Could Toll-like receptors be the answer in acute inflammatory response? Front. Immunol. 2024;15:1379754. doi: 10.3389/fimmu.2024.1379754. PubMed DOI PMC

Wang P., Yang X., Zhang L., Sha S., Huang J., Peng J., Gu J., Pearson J.A., Hu Y., Zhao H., et al. Tlr9 deficiency in B cells leads to obesity by promoting inflammation and gut dysbiosis. Nat. Commun. 2024;15:4232. doi: 10.1038/s41467-024-48611-8. PubMed DOI PMC

Hamerman J.A., Barton G.M. The path ahead for understanding Toll-like receptor-driven systemic autoimmunity. Curr. Opin. Immunol. 2024;91:102482. doi: 10.1016/j.coi.2024.102482. PubMed DOI

Layug P.J., Vats H., Kannan K., Arsenio J. Sex differences in CD8+ T cell responses during adaptive immunity. WIREs Mech. Dis. 2024;16:e1645. doi: 10.1002/wsbm.1645. PubMed DOI

Forsyth K.S., Jiwrajka N., Lovell C.D., Toothacre N.E., Anguera M.C. The conneXion between sex and immune responses. Nat. Rev. Immunol. 2024;24:487–502. doi: 10.1038/s41577-024-00996-9. PubMed DOI PMC

Hoffmann J.P., Liu J.A., Seddu K., Klein S.L. Sex hormone signaling and regulation of immune function. Immunity. 2023;56:2472–2491. doi: 10.1016/j.immuni.2023.10.008. PubMed DOI

Sanyal D., Raychaudhuri M. Hypothyroidism and obesity: An intriguing link. Indian J. Endocrinol. Metab. 2016;20:554–557. doi: 10.4103/2230-8210.183454. PubMed DOI PMC

Yavuz S., del Prado S.S.N., Celi F.S. Thyroid Hormone Action and Energy Expenditure. J. Endocr. Soc. 2019;3:1345–1356. doi: 10.1210/js.2018-00423. PubMed DOI PMC

Sror-Turkel O., El-Khatib N., Sharabi-Nov A., Avraham Y., Merchavy S. Low TSH and low T3 hormone levels as a prognostic for mortality in COVID-19 intensive care patients. Front. Endocrinol. 2024;15:1322487. doi: 10.3389/fendo.2024.1322487. PubMed DOI PMC

Jafarzadeh A., Nemati M., Jafarzadeh S., Nozari P., Mortazavi S.M.J. Thyroid dysfunction following vaccination with COVID-19 vaccines: A basic review of the preliminary evidence. J. Endocrinol. Investig. 2022;45:1835–1863. doi: 10.1007/s40618-022-01786-7. PubMed DOI PMC

Ovčariček P.P., Görges R., Giovanella L. Autoimmune Thyroid Diseases. Semin. Nucl. Med. 2024;54:219–236. doi: 10.1053/j.semnuclmed.2023.11.002. PubMed DOI

Yang P., Shen G., Zhang H., Zhang C., Li J., Zhao F., Li Z., Liu Z., Wang M., Zhao J., et al. Incidence of thyroid dysfunction caused by immune checkpoint inhibitors combined with chemotherapy: A systematic review and meta-analysis. Int. Immunopharmacol. 2024;133:111961. doi: 10.1016/j.intimp.2024.111961. PubMed DOI

Barbagallo F., Cannarella R., Condorelli R.A., Cucinella L., La Vignera S., Nappi R., Calogero A.E. Thyroid diseases and female sexual dysfunctions. Sex. Med. Rev. 2024;12:321–333. doi: 10.1093/sxmrev/qeae021. PubMed DOI

Zierau O., Zenclussen A.C., Jensen F. Role of female sex hormones, estradiol and progesterone, in mast cell behavior. Front. Immunol. 2012;3:25406. doi: 10.3389/fimmu.2012.00169. PubMed DOI PMC

Kadel S., Kovats S. Sex Hormones Regulate Innate Immune Cells and Promote Sex Differences in Respiratory Virus Infection. Front. Immunol. 2018;9:1653. doi: 10.3389/fimmu.2018.01653. PubMed DOI PMC

Buendía-González F.O., Legorreta-Herrera M. The Similarities and Differences between the Effects of Testosterone and DHEA on the Innate and Adaptive Immune Response. Biomolecules. 2022;12:1768. doi: 10.3390/biom12121768. PubMed DOI PMC

Foyle K.L., A Robertson S. Gamma delta (γδ) T cells in the female reproductive tract: Active participants or indifferent bystanders in reproductive success? Discov. Immunol. 2024;3:kyae004. doi: 10.1093/discim/kyae004. PubMed DOI PMC

Montesinos M.d.M., Pellizas C.G. Thyroid Hormone Action on Innate Immunity. Front. Endocrinol. 2019;10:350. doi: 10.3389/fendo.2019.00350. PubMed DOI PMC

Landucci E., Laurino A., Cinci L., Gencarelli M., Raimondi L. Thyroid Hormone, Thyroid Hormone Metabolites and Mast Cells: A Less Explored Issue. Front. Cell. Neurosci. 2019;13:79. doi: 10.3389/fncel.2019.00079. PubMed DOI PMC

Adamska-Fita E., Śliwka P.W., Karbownik-Lewińska M., Lewiński A., Stasiak M. The Absence of Thyroid-Stimulating Hormone Receptor Expression on Natural Killer T Cells: Implications for the Immune–Endocrine Interaction. Int. J. Mol. Sci. 2024;25:11434. doi: 10.3390/ijms252111434. PubMed DOI PMC

Azimnasab-Sorkhabi P., Soltani-Asl M., Ekhtiyari M.S., Junior J.R.K. Landscape of unconventional γδ T cell subsets in cancer. Mol. Biol. Rep. 2024;51:238. doi: 10.1007/s11033-024-09267-1. PubMed DOI

Wenzek C., Boelen A., Westendorf A.M., Engel D.R., Moeller L.C., Führer D. The interplay of thyroid hormones and the immune system—Where we stand and why we need to know about it. Eur. J. Endocrinol. 2022;186:R65–R77. doi: 10.1530/EJE-21-1171. PubMed DOI PMC

Santana-Sánchez P., Vaquero-García R., Legorreta-Haquet M.V., Chávez-Sánchez L., Chávez-Rueda A.K. Hormones and B-cell development in health and autoimmunity. Front. Immunol. 2024;15:1385501. doi: 10.3389/fimmu.2024.1385501. PubMed DOI PMC

Brown E.D.L., Obeng-Gyasi B., Hall J.E., Shekhar S. The Thyroid Hormone Axis and Female Reproduction. Int. J. Mol. Sci. 2023;24:9815. doi: 10.3390/ijms24129815. PubMed DOI PMC

Kitahara C.M., Platz E.A., Ladenson P.W., Mondul A.M., Menke A., de González A.B. Body fatness and markers of thyroid function among U.S. men and women. PLoS ONE. 2012;7:e34979. doi: 10.1371/journal.pone.0034979. PubMed DOI PMC

Morenas R., Singh D., Hellstrom W.J.G. Thyroid disorders and male sexual dysfunction. Int. J. Impot. Res. 2024;36:333–338. doi: 10.1038/s41443-023-00768-4. PubMed DOI

Kirichenko T.V., Markina Y.V., Bogatyreva A.I., Tolstik T.V., Varaeva Y.R., Starodubova A.V. The Role of Adipokines in Inflammatory Mechanisms of Obesity. Int. J. Mol. Sci. 2022;23:14982. doi: 10.3390/ijms232314982. PubMed DOI PMC

Trim W.V., Lynch L. Immune and non-immune functions of adipose tissue leukocytes. Nat. Rev. Immunol. 2021;22:371–386. doi: 10.1038/s41577-021-00635-7. PubMed DOI

Xiao L., Yang X., Lin Y., Li S., Jiang J., Qian S., Tang Q., He R., Li X. Large adipocytes function as antigen-presenting cells to activate CD4+ T cells via upregulating MHCII in obesity. Int. J. Obes. 2015;40:112–120. doi: 10.1038/ijo.2015.145. PubMed DOI PMC

Chan C.C., Damen M.S., Alarcon P.C., Sanchez-Gurmaches J., Divanovic S. Inflammation and Immunity: From an Adipocyte’s Perspective. J. Interf. Cytokine Res. 2019;39:459–471. doi: 10.1089/jir.2019.0014. PubMed DOI PMC

Castoldi A., Sanin D.E., Bakker N.v.T., Aguiar C.F., Monteiro L.d.B., Rana N., Grzes K.M., Kabat A.M., Curtis J., Cameron A.M., et al. Metabolic and functional remodeling of colonic macrophages in response to high-fat diet-induced obesity. iScience. 2023;26:107719. doi: 10.1016/j.isci.2023.107719. PubMed DOI PMC

Chen X., Wang S., Huang Y., Zhao X., Jia X., Meng G., Zheng Q., Zhang M., Wu Y., Wang L. Obesity Reshapes Visceral Fat-Derived MHC I Associated-Immunopeptidomes and Generates Antigenic Peptides to Drive CD8+ T Cell Responses. iScience. 2020;23:100977. doi: 10.1016/j.isci.2020.100977. PubMed DOI PMC

Satoh M., Iizuka M., Majima M., Ohwa C., Hattori A., Van Kaer L., Iwabuchi K. Adipose invariant NKT cells interact with CD1d-expressing macrophages to regulate obesity-related inflammation. Immunology. 2022;165:414–427. doi: 10.1111/imm.13447. PubMed DOI

Satoh M., Iwabuchi K. Contribution of NKT cells and CD1d-expressing cells in obesity-associated adipose tissue inflammation. Front. Immunol. 2024;15:1365843. doi: 10.3389/fimmu.2024.1365843. PubMed DOI PMC

Andersen C.J., Murphy K.E., Fernandez M.L. Impact of Obesity and Metabolic Syndrome on Immunity. Adv. Nutr. 2016;7:66–75. doi: 10.3945/an.115.010207. PubMed DOI PMC

Kawai T., Autieri M.V., Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Physiol. 2020;320:C375–C391. doi: 10.1152/ajpcell.00379.2020. PubMed DOI PMC

Valentine Y., Nikolajczyk B.S. T cells in obesity-associated inflammation: The devil is in the details. Immunol. Rev. 2024;324:25–41. doi: 10.1111/imr.13354. PubMed DOI PMC

Ding S., Lund P.K. Role of intestinal inflammation as an early event in obesity and insulin resistance. Curr. Opin. Clin. Nutr. Metab. Care. 2011;14:328–333. doi: 10.1097/MCO.0b013e3283478727. PubMed DOI PMC

Brotfain E., Hadad N., Shapira Y., Avinoah E., Zlotnik A., Raichel L., Levy R. Neutrophil functions in morbidly obese subjects. Clin. Exp. Immunol. 2015;181:156–163. doi: 10.1111/cei.12631. PubMed DOI PMC

Gomez-Casado G., Jimenez-Gonzalez A., Rodriguez-Muñoz A., Tinahones F.J., González-Mesa E., Murri M., Ortega-Gomez A. Neutrophils as indicators of obesity-associated inflammation: A systematic review and meta-analysis. Obes. Rev. 2024:e13868. doi: 10.1111/obr.13868. PubMed DOI

Shantaram D., Hoyd R., Blaszczak A.M., Antwi L., Jalilvand A., Wright V.P., Liu J., Smith A.J., Bradley D., Lafuse W., et al. Obesity-associated microbiomes instigate visceral adipose tissue inflammation by recruitment of distinct neutrophils. Nat. Commun. 2024;15:5434. doi: 10.1038/s41467-024-48935-5. PubMed DOI PMC

Hu Y., Chakarov S. Eosinophils in obesity and obesity-associated disorders. Discov. Immunol. 2023;2:kyad022. doi: 10.1093/discim/kyad022. PubMed DOI PMC

Divoux A., Moutel S., Poitou C., Lacasa D., Veyrie N., Aissat A., Arock M., Guerre-Millo M., Clément K. Mast cells in human adipose tissue: Link with morbid obesity, inflammatory status, and diabetes. J. Clin. Endocrinol. Metab. 2012;97:E1677–E1685. doi: 10.1210/jc.2012-1532. PubMed DOI

Mukherjee S., Skrede S., Haugstøyl M., López M., Fernø J. Peripheral and central macrophages in obesity. Front. Endocrinol. 2023;14:1232171. doi: 10.3389/fendo.2023.1232171. PubMed DOI PMC

Wilkin C., Piette J., Legrand-Poels S. Unravelling metabolic factors impacting iNKT cell biology in obesity. Biochem. Pharmacol. 2024;228:116436. doi: 10.1016/j.bcp.2024.116436. PubMed DOI

Cui G., Abe S., Kato R., Ikuta K. Insights into the heterogeneity of iNKT cells: Tissue-resident and circulating subsets shaped by local microenvironmental cues. Front. Immunol. 2024;15:1349184. doi: 10.3389/fimmu.2024.1349184. PubMed DOI PMC

Canter R.J., Judge S.J., Collins C.P., Yoon D.J., Murphy W.J. Suppressive effects of obesity on NK cells: Is it time to incorporate obesity as a clinical variable for NK cell-based cancer immunotherapy regimens? J. Immunother. Cancer. 2024;12:e008443. doi: 10.1136/jitc-2023-008443. PubMed DOI PMC

De Barra C., O’Shea D., Hogan A.E. NK cells vs. obesity: A tale of dysfunction & redemption. Clin. Immunol. 2023;255:109744. doi: 10.1016/j.clim.2023.109744. PubMed DOI

Goldberg E.L., Shchukina I., Asher J.L., Sidorov S., Artyomov M.N., Dixit V.D. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat. Metab. 2020;2:50–61. doi: 10.1038/s42255-019-0160-6. PubMed DOI PMC

Frasca D., Romero M., Blomberg B.B. Similarities in B Cell Defects Between Aging and Obesity. J. Immunol. 2024;213:1407–1413. doi: 10.4049/jimmunol.2300670. PubMed DOI

Gao F., Litchfield B., Wu H. Adipose tissue lymphocytes and obesity. J. Cardiovasc. Aging. 2024;4:5. doi: 10.20517/jca.2023.38. PubMed DOI PMC

Meher A.K., McNamara C.A. B-1 lymphocytes in adipose tissue as innate modulators of inflammation linked to cardiometabolic disease. Immunol. Rev. 2024;324:95–103. doi: 10.1111/imr.13342. PubMed DOI PMC

Liu R., Nikolajczyk B.S. Tissue Immune Cells Fuel Obesity-Associated Inflammation in Adipose Tissue and Beyond. Front. Immunol. 2019;10:1587. doi: 10.3389/fimmu.2019.01587. PubMed DOI PMC

McLaughlin T., Liu L.-F., Lamendola C., Shen L., Morton J., Rivas H., Winer D., Tolentino L., Choi O., Zhang H., et al. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arter. Thromb. Vasc. Biol. 2014;34:2637–2643. doi: 10.1161/ATVBAHA.114.304636. PubMed DOI PMC

Zi C., Wang D., Gao Y., He L. The role of Th17 cells in endocrine organs: Involvement of the gut, adipose tissue, liver and bone. Front. Immunol. 2023;13:1104943. doi: 10.3389/fimmu.2022.1104943. PubMed DOI PMC

Kochumon S., Hasan A., Al-Rashed F., Sindhu S., Thomas R., Jacob T., Al-Sayyar A., Arefanian H., Al Madhoun A., Al-Ozairi E., et al. Increased Adipose Tissue Expression of IL-23 Associates with Inflammatory Markers in People with High LDL Cholesterol. Cells. 2022;11:3072. doi: 10.3390/cells11193072. PubMed DOI PMC

Fabbrini E., Cella M., Mccartney S.A., Fuchs A., Abumrad N.A., Pietka T.A., Chen Z., Finck B.N., Han D.H., Magkos F., et al. Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology. 2013;145:366–374.e3. doi: 10.1053/j.gastro.2013.04.010. PubMed DOI PMC

Wang Q., Wang Y., Xu D. The roles of T cells in obese adipose tissue inflammation. Adipocyte. 2021;10:435–445. doi: 10.1080/21623945.2021.1965314. PubMed DOI PMC

Delacher M., Schmidleithner L., Simon M., Stüve P., Sanderink L., Hotz-Wagenblatt A., Wuttke M., Schambeck K., Ruhland B., Hofmann V., et al. The effector program of human CD8 T cells supports tissue remodeling. J. Exp. Med. 2024;221:e20230488. doi: 10.1084/jem.20230488. PubMed DOI PMC

Magalhaes I., Pingris K., Poitou C., Bessoles S., Venteclef N., Kiaf B., Beaudoin L., Da Silva J., Allatif O., Rossjohn J., et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J. Clin. Investig. 2015;125:1752–1762. doi: 10.1172/JCI78941. PubMed DOI PMC

Kedia-Mehta N., Hogan A.E. MAITabolism2—The emerging understanding of MAIT cell metabolism and their role in metabolic disease. Front. Immunol. 2022;13:1108071. doi: 10.3389/fimmu.2022.1108071. PubMed DOI PMC

Sage P.T., Sharpe A.H. T follicular regulatory cells in the regulation of B cell responses. Trends Immunol. 2015;36:410–418. doi: 10.1016/j.it.2015.05.005. PubMed DOI PMC

Hildreth A.D., Ma F., Wong Y.Y., Sun R., Pellegrini M., O’sullivan T.E. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat. Immunol. 2021;22:639–653. doi: 10.1038/s41590-021-00922-4. PubMed DOI PMC

Frasca D., Diaz A., Romero M., Vazquez T., Blomberg B.B. Obesity induces pro-inflammatory B cells and impairs B cell function in old mice. Mech. Ageing Dev. 2017;162:91–99. doi: 10.1016/j.mad.2017.01.004. PubMed DOI PMC

Park M.-J., Kwok S.-K., Lee S.-H., Kim E.-K., Park S.-H., Cho M.-L. Adipose tissue-derived mesenchymal stem cells induce expansion of interleukin-10-producing regulatory B cells and ameliorate autoimmunity in a murine model of systemic lupus erythematosus. Cell Transplant. 2015;24:2367–2377. doi: 10.3727/096368914X685645. PubMed DOI

Hong C., Li X., Zhang K., Huang Q., Li B., Xin H., Hu B., Meng F., Zhu X., Tang D., et al. Novel perspectives on autophagy-oxidative stress-inflammation axis in the orchestration of adipogenesis. Front. Endocrinol. 2024;15:1404697. doi: 10.3389/fendo.2024.1404697. PubMed DOI PMC

Yang Q., Zhang F., Chen H., Hu Y., Yang N., Yang W., Wang J., Yang Y., Xu R., Xu C. The differentiation courses of the Tfh cells: A new perspective on autoimmune disease pathogenesis and treatment. Biosci. Rep. 2024;44:BSR20231723. doi: 10.1042/BSR20231723. PubMed DOI PMC

Zhang Y., Chua S., Jr. Leptin Function and Regulation. Compr. Physiol. 2017;8:351–369. doi: 10.1002/cphy.c160041. PubMed DOI

Kiernan K., MacIver N.J. The Role of the Adipokine Leptin in Immune Cell Function in Health and Disease. Front. Immunol. 2021;11:622468. doi: 10.3389/fimmu.2020.622468. PubMed DOI PMC

Deng J., Chen Q., Chen Z., Liang K., Gao X., Wang X., Makota F.V., Ong H.S., Wan Y., Luo K., et al. The metabolic hormone leptin promotes the function of TFH cells and supports vaccine responses. Nat. Commun. 2021;12:3073. doi: 10.1038/s41467-021-23220-x. PubMed DOI PMC

Park J., Sohn J.H., Han S.M., Park Y.J., Huh J.Y., Choe S.S., Kim J.B. Adipocytes Are the Control Tower That Manages Adipose Tissue Immunity by Regulating Lipid Metabolism. Front. Immunol. 2021;11:598566. doi: 10.3389/fimmu.2020.598566. PubMed DOI PMC

Shaikh S.R., Beck M.A., Alwarawrah Y., MacIver N.J. Emerging mechanisms of obesity-associated immune dysfunction. Nat. Rev. Endocrinol. 2023;20:136–148. doi: 10.1038/s41574-023-00932-2. PubMed DOI

Soták M., Clark M., Suur B.E., Börgeson E. Inflammation and resolution in obesity. Nat. Rev. Endocrinol. 2025;21:45–61. doi: 10.1038/s41574-024-01047-y. PubMed DOI

Lee M.-J., Kim J. The pathophysiology of visceral adipose tissues in cardiometabolic diseases. Biochem. Pharmacol. 2024;222:116116. doi: 10.1016/j.bcp.2024.116116. PubMed DOI PMC

McTavish P.V., Mutch D.M. Omega-3 fatty acid regulation of lipoprotein lipase and FAT/CD36 and its impact on white adipose tissue lipid uptake. Lipids Health Dis. 2024;23:386. doi: 10.1186/s12944-024-02376-7. PubMed DOI PMC

Lima G.B., Figueiredo N., Kattah F.M., Oliveira E.S., Horst M.A., Dâmaso A.R., Oyama L.M., Whitton R.G.M., de Souza G.I.M.H., Lima G.C., et al. Serum Fatty Acids and Inflammatory Patterns in Severe Obesity: A Preliminary Investigation in Women. Biomedicines. 2024;12:2248. doi: 10.3390/biomedicines12102248. PubMed DOI PMC

Childs B.G., Gluscevic M., Baker D.J., Laberge R.-M., Marquess D., Dananberg J., van Deursen J.M. Senescent cells: An emerging target for diseases of ageing. Nat. Rev. Drug Discov. 2017;16:718–735. doi: 10.1038/nrd.2017.116. PubMed DOI PMC

Liu Z., Liang Q., Ren Y., Guo C., Ge X., Wang L., Cheng Q., Luo P., Zhang Y., Han X. Immunosenescence: Molecular mechanisms and diseases. Signal Transduct. Target. Ther. 2023;8:200. doi: 10.1038/s41392-023-01451-2. PubMed DOI PMC

Shirakawa K., Sano M. T Cell Immunosenescence in Aging, Obesity, and Cardiovascular Disease. Cells. 2021;10:2435. doi: 10.3390/cells10092435. PubMed DOI PMC

Wang Y., Dong C., Han Y., Gu Z., Sun C. Immunosenescence, aging and successful aging. Front. Immunol. 2022;13:942796. doi: 10.3389/fimmu.2022.942796. PubMed DOI PMC

Shimi G., Sohouli M.H., Ghorbani A., Shakery A., Zand H. The interplay between obesity, immunosenescence, and insulin resistance. Immun. Ageing. 2024;21:13. doi: 10.1186/s12979-024-00414-7. PubMed DOI PMC

Frasca D., Diaz A., Romero M., Garcia D., Blomberg B.B. B Cell Immunosenescence. Annu. Rev. Cell Dev. Biol. 2020;36:551–574. doi: 10.1146/annurev-cellbio-011620-034148. PubMed DOI PMC

Garmendia J.V., Moreno D., Garcia A.H., De Sanctis J.B. Metabolic syndrome and asthma. Recent Pat. Endocr. Metab. Immune Drug Discov. 2014;8:60–66. doi: 10.2174/1872214807666140107151023. PubMed DOI

Kudlova N., De Sanctis J.B., Hajduch M. Cellular Senescence: Molecular Targets, Biomarkers, and Senolytic Drugs. Int. J. Mol. Sci. 2022;23:4168. doi: 10.3390/ijms23084168. PubMed DOI PMC

Valentino T.R., Chen N., Makhijani P., Khan S., Winer S., Revelo X.S., Winer D.A. The role of autoantibodies in bridging obesity, aging, and immunosenescence. Immun. Ageing. 2024;21:85. doi: 10.1186/s12979-024-00489-2. PubMed DOI PMC

Zhou Z., Tao Y., Zhao H., Wang Q. Adipose Extracellular Vesicles: Messengers from and to Macrophages in Regulating Immunometabolic Homeostasis or Disorders. Front. Immunol. 2021;12:666344. doi: 10.3389/fimmu.2021.666344. PubMed DOI PMC

Kwan H.Y., Chen M., Xu K., Chen B. The impact of obesity on adipocyte-derived extracellular vesicles. Cell. Mol. Life Sci. 2021;78:7275–7288. doi: 10.1007/s00018-021-03973-w. PubMed DOI PMC

Matilainen J., Berg V., Vaittinen M., Impola U., Mustonen A.-M., Männistö V., Malinen M., Luukkonen V., Rosso N., Turunen T., et al. Increased secretion of adipocyte-derived extracellular vesicles is associated with adipose tissue inflammation and the mobilization of excess lipid in human obesity. J. Transl. Med. 2024;22:623. doi: 10.1186/s12967-024-05249-w. PubMed DOI PMC

Rakib A., Kiran S., Mandal M., Singh U.P. MicroRNAs: A crossroad that connects obesity to immunity and aging. Immun. Ageing. 2022;19:64. doi: 10.1186/s12979-022-00320-w. PubMed DOI PMC

Mendivil-Alvarado H., Sosa-León L.A., Carvajal-Millan E., Astiazaran-Garcia H. Malnutrition and Biomarkers: A Journey through Extracellular Vesicles. Nutrients. 2022;14:1002. doi: 10.3390/nu14051002. PubMed DOI PMC

Leocádio P.C.L., Oriá R.B., Crespo-Lopez M.E., Alvarez-Leite J.I. Obesity: More Than an Inflammatory, an Infectious Disease? Front. Immunol. 2020;10:3092. doi: 10.3389/fimmu.2019.03092. PubMed DOI PMC

Pugliese G., Liccardi A., Graziadio C., Barrea L., Muscogiuri G., Colao A. Obesity and infectious diseases: Pathophysiology and epidemiology of a double pandemic condition. Int. J. Obes. 2022;46:449–465. doi: 10.1038/s41366-021-01035-6. PubMed DOI

Cristancho C., Mogensen K.M., Robinson M.K. Malnutrition in patients with obesity: An overview perspective. Nutr. Clin. Pract. 2024;39:1300–1316. doi: 10.1002/ncp.11228. PubMed DOI

Crespo F.I., Mayora S.J., De Sanctis J.B., Martínez W.Y., Zabaleta-Lanz M.E., Toro F.I., Deibis L.H., García A.H. SARS-CoV-2 Infection in Venezuelan Pediatric Patients—A Single Center Prospective Observational Study. Biomedicines. 2023;11:1409. doi: 10.3390/biomedicines11051409. PubMed DOI PMC

García A.H., Crespo F.I., Mayora S.J., Martinez W.Y., Belisario I., Medina C., De Sanctis J.B. Role of Micronutrients in the Response to SARS-CoV-2 Infection in Pediatric Patients. Immuno. 2024;4:211–225. doi: 10.3390/immuno4030014. DOI

Cordeiro A., Luna M., Pereira S.E., Saboya C.J., Ramalho A. Impairment of Vitamin D Nutritional Status and Metabolic Profile Are Associated with Worsening of Obesity According to the Edmonton Obesity Staging System. Int. J. Mol. Sci. 2022;23:14705. doi: 10.3390/ijms232314705. PubMed DOI PMC

Bennour I., Haroun N., Sicard F., Mounien L., Landrier J.-F. Vitamin D and Obesity/Adiposity—A Brief Overview of Recent Studies. Nutrients. 2022;14:2049. doi: 10.3390/nu14102049. PubMed DOI PMC

Keto J., Feuth T., Linna M., Saaresranta T. Lower respiratory tract infections among newly diagnosed sleep apnea patients. BMC Pulm. Med. 2023;23:332. doi: 10.1186/s12890-023-02623-0. PubMed DOI PMC

Alvarez J.A., Yang C.-A., Ojuri V., Buckley K., Bedi B., Musonge-Effoe J., Soibi-Harry A., Lahiri C.D. Sex Differences in Metabolic Disorders of Aging and Obesity in People with HIV. Curr. HIV/AIDS Rep. 2024;22:3. doi: 10.1007/s11904-024-00711-2. PubMed DOI PMC

Cancelier A.C.L., Schuelter-Trevisol F., Trevisol D.J., Atkinson R.L. Adenovirus 36 infection and obesity risk: Current understanding and future therapeutic strategies. Expert Rev. Endocrinol. Metab. 2022;17:143–152. doi: 10.1080/17446651.2022.2044303. PubMed DOI

Hameed M., Geerling E., Pinto A.K., Miraj I., Weger-Lucarelli J. Immune response to arbovirus infection in obesity. Front. Immunol. 2022;13:968582. doi: 10.3389/fimmu.2022.968582. PubMed DOI PMC

Tian Y., Jennings J., Gong Y., Sang Y. Viral Infections and Interferons in the Development of Obesity. Biomolecules. 2019;9:726. doi: 10.3390/biom9110726. PubMed DOI PMC

Gallagher P., Chan K.R., Rivino L., Yacoub S. The association of obesity and severe dengue: Possible pathophysiological mechanisms. J. Infect. 2020;81:10–16. doi: 10.1016/j.jinf.2020.04.039. PubMed DOI

Chen C.-Y., Chiu Y.-Y., Chen Y.-C., Huang C.-H., Wang W.-H., Chen Y.-H., Lin C.-Y. Obesity as a clinical predictor for severe manifestation of dengue: A systematic review and meta-analysis. BMC Infect. Dis. 2023;23:502. doi: 10.1186/s12879-023-08481-9. PubMed DOI PMC

Molokwu J.C., Penaranda E., Lopez D.S., Dwivedi A., Dodoo C., Shokar N. Association of Metabolic Syndrome and Human Papillomavirus Infection in Men and Women Residing in the United States. Cancer Epidemiol. Biomark. Prev. 2017;26:1321–1327. doi: 10.1158/1055-9965.EPI-17-0129. PubMed DOI

Huang X., Zhao Q., Yang P., Li Y., Yuan H., Wu L., Chen Z. Metabolic Syndrome and Risk of Cervical Human Papillomavirus Incident and Persistent Infection. Medicine. 2016;95:e2905. doi: 10.1097/MD.0000000000002905. PubMed DOI PMC

Shin H.S., Jun B.G., Yi S.-W. Impact of diabetes, obesity, and dyslipidemia on the risk of hepatocellular carcinoma in patients with chronic liver diseases. Clin. Mol. Hepatol. 2022;28:773–789. doi: 10.3350/cmh.2021.0383. PubMed DOI PMC

Markakis K., Tsachouridou O., Georgianou E., Pilalas D., Nanoudis S., Metallidis S. Weight Gain in HIV Adults Receiving Antiretroviral Treatment: Current Knowledge and Future Perspectives. Life. 2024;14:1367. doi: 10.3390/life14111367. PubMed DOI PMC

Cáceres C., Castillo M., Carrillo K., Tapia C.V., Valderrama G., Maquilón C., Toro-Ascuy D., Zorondo-Rodríguez F., Fuenzalida L.F. Overnutrition as a risk factor for more serious respiratory viral infections in children: A retrospective study in hospitalized patients. Endocrinol. Diabetes Nutr. 2023;70:476–483. doi: 10.1016/j.endinu.2023.05.001. PubMed DOI

Ramaswamy M., Shi L., Monick M.M., Hunninghake G.W., Look D.C. Specific inhibition of type I interferon signal transduction by respiratory syncytial virus. Am. J. Respir. Cell Mol. Biol. 2004;30:893–900. doi: 10.1165/rcmb.2003-0410OC. PubMed DOI

Mîndru D.E., Țarcă E., Adumitrăchioaiei H., Anton-Păduraru D.T., Ștreangă V., Frăsinariu O.E., Sidoreac A., Stoica C., Bernic V., Luca A.-C. Obesity as a Risk Factor for the Severity of COVID-19 in Pediatric Patients: Possible Mechanisms—A Narrative Review. Children. 2024;11:1203. doi: 10.3390/children11101203. PubMed DOI PMC

Jang S., Hong W., Moon Y. Obesity-compromised immunity in post-COVID-19 condition: A critical control point of chronicity. Front. Immunol. 2024;15:1433531. doi: 10.3389/fimmu.2024.1433531. PubMed DOI PMC

Miron V.D., Drăgănescu A.C., Pițigoi D., Aramă V., Streinu-Cercel A., Săndulescu O. The Impact of Obesity on the Host–Pathogen Interaction with Influenza Viruses—Novel Insights: Narrative Review. Diabetes Metab. Syndr. Obes. 2024;17:769–777. doi: 10.2147/DMSO.S434115. PubMed DOI PMC

Chiang C.-H. Association between metabolic factors and chronic hepatitis B virus infection. World J. Gastroenterol. 2014;20:7213–7216. doi: 10.3748/wjg.v20.i23.7213. PubMed DOI PMC

Hornung F., Rogal J., Loskill P., Löffler B., Deinhardt-Emmer S. The Inflammatory Profile of Obesity and the Role on Pulmonary Bacterial and Viral Infections. Int. J. Mol. Sci. 2021;22:3456. doi: 10.3390/ijms22073456. PubMed DOI PMC

Hales C., Burnet L., Coombs M., Collins A.M., Ferreira D.M. Obesity, leptin and host defence of Streptococcus pneumoniae: The case for more human research. Eur. Respir. Rev. 2022;31:220055. doi: 10.1183/16000617.0055-2022. PubMed DOI PMC

Li C., Huang H., Xia Q., Zhang L. Correlation between body mass index and gender-specific 28-day mortality in patients with sepsis: A retrospective cohort study. Front. Med. 2024;11:1462637. doi: 10.3389/fmed.2024.1462637. PubMed DOI PMC

Weber D.J., Rutala W.A., Samsa G.P., Santimaw J.E., Lemon S.M. Obesity as a predictor of poor antibody response to hepatitis B plasma vaccine. JAMA. 1985;254:3187–3189. doi: 10.1001/jama.1985.03360220053027. PubMed DOI

CDC Pink Book. [(accessed on 10 January 2025)]; Available online: https://www.cdc.gov/pinkbook/site.html.

Callahan S.T., Wolff M., Hill H.R., Edwards K.M., NIAID Vaccine and Treatment Evaluation Unit (VTEU) Pandemic H1N1 Vaccine Study Group Impact of body mass index on immunogenicity of pandemic H1N1 vaccine in children and adults. J. Infect. Dis. 2014;210:1270–1274. doi: 10.1093/infdis/jiu245. PubMed DOI PMC

Clarke M., Mathew S.M., Giles L.C., Pena A.S., Barr I.G., Richmond P.C., Marshall H.S. A Prospective Study Investigating the Impact of Obesity on the Immune Response to the Quadrivalent Influenza Vaccine in Children and Adolescents. Vaccines. 2022;10:699. doi: 10.3390/vaccines10050699. PubMed DOI PMC

Sheridan P.A., Paich H.A., Handy J., Karlsson E.A., Hudgens M.G., Sammon A.B., Holland L.A., Weir S., Noah T.L., Beck M.A. Obesity is associated with impaired immune response to influenza vaccination in humans. Int. J. Obes. 2012;36:1072–1077. doi: 10.1038/ijo.2011.208. PubMed DOI PMC

Huang J.Y., Kaur B.P., Seth D., Pansare M.V., Kamat D., McGrath E., Secord E.A., Poowuttikul P. Can Obesity Alter the Immune Response to Childhood Vaccinations? J. Allergy Clin. Immunol. 2019;143:AB299. doi: 10.1016/j.jaci.2018.12.913. DOI

Huang J., Kaur B., Farooqi A., Miah T., McGrath E., Seth D., Secord E., Poowuttikul P. Elevated Glycated Hemoglobin Is Associated with Reduced Antibody Responses to Vaccinations in Children. Pediatr. Allergy Immunol. Pulmonol. 2020;33:193–198. doi: 10.1089/ped.2020.1160. PubMed DOI PMC

Zimmermann P., Curtis N. Factors That Influence the Immune Response to Vaccination. Clin. Microbiol. Rev. 2019;32:e00084-18. doi: 10.1128/CMR.00084-18. PubMed DOI PMC

Vashishtha V.M., Kumar P. The durability of vaccine-induced protection: An overview. Expert Rev. Vaccines. 2024;23:389–408. doi: 10.1080/14760584.2024.2331065. PubMed DOI

Dumrisilp T., Wongpiyabovorn J., Buranapraditkun S., Tubjaroen C., Chaijitraruch N., Prachuapthunyachart S., Sintusek P., Chongsrisawat V. Impact of Obesity and Being Overweight on the Immunogenicity to Live Attenuated Hepatitis A Vaccine in Children and Young Adults. Vaccines. 2021;9:130. doi: 10.3390/vaccines9020130. PubMed DOI PMC

Soponkanabhorn T., Suratannon N., Buranapraditkun S., Tubjareon C., Prachuapthunyachart S., Eiamkulbutr S., Chongsrisawat V. Cellular immune response to a single dose of live attenuated hepatitis a virus vaccine in obese children and adolescents. Heliyon. 2000;10:e36610. doi: 10.1016/j.heliyon.2024.e36610. PubMed DOI PMC

Fonzo M., Nicolli A., Maso S., Carrer L., Trevisan A., Bertoncello C. Body Mass Index and Antibody Persistence after Measles, Mumps, Rubella and Hepatitis B Vaccinations. Vaccines. 2022;10:1152. doi: 10.3390/vaccines10071152. PubMed DOI PMC

Kara Z., Akçin R., Demir A.N., Dinç H., Taşkın H.E., Kocazeybek B., Yumuk V.D. Antibody Response to SARS-CoV-2 Vaccines in People with Severe Obesity. Obes. Surg. 2022;32:2987–2993. doi: 10.1007/s11695-022-06181-y. PubMed DOI PMC

Drożdżyńska J., Jakubowska W., Kemuś M., Krokowska M., Karpezo K., Wiśniewska M., Bogdański P., Skrypnik D. SARS-CoV-2 and Influenza Vaccines in People with Excessive Body Mass—A Narrative Review. Life. 2022;12:1617. doi: 10.3390/life12101617. PubMed DOI PMC

Frasca D., Romero M., Diaz A., Blomberg B.B. Obesity accelerates age defects in B cells, and weight loss improves B cell function. Immun. Ageing. 2023;20:35. doi: 10.1186/s12979-023-00361-9. PubMed DOI PMC

Gote V., Bolla P.K., Kommineni N., Butreddy A., Nukala P.K., Palakurthi S.S., Khan W. A Comprehensive Review of mRNA Vaccines. Int. J. Mol. Sci. 2023;24:2700. doi: 10.3390/ijms24032700. PubMed DOI PMC

Brisse M., Vrba S.M., Kirk N., Liang Y., Ly H. Emerging Concepts and Technologies in Vaccine Development. Front. Immunol. 2020;11:583077. doi: 10.3389/fimmu.2020.583077. PubMed DOI PMC

Xue P., Merikanto I., Delale E.A., Bjelajac A., Yordanova J., Chan R.N.Y., Korman M., Mota-Rolim S.A., Landtblom A.-M., Matsui K., et al. Associations between obesity, a composite risk score for probable long COVID, and sleep problems in SARS-CoV-2 vaccinated individuals. Int. J. Obes. 2024;48:1300–1306. doi: 10.1038/s41366-024-01556-w. PubMed DOI PMC

Ou X., Jiang J., Lin B., Liu Q., Lin W., Chen G., Wen J. Antibody responses to COVID-19 vaccination in people with obesity: A systematic review and meta-analysis. Influ. Other Respir. Viruses. 2023;17:e13078. doi: 10.1111/irv.13078. PubMed DOI PMC

Faizo A.A., Qashqari F.S., El-Kafrawy S.A., Barasheed O., Almashjary M.N., Alfelali M., Bawazir A.A., Albarakati B.M., Khayyat S.A., Hassan A.M., et al. A potential association between obesity and reduced effectiveness of COVID-19 vaccine-induced neutralizing humoral immunity. J. Med. Virol. 2022;95:e28130. doi: 10.1002/jmv.28130. PubMed DOI PMC

Shaw R.H., Greenland M., Stuart A.S., Aley P.K., Andrews N.J., Cameron J.C., Charlton S., Clutterbuck E.A., Collins A.M., Darton T., et al. Persistence of immune response in heterologous COVID vaccination schedules in the Com-COV2 study—A single-blind, randomised trial incorporating mRNA, viral-vector and protein-adjuvant vaccines. J. Infect. 2023;86:574–583. doi: 10.1016/j.jinf.2023.03.027. PubMed DOI PMC

Sheehan J., Ardizzone C.M., Khanna M., Trauth A.J., Hagensee M.E., Ramsay A.J. Dynamics of Serum-Neutralizing Antibody Responses in Vaccinees through Multiple Doses of the BNT162b2 Vaccine. Vaccines. 2023;11:1720. doi: 10.3390/vaccines11111720. PubMed DOI PMC

Klein S.L., Marriott I., Fish E.N. Sex-based differences in immune function and responses to vaccination. Trans. R. Soc. Trop. Med. Hyg. 2015;109:9–15. doi: 10.1093/trstmh/tru167. PubMed DOI PMC

Yin A., Wang N., Shea P.J., Rosser E.N., Kuo H., Shapiro J.R., Fenstermacher K.Z., Pekosz A., Rothman R.E., Klein S.L., et al. Sex and gender differences in adverse events following influenza and COVID-19 vaccination. Biol. Sex Differ. 2024;15:50. doi: 10.1186/s13293-024-00625-z. PubMed DOI PMC

Arora M., Lakshmi R. Vaccines–safety in pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 2021;76:23–40. doi: 10.1016/j.bpobgyn.2021.02.002. PubMed DOI PMC

Feng Z., Liao M., Zhang L. Sex differences in disease: Sex chromosome and immunity. J. Transl. Med. 2024;22:1150. doi: 10.1186/s12967-024-05990-2. PubMed DOI PMC

Tadount F., Kiely M., Assi A., Rafferty E., Sadarangani M., E MacDonald S., Quach C. Sex Differences in the Immunogenicity and Efficacy of Seasonal Influenza Vaccines: A Meta-analysis of Randomized Controlled Trials. Open Forum Infect. Dis. 2024;11:ofae222. doi: 10.1093/ofid/ofae222. PubMed DOI PMC

Lindsey N.P., Schroeder B.A., Miller E.R., Braun M.M., Hinckley A.F., Marano N., Slade B.A., Barnett E.D., Brunette G.W., Horan K., et al. Adverse event reports following yellow fever vaccination. Vaccine. 2008;26:6077–6082. doi: 10.1016/j.vaccine.2008.09.009. PubMed DOI

Querec T.D., Akondy R.S., Lee E.K., Cao W., Nakaya H.I., Teuwen D., Pirani A., Gernert K., Deng J., Marzolf B., et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 2009;10:116–125. doi: 10.1038/ni.1688. PubMed DOI PMC

Gaucher D., Therrien R., Kettaf N., Angermann B.R., Boucher G., Filali-Mouhim A., Moser J.M., Mehta R.S., Drake D.R., 3rd, Castro E., et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J. Exp. Med. 2008;205:3119–3131. doi: 10.1084/jem.20082292. PubMed DOI PMC

Peer V., Schwartz N., Green M.S. A multi-country, multi-year, meta-analytic evaluation of the sex differences in age-specific pertussis incidence rates. PLoS ONE. 2020;15:e0231570. doi: 10.1371/journal.pone.0231570. PubMed DOI PMC

Boef A.G., van der Klis F.R., Berbers G.A., Buisman A.-M., Sanders E.A., Kemmeren J.M., van der Ende A., de Melker H.E., Rots N.Y., Knol M.J. Differences by sex in IgG levels following infant and childhood vaccinations: An individual participant data meta-analysis of vaccination studies. Vaccine. 2018;36:400–407. doi: 10.1016/j.vaccine.2017.11.070. PubMed DOI

Sinha R.A., Yen P.M. Metabolic Messengers: Thyroid Hormones. Nat. Metab. 2024;6:639–650. doi: 10.1038/s42255-024-00986-0. PubMed DOI PMC

Paschou S.A., Karalis V., Psaltopoulou T., Vasileiou V., Charitaki I., Bagratuni T., Ktena V., Papandroulaki F., Gumeni S., Kassi G.N., et al. Patients With Autoimmune Thyroiditis Present Similar Immunological Response to COVID-19 BNT162b2 mRNA Vaccine With Healthy Subjects, While Vaccination May Affect Thyroid Function: A Clinical Study. Front. Endocrinol. 2022;13:840668. doi: 10.3389/fendo.2022.840668. PubMed DOI PMC

Polymeris A., Papapetrou P.D., Psachna S., Ioannidis D., Lilis D., Drakou M., Vaiopoulos A., Polymerou V., Spanos G. Patients with Hashimoto’s thyroiditis present higher immune response to COVID-19 mRNA vaccine compared to normal individuals. Hormones. 2024;23:89–95. doi: 10.1007/s42000-023-00470-6. PubMed DOI

Lynn D.J., Benson S.C., Lynn M.A., Pulendran B. Modulation of immune responses to vaccination by the microbiota: Implications and potential mechanisms. Nat. Rev. Immunol. 2021;22:33–46. doi: 10.1038/s41577-021-00554-7. PubMed DOI PMC

Rio P., Caldarelli M., Chiantore M., Ocarino F., Candelli M., Gasbarrini A., Gambassi G., Cianci R. Immune Cells, Gut Microbiota, and Vaccines: A Gender Perspective. Cells. 2024;13:526. doi: 10.3390/cells13060526. PubMed DOI PMC

Syromyatnikov M., Nesterova E., Gladkikh M., Smirnova Y., Gryaznova M., Popov V. Characteristics of the Gut Bacterial Composition in People of Different Nationalities and Religions. Microorganisms. 2022;10:1866. doi: 10.3390/microorganisms10091866. PubMed DOI PMC

World Health Organization Obesity Epidemiological Data. [(accessed on 10 January 2025)]. Available online: https://www.who.int/data/gho/data/indicators/indicator-details/GHO/prevalence-of-overweight-among-adults-bmi--25-(age-standardized-estimate)-(-)

Health Statistics of the National Institute of Diabetes and Digestive and Kidney Diseases. [(accessed on 10 January 2025)]; Available online: https://www.niddk.nih.gov/health-information/health-statistics/overweight-obesity#:~:text=the%20above%20table-

Lofton H., Ard J.D., Hunt R.R., Knight M.G. Obesity among African American people in the United States: A review. Obesity. 2023;31:306–315. doi: 10.1002/oby.23640. PubMed DOI PMC

Zare H., Aazami A., Shalby N., Gilmore D.R., Thorpe R.J. Measuring Racial Differences in Obesity Risk Factors in Non-Hispanic Black and White Men Aged 20 Years or Older. Am. J. Men’s Health. 2023;17:15579883231205845. doi: 10.1177/15579883231205845. PubMed DOI PMC

Stanislawski M.A., Dabelea D., Lange L.A., Wagner B.D., Lozupone C.A. Gut microbiota phenotypes of obesity. NPJ Biofilms Microbiomes. 2019;5:18. doi: 10.1038/s41522-019-0091-8. PubMed DOI PMC

Norton T., Lynn M.A., Rossouw C., Abayasingam A., Perkins G., Hissaria P., Bull R.A., Lynn D.J. B and T cell responses to the BNT162b2 COVID-19 mRNA vaccine are not impaired in germ-free or antibiotic-treated mice. Gut. 2023;73:1222–1224. doi: 10.1136/gutjnl-2023-329810. PubMed DOI PMC

Singer J., Tunbridge M.J., Shi B., Perkins G.B., Chai C.S., Salehi T., Sim B.Z., Kireta S., Johnston J.K., Akerman A., et al. Dietary Inulin to Improve SARS-CoV-2 Vaccine Response in Kidney Transplant Recipients: The RIVASTIM-Inulin Randomised Controlled Trial. Vaccines. 2024;12:608. doi: 10.3390/vaccines12060608. PubMed DOI PMC

Hitch T.C., Hall L.J., Walsh S.K., Leventhal G.E., Slack E., de Wouters T., Walter J., Clavel T. Microbiome-based interventions to modulate gut ecology and the immune system. Mucosal Immunol. 2022;15:1095–1113. doi: 10.1038/s41385-022-00564-1. PubMed DOI PMC

Jiang W., Lu G., Gao D., Lv Z., Li D. The relationships between the gut microbiota and its metabolites with thyroid diseases. Front. Endocrinol. 2022;13:943408. doi: 10.3389/fendo.2022.943408. PubMed DOI PMC

Yan K., Sun X., Fan C., Wang X., Yu H. Unveiling the Role of Gut Microbiota and Metabolites in Autoimmune Thyroid Diseases: Emerging Perspectives. Int. J. Mol. Sci. 2024;25:10918. doi: 10.3390/ijms252010918. PubMed DOI PMC

Mendoza-León M.J., Mangalam A.K., Regaldiz A., González-Madrid E., Rangel-Ramírez M.A., Álvarez-Mardonez O., Vallejos O.P., Méndez C., Bueno S.M., Melo-González F., et al. Gut microbiota short-chain fatty acids and their impact on the host thyroid function and diseases. Front. Endocrinol. 2023;14:1192216. doi: 10.3389/fendo.2023.1192216. PubMed DOI PMC

García A., De Sanctis J.B. An overview of adjuvant formulations and delivery systems. APMIS. 2013;122:257–267. doi: 10.1111/apm.12143. PubMed DOI

White S.J., Taylor M.J., Hurt R.T., Jensen M.D., Poland G.A. Leptin-based adjuvants: An innovative approach to improve vaccine response. Vaccine. 2013;31:1666–1672. doi: 10.1016/j.vaccine.2013.01.032. PubMed DOI PMC

Ben Nasr M., Usuelli V., Dellepiane S., Seelam A.J., Fiorentino T.V., D’addio F., Fiorina E., Xu C., Xie Y., Balasubramanian H.B., et al. Glucagon-like peptide 1 receptor is a T cell-negative costimulatory molecule. Cell Metab. 2024;36:1302–1319.e12. doi: 10.1016/j.cmet.2024.05.001. PubMed DOI

van Niekerk G., Coelmont L., Alpizar Y.A., Kelchtermans L., Broeckhoven E., Dallmeier K. GLP-1R agonist therapy and vaccine response: Neglected implications. Cytokine Growth Factor Rev. 2024;78:14–24. doi: 10.1016/j.cytogfr.2024.07.006. PubMed DOI

Garmendia J.V., García A.H., De Sanctis C.V., Hajdúch M., De Sanctis J.B. Autoimmunity and Immunodeficiency in Severe SARS-CoV-2 Infection and Prolonged COVID-19. Curr. Issues Mol. Biol. 2022;45:33–50. doi: 10.3390/cimb45010003. PubMed DOI PMC

García A.H., De Sanctis J.B. Exploring the Contrasts and Similarities of Dengue and SARS-CoV-2 Infections During the COVID-19 Era. Int. J. Mol. Sci. 2024;25:11624. doi: 10.3390/ijms252111624. PubMed DOI PMC

Jha S.K., Imran M., Jha L.A., Hasan N., Panthi V.K., Paudel K.R., Almalki W.H., Mohammed Y., Kesharwani P. A Comprehensive review on Pharmacokinetic Studies of Vaccines: Impact of delivery route, carrier-and its modulation on immune response. Pt 2Environ. Res. 2023;236:116823. doi: 10.1016/j.envres.2023.116823. PubMed DOI

Jiang G., Zou Y., Zhao D., Yu J. Optimising vaccine immunogenicity in ageing populations: Key strategies. Lancet Infect. Dis. 2025;25:e23–e33. doi: 10.1016/S1473-3099(24)00497-3. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...