Exploring the Contrasts and Similarities of Dengue and SARS-CoV-2 Infections During the COVID-19 Era
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LX22NPO5103
Ministry of Education, Youth, and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000868, IMTM #869/V19
Ministry of Education, Youth, and Sports of the Czech Republic
22/2024
National Fund for Science, Technology, and Innovation
PubMed
39519178
PubMed Central
PMC11546508
DOI
10.3390/ijms252111624
PII: ijms252111624
Knihovny.cz E-zdroje
- Klíčová slova
- COVID-19, SARS-CoV-2 infection, antibodies, antibody-dependent enhancement (ADE), cytokine storm, dengue infection, platelets,
- MeSH
- COVID-19 * imunologie virologie MeSH
- dengue * imunologie virologie MeSH
- koinfekce imunologie virologie MeSH
- lidé MeSH
- protilátky virové * imunologie MeSH
- SARS-CoV-2 * imunologie MeSH
- virus dengue * imunologie MeSH
- zvýšená infektivita v přítomnosti protilátek imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- protilátky virové * MeSH
Extensive research has been conducted on the SARS-CoV-2 virus in association with various infectious diseases to understand the pathophysiology of the infection and potential co-infections. In tropical countries, exposure to local viruses may alter the course of SARS-CoV-2 infection and coinfection. Notably, only a portion of the antibodies produced against SARS-CoV-2 proteins demonstrate neutralizing properties, and the immune response following natural infection tends to be temporary. In contrast, long-lasting IgG antibodies are common after dengue virus infections. In cases where preexisting antibodies from an initial dengue virus infection bind to a different dengue serotype during a subsequent infection, there is a potential for antibody-dependent enhancement (ADE) and the formation of immune complexes associated with disease severity. Both SARS-CoV-2 and dengue infections can result in immunodeficiency. Viral proteins of both viruses interfere with the host's IFN-I signaling. Additionally, a cytokine storm can occur after viral infection, impairing a proper response, and autoantibodies against a wide array of proteins can appear during convalescence. Most of the reported autoantibodies are typically short-lived. Vaccines against both viruses alter the immune response, affecting the course of viral infection and enhancing clearance. A comprehensive analysis of both viral infections and pathogenicity is revisited to prevent infection, severity, and mortality.
Zobrazit více v PubMed
World Health Organization (WHO) Dengue and Severe Dengue: World Health Organization. 2024. [(accessed on 9 September 2024)]. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.
World Health Organization (WHO) Coronavirus Disease (COVID-19) [(accessed on 9 September 2024)]. Available online: https://www.who.int/health-topics/coronavirus#tab=tab_1.
Hung Y.P., Lee C.C., Chen Y.W., Lee J.C., Chiu C.W., Hsueh P.R., Ko W.C. Incidence and co-infection with COVID-19 of dengue during the COVID-19 pandemic. J. Formos. Med. Assoc. 2024:S0929-6646(24)00283-3. doi: 10.1016/j.jfma.2024.06.007. PubMed DOI
Bukhari M.H., Annan E., Haque U., Arango P., Falconar A.K.I., Romero-Vivas C.M. Pre-or co-SARS-CoV-2 Infections Significantly Increase Severe Dengue Virus Disease Criteria: Implications for Clinicians. Pathogens. 2024;13:573. doi: 10.3390/pathogens13070573. PubMed DOI PMC
Tang N., Lim J.T., Dickens B., Chiew C., Ng L.C., Chia P.Y., Leo Y.S., Lye D.C., Tan K.B., Wee L.E. Effects of Recent Prior Dengue Infection on Risk and Severity of Subsequent SARS-CoV-2 Infection: A Retrospective Cohort Study. Open Forum Infect. Dis. 2024;11:ofae397. doi: 10.1093/ofid/ofae397. PubMed DOI PMC
Cheng Y.L., Chao C.H., Lai Y.C., Hsieh K.H., Wang J.R., Wan S.W., Huang H.J., Chuang Y.C., Chuang W.J., Yeh T.M. Antibodies against the SARS-CoV-2 S1-RBD cross-react with dengue virus and hinder dengue pathogenesis. Front. Immunol. 2024;13:941923. doi: 10.3389/fimmu.2022.941923. PubMed DOI PMC
Pajor M.J., Long B., Liang S.Y. Dengue: A focused review for the emergency clinician. Am. J. Emerg. Med. 2024;82:82–87. doi: 10.1016/j.ajem.2024.05.022. PubMed DOI PMC
León-Figueroa D.A., Abanto-Urbano S., Olarte-Durand M., Nuñez-Lupaca J.N., Barboza J.J., Bonilla-Aldana D.K., Yrene-Cubas R.A., Rodriguez-Morales A.J. COVID-19 and dengue coinfection in Latin America: A systematic review. New Microbes New Infect. 2022;49:101041. doi: 10.1016/j.nmni.2022.101041. PubMed DOI PMC
Harapan H., Ryan M., Yohan B., Abidin R.S., Nainu F., Rakib A., Jahan I., Emran T.B., Ullah I., Panta K., et al. COVID-19 and dengue: Double punches for dengue-endemic countries in Asia. Rev. Med. Virol. 2021;31:e2161. doi: 10.1002/rmv.2161. PubMed DOI PMC
Khan M.B., Yang Z.S., Lin C.Y., Hsu M.C., Urbina A.N., Assavalapsakul W., Wang W.H., Chen Y.H., Wang S.F. Dengue overview: An updated systemic review. J. Infect. Public Health. 2023;16:1625–1642. doi: 10.1016/j.jiph.2023.08.001. PubMed DOI
Li H.H., Su M.P., Wu S.C., Tsou H.H., Chang M.C., Cheng Y.C., Tsai K.N., Wang H.W., Chen G.H., Tang C.K., et al. Mechanical transmission of dengue virus by Aedes aegypti may influence disease transmission dynamics during outbreaks. EBioMedicine. 2023;94:104723. doi: 10.1016/j.ebiom.2023.104723. PubMed DOI PMC
Safadi D.E., Lebeau G., Lagrave A., Mélade J., Grondin L., Rosanaly S., Begue F., Hoareau M., Veeren B., Roche M., et al. Extracellular Vesicles Are Conveyors of the NS1 Toxin during Dengue Virus and Zika Virus Infection. Viruses. 2023;15:364. doi: 10.3390/v15020364. PubMed DOI PMC
Reyes-Ruiz J.M., Osuna-Ramos J.F., De Jesús-González L.A., Hurtado-Monzón A.M., Farfan-Morales C.N., Cervantes-Salazar M., Bolaños J., Cigarroa-Mayorga O.E., Martín-Martínez E.S., Medina F., et al. Isolation and characterization of exosomes released from mosquito cells infected with dengue virus. Virus Res. 2019;266:1–14. doi: 10.1016/j.virusres.2019.03.015. PubMed DOI
Vedpathak S., Sharma A., Palkar S., Bhatt V.R., Patil V.C., Kakrani A.L., Mishra A., Bhosle D., Arankalle V.A., Shrivastava S. Platelet-derived exosomes disrupt endothelial cell monolayer integrity and enhance vascular inflammation in dengue patients. Front. Immunol. 2024;14:1285162. doi: 10.3389/fimmu.2023.1285162. PubMed DOI PMC
Khanam A., Gutiérrez-Barbosa H., Lyke K.E., Chua J.V. Immune-Mediated Pathogenesis in Dengue Virus Infection. Viruses. 2022;14:2575. doi: 10.3390/v14112575. PubMed DOI PMC
Wahala W.M.P.B., De Silva A.M. The Human Antibody Response to Dengue Virus Infection. Viruses. 2011;3:2374–2395. doi: 10.3390/v3122374. PubMed DOI PMC
Imrie A., Meeks J., Gurary A., Sukhbaatar M., Truong T.T., Cropp C.B., Effler P. Antibody to dengue 1 detected more than 60 years after infection. Viral Immunol. 2007;20:672–675. doi: 10.1089/vim.2007.0050. PubMed DOI PMC
St. John A.L., Rathore A.P.S. Adaptive immune responses to primary and secondary dengue virus infections. Nat. Rev. Immunol. 2019;19:218–230. doi: 10.1038/s41577-019-0123-x. PubMed DOI
Wu Q., Jing Q., Wang X., Yang L., Li Y., Chen Z., Ma M., Yang Z. Kinetics of IgG Antibodies in Previous Cases of Dengue Fever-A Longitudinal Serological Survey. Int. J. Environ. Res. Public Health. 2020;17:6580. doi: 10.3390/ijerph17186580. PubMed DOI PMC
Sawant J., Patil A., Kurle S. A Review: Understanding Molecular Mechanisms of Antibody-Dependent Enhancement in Viral Infections. Vaccines. 2023;11:1240. doi: 10.3390/vaccines11071240. PubMed DOI PMC
Narayan R., Tripathi S. Intrinsic ADE: The Dark Side of Antibody-Dependent Enhancement During Dengue Infection. Front. Cell. Infect. Microbiol. 2020;10:580096. doi: 10.3389/fcimb.2020.580096. PubMed DOI PMC
Schmid M.A., Diamond M.S., Harris E. Dendritic cells in dengue virus infection: Targets of virus replication and mediators of immunity. Front. Immunol. 2014;5:647. doi: 10.3389/fimmu.2014.00647. PubMed DOI PMC
Sinha S., Singh K., Ravi Kumar Y.S., Roy R., Phadnis S., Meena V., Bhattacharyya S., Verma B. Dengue virus pathogenesis and host molecular machineries. J. Biomed. Sci. 2024;31:43. doi: 10.1186/s12929-024-01030-9. PubMed DOI PMC
Cabezas S., Bracho G., Aloia A.L., Adamson P.J., Bonder C.S., Smith J.R., Gordon D.L., Carr J.M. Dengue Virus Induces Increased Activity of the Complement Alternative Pathway in Infected Cells. J. Virol. 2018;92:10–1128. doi: 10.1128/JVI.00633-18. PubMed DOI PMC
Jayathilaka D., Gomes L., Jeewandara C., Jayarathna G.S.B., Herath D., Perera P.A., Fernando S., Wijewickrama A., Hardman C.S., Ogg G.S., et al. Role of NS1 antibodies in the pathogenesis of acute secondary dengue infection. Nat. Commun. 2018;9:5242. doi: 10.1038/s41467-018-07667-z. PubMed DOI PMC
Singh A., Bisht P., Bhattacharya S., Guchhait P. Role of Platelet Cytokines in Dengue Virus Infection. Front. Cell. Infect. Microbiol. 2020;10:561366. doi: 10.3389/fcimb.2020.561366. PubMed DOI PMC
Muller D.A., Depelsenaire A.C., Young P.R. Clinical and Laboratory Diagnosis of Dengue Virus Infection. J. Infect. Dis. 2017;215((Suppl. S2)):S89–S95. doi: 10.1093/infdis/jiw649. PubMed DOI
Glasner D.R., Ratnasiri K., Puerta-Guardo H., Espinosa D.A., Beatty P.R., Harris E. Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog. 2017;13:e1006673. doi: 10.1371/journal.ppat.1006673. PubMed DOI PMC
Chao C.H., Wu W.C., Lai Y.C., Tsai P.J., Perng G.C., Lin Y.S., Yeh T.M. Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathog. 2019;15:e1007625. doi: 10.1371/journal.ppat.1007625. PubMed DOI PMC
Choi Y., Saron W.A., O’Neill A., Senanayake M., Wilder-Smith A., Rathore A.P., St John A.L. NKT cells promote Th1 immune bias to dengue virus that governs long-term protective antibody dynamics. J. Clin. Investig. 2024;134:e169251. doi: 10.1172/JCI169251. PubMed DOI PMC
Hilligan K.L., Namasivayam S., Sher A. BCG mediated protection of the lung against experimental SARS-CoV-2 infection. Front. Immunol. 2023;14:1232764. doi: 10.3389/fimmu.2023.1232764. PubMed DOI PMC
Puc I., Jain H., Odat R.M., Hussein A.M., Dey D., Ahmed M., Jain J., Goyal A., Ratnani T., Idrees M., et al. Efficacy and outcomes of BCG re-vaccination in COVID-19: A systematic review, meta-analysis, and meta-regression of randomized controlled trials. Ann. Med. Surg. 2024;86:5439–5446. doi: 10.1097/MS9.0000000000002370. PubMed DOI PMC
Shereen M.A., Khan S., Kazmi A., Bashir N., Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 2020;24:91–98. doi: 10.1016/j.jare.2020.03.005. PubMed DOI PMC
Yan X., Zhao X., Du Y., Wang H., Liu L., Wang Q., Liu J., Wei S. Dynamics of anti-SARS-CoV-2 IgG antibody responses following breakthrough infection and the predicted protective efficacy: A longitudinal community-based population study in China. Int. J. Infect. Dis. 2024;145:107075. doi: 10.1016/j.ijid.2024.107075. PubMed DOI
Movsisyan M., Truzyan N., Kasparova I., Chopikyan A., Sawaqed R., Bedross A., Sukiasyan M., Dilbaryan K., Shariff S., Kwantala B., et al. Tracking the evolution of anti-SARS-CoV-2 antibodies and long-term humoral immunity within 2 years after COVID-19 infection. Sci. Rep. 2024;14:13417. doi: 10.1038/s41598-024-64414-9. PubMed DOI PMC
Swadźba J., Panek A., Wąsowicz P., Anyszek T., Martin E. High Concentration of Anti-SARS-CoV-2 Antibodies 2 Years after COVID-19 Vaccination Stems Not Only from Boosters but Also from Widespread, Often Unrecognized, Contact with the Virus. Vaccines. 2024;12:471. doi: 10.3390/vaccines12050471. PubMed DOI PMC
De Sanctis J.B., García A.H., Moreno D., Hajduch M. Coronavirus infection: An immunologists’ perspective. Scand. J. Immunol. 2021;93:e13043. doi: 10.1111/sji.13043. PubMed DOI PMC
Jackson C.B., Farzan M., Chen B., Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell. Biol. 2022;23:3–20. doi: 10.1038/s41580-021-00418-x. PubMed DOI PMC
Alla D., Alla S.S.M., Vempati R., Bhatt H., Sultana Q., Bhatt S., Mohsin T., Siddiqua A. Dengue & COVID-19: A Comparison and the Challenges at Hand. Cureus. 2022;14:e31877. doi: 10.7759/cureus.31877. PubMed DOI PMC
Malavige G.N., Jeewandara C., Ogg G.S. Dengue and COVID-19: Two sides of the same coin. J. Biomed. Sci. 2022;29:48. doi: 10.1186/s12929-022-00833-y. PubMed DOI PMC
Wang X., Tang G., Liu Y., Zhang L., Chen B., Han Y., Fu Z., Wang L., Hu G., Ma Q., et al. The role of IL-6 in coronavirus, especially in COVID-19. Front. Pharmacol. 2022;13:1033674. doi: 10.3389/fphar.2022.1033674. PubMed DOI PMC
Garmendia J.V., García A.H., De Sanctis C.V., Hajdúch M., De Sanctis J.B. Autoimmunity and Immunodeficiency in Severe SARS-CoV-2 Infection and Prolonged COVID-19. Curr. Issues Mol. Biol. 2022;45:33–50. doi: 10.3390/cimb45010003. PubMed DOI PMC
Shurrab F.M., Al-Sadeq D.W., Amanullah F.H., Al-Absi E.S., Qotba H., Yassine H.M., Abu-Raddad L.J., Nasrallah G.K. Low Risk of Serological Cross-Reactivity between the Dengue Virus and SARS-CoV-2-IgG Antibodies Using Advanced Detection Assays. Intervirology. 2022;65:224–229. doi: 10.1159/000522479. PubMed DOI PMC
Silvestre O.M., Costa L.R., Lopes B.V.R., Barbosa M.R., Botelho K.K.P., Albuquerque K.L.C., Souza A.G.S., A Coelho L., de Oliveira A.J., Barantini C.B., et al. Previous Dengue Infection and Mortality in Coronavirus Disease 2019 (COVID-19) Clin. Infect. Dis. 2021;73:e1219–e1221. doi: 10.1093/cid/ciaa1895. PubMed DOI PMC
Castillo Ramirez J.A., Urcuqui-Inchima S. Dengue Virus Control of Type I IFN Responses: A History of Manipulation and Control. J. Interf. Cytokine Res. 2015;35:421–430. doi: 10.1089/jir.2014.0129. PubMed DOI PMC
Hoang H.D., Naeli P., Alain T., Jafarnejad S.M. Mechanisms of impairment of interferon production by SARS-CoV-2. Biochem. Soc. Trans. 2023;51:1047–1056. doi: 10.1042/BST20221037. PubMed DOI PMC
Brzoska J., von Eick H., Hündgen M. Interferons in COVID-19: Missed opportunities to prove efficacy in clinical phase III trials? Front. Med. 2023;10:1198576. doi: 10.3389/fmed.2023.1198576. PubMed DOI PMC
Su Y., Lin T., Liu C., Cheng C., Han X., Jiang X. microRNAs, the Link Between Dengue Virus and the Host Genome. Front. Microbiol. 2021;12:714409. doi: 10.3389/fmicb.2021.714409. PubMed DOI PMC
Limothai U., Jantarangsi N., Suphavejkornkij N., Tachaboon S., Dinhuzen J., Chaisuriyong W., Trongkamolchai S., Wanpaisitkul M., Chulapornsiri C., Tiawilai A., et al. Discovery and validation of circulating miRNAs for the clinical prognosis of severe dengue. PLoS Negl. Trop. Dis. 2022;16:e0010836. doi: 10.1371/journal.pntd.0010836. PubMed DOI PMC
De Sanctis J.B., García A., Garmendia J.V., Moreno D., Hajduch M., Radzioch D. Importance of miRNA in SARS-CoV-2 infection. Gac. Med. Caracas. 2020;128((Suppl. S1)):S17–S22. doi: 10.47307/GMC.2020.128.s1.3. DOI
Ergün S., Sankaranarayanan R., Petrović N. Clinically informative microRNAs for SARS-CoV-2 infection. Epigenomics. 2023;15:705–716. doi: 10.2217/epi-2023-0179. PubMed DOI PMC
Ho T.C., Yen K.L., Vats A., Tsai J.J., Chen P.L., Chien Y.W., Lo Y.C., Perng G.C. Cytokine Signature of Dengue Patients at Different Severity of the Disease. Int. J. Mol. Sci. 2021;22:2879. doi: 10.3390/ijms22062879. PubMed DOI PMC
Bonny T.S., Patel E.U., Zhu X., Bloch E.M., Grabowski M.K., Abraham A.G., Abraham A.G., Littlefield K., Shrestha R., Benner S.E., et al. Cytokine and Chemokine Levels in Coronavirus Disease 2019 Convalescent Plasma. Open Forum Infect. Dis. 2020;8:ofaa574. doi: 10.1093/ofid/ofaa574. PubMed DOI PMC
Feng E., Balint E., Poznanski S.M., Ashkar A.A., Loeb M. Aging and Interferons: Impacts on Inflammation and Viral Disease Outcomes. Cells. 2021;10:708. doi: 10.3390/cells10030708. PubMed DOI PMC
Cremoni M., Allouche J., Graça D., Zorzi K., Fernandez C., Teisseyre M., Benzaken S., Ruetsch-Chelli C., Esnault V.L.M., Dellamonica J., et al. Low baseline IFN-γ response could predict hospitalization in COVID-19 patients. Front. Immunol. 2022;13:953502. doi: 10.3389/fimmu.2022.953502. PubMed DOI PMC
Batista M.A., Calvo-Fortes F., Silveira-Nunes G., Camatta G.C., Speziali E., Turroni S., Teixeira-Carvalho A., Martins-Filho O.A., Neretti N., Maioli T.U., et al. Inflammaging in Endemic Areas for Infectious Diseases. Front. Immunol. 2020;11:579972. doi: 10.3389/fimmu.2020.579972. PubMed DOI PMC
Queiroz M.A.F., Brito W.R.D.S., Pereira K.A.S., Pereira L.M.S., Amoras E.D.S.G., Lima S.S., Santos E.F.D., Costa F.P.D., Sarges K.M.L., Cantanhede M.H.D., et al. Severe COVID-19 and long COVID are associated with high expression of STING, cGAS and IFN-α. Sci. Rep. 2024;14:4974. doi: 10.1038/s41598-024-55696-0. PubMed DOI PMC
Ubah C.S., Kearney G.D., Pokhrel L.R. Asthma May Not be a Potential Risk Factor for Severe COVID-19 Illness: A Scoping Review. Environ. Health Insights. 2024;18:11786302231221925. doi: 10.1177/11786302231221925. PubMed DOI PMC
Augustin M., Schommers P., Stecher M., Dewald F., Gieselmann L., Gruell H., Horn C., Vanshylla K., Di Cristanziano V., Osebold L., et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: A longitudinal prospective cohort study. Lancet Reg. Health Eur. 2021;6:100122. doi: 10.1016/j.lanepe.2021.100122. PubMed DOI PMC
Dayarathna S., Jeewandara C., Gomes L., Somathilaka G., Jayathilaka D., Vimalachandran V., Wijewickrama A., Narangoda E., Idampitiya D., Ogg G.S., et al. Similarities and differences between the ’cytokine storms’ in acute dengue and COVID-19. Sci. Rep. 2020;10:19839. doi: 10.1038/s41598-020-76836-2. PubMed DOI PMC
Bhatt P., Varma M., Sood V., Ambikan A., Jayaram A., Babu N., Gupta S., Mukhopadhyay C., Neogi U. Temporal cytokine storm dynamics in dengue infection predicts severity. Virus Res. 2024;341:199306. doi: 10.1016/j.virusres.2023.199306. PubMed DOI PMC
Zhang J. Immune responses in COVID-19 patients: Insights into cytokine storms and adaptive immunity kinetics. Heliyon. 2024;10:e34577. doi: 10.1016/j.heliyon.2024.e34577. PubMed DOI PMC
Reis G., Moreira Silva E.A.S., Medeiros Silva D.C., Thabane L., Campos V.H.S., Ferreira T.S., Santos C.V.Q., Nogueira A.M.R., Almeida A.P.F.G., Savassi L.C., et al. Early Treatment with Pegylated Interferon Lambda for COVID-19. N. Engl. J. Med. 2023;388:518–528. doi: 10.1056/NEJMoa2209760. PubMed DOI PMC
Palma-Ocampo H.K., Flores-Alonso J.C., Vallejo-Ruiz V., Reyes-Leyva J., Flores-Mendoza L., Herrera-Camacho I., Rosas-Murrieta N.H., Santos-López G. Interferon lambda inhibits dengue virus replication in epithelial cells. Virol. J. 2015;12:150. doi: 10.1186/s12985-015-0383-4. PubMed DOI PMC
Sanchez-Vargas L.A., Anderson K.B., Srikiatkhachorn A., Currier J.R., Friberg H., Endy T.P., Fernandez S., Mathew A., Rothman A.L. Longitudinal Analysis of Dengue Virus-Specific Memory T Cell Responses and Their Association With Clinical Outcome in Subsequent DENV Infection. Front. Immunol. 2021;12:710300. doi: 10.3389/fimmu.2021.710300. PubMed DOI PMC
Sánchez-Vargas L.A., Kounlavouth S., Smith M.L., Anderson K.B., Srikiatkhachorn A., Ellison D.W., Currier J.R., Endy T.P., Mathew A., Rothman A.L. Longitudinal Analysis of Memory B and T Cell Responses to Dengue Virus in a 5-Year Prospective Cohort Study in Thailand. Front. Immunol. 2019;10:1359. doi: 10.3389/fimmu.2019.01359. PubMed DOI PMC
Ramu S.T., Dissanayake M., Jeewandara C., Bary F., Harvie M., Gomes L., Wijesinghe A., Ariyaratne D., Ogg G.S., Malavige G.N. Antibody and memory B cell responses to the dengue virus NS1 antigen in individuals with varying severity of past infection. Immunology. 2023;170:47–59. doi: 10.1111/imm.13651. PubMed DOI PMC
Nakayama E.E., Shioda T. SARS-CoV-2 Related Antibody-Dependent Enhancement Phenomena In Vitro and In Vivo. Microorganisms. 2023;11:1015. doi: 10.3390/microorganisms11041015. PubMed DOI PMC
Wang S., Wang J., Yu X., Jiang W., Chen S., Wang R., Wang M., Jiao S., Yang Y., Wang W., et al. Antibody-dependent enhancement (ADE) of SARS-CoV-2 pseudoviral infection requires FcγRIIB and virus-antibody complex with bivalent interaction. Commun. Biol. 2022;5:262. doi: 10.1038/s42003-022-03207-0. PubMed DOI PMC
Thomas S., Smatti M.K., Alsulaiti H., Zedan H.T., Eid A.H., Hssain A.A., Abu Raddad L.J., Gentilcore G., Ouhtit A., Althani A.A., et al. Antibody-dependent enhancement (ADE) of SARS-CoV-2 in patients exposed to MERS-CoV and SARS-CoV-2 antigens. J. Med. Virol. 2024;96:e29628. doi: 10.1002/jmv.29628. PubMed DOI
Lechuga G.C., Temerozo J.R., Napoleão-Pêgo P., Carvalho J.P.R.S., Gomes L.R., Bou-Habib D.C., Morel C.M., Provance D.W., Jr., Souza T.M.L., De-Simone S.G. Enhanced Assessment of Cross-Reactive Antigenic Determinants within the Spike Protein. Int. J. Mol. Sci. 2024;25:8180. doi: 10.3390/ijms25158180. PubMed DOI PMC
Ghorai T., Sarkar A., Roy A., Bhowmick B., Nayak D., Das S. Role of autoantibodies in the mechanisms of dengue pathogenesis and its progression: A comprehensive review. Arch. Microbiol. 2024;206:214. doi: 10.1007/s00203-024-03954-0. PubMed DOI
Shih H.I., Chi C.Y., Tsai P.F., Wang Y.P., Chien Y.W. Re-examination of the risk of autoimmune diseases after dengue virus infection: A population-based cohort study. PLoS Negl. Trop. Dis. 2023;17:e0011127. doi: 10.1371/journal.pntd.0011127. PubMed DOI PMC
Chuang Y.C., Lin Y.S., Liu H.S., Yeh T.M. Molecular mimicry between dengue virus and coagulation factors induces antibodies to inhibit thrombin activity and enhance fibrinolysis. J. Virol. 2014;88:13759–13768. doi: 10.1128/JVI.02166-14. PubMed DOI PMC
Bastard P., Rosen L.B., Zhang Q., Michailidis E., Hoffmann H.H., Zhang Y., Dorgham K., Philippot Q., Rosain J., Béziat V., et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370:eabd4585. doi: 10.1126/science.abd4585. PubMed DOI PMC
Crow Y.J., Casanova J.L. Human life within a narrow range: The lethal ups and downs of type I interferons. Sci. Immunol. 2024;9:eadm8185. doi: 10.1126/sciimmunol.adm8185. PubMed DOI
Zhang Q., Kisand K., Feng Y., Rinchai D., Jouanguy E., Cobat A., Casanova J.L., Zhang S.Y. In search of a function for human type III interferons: Insights from inherited and acquired deficits. Curr. Opin. Immunol. 2024;87:102427. doi: 10.1016/j.coi.2024.102427. PubMed DOI PMC
Quiros-Roldan E., Sottini A., Signorini S.G., Serana F., Tiecco G., Imberti L. Autoantibodies to Interferons in Infectious Diseases. Viruses. 2023;15:1215. doi: 10.3390/v15051215. PubMed DOI PMC
Busnadiego I., Abela I.A., Frey P.M., Hofmaenner D.A., Scheier T.C., Schuepbach R.A., Buehler P.K., Brugger S.D., Hale B.G. Critically ill COVID-19 patients with neutralizing autoantibodies against type I interferons have increased risk of herpesvirus disease. PLoS Biol. 2022;20:e3001709. doi: 10.1371/journal.pbio.3001709. PubMed DOI PMC
Achleitner M., Mair N.K., Dänhardt J., Kardashi R., Puhan M.A., Abela I.A., Toepfner N., de With K., Kanczkowski W., Jarzebska N., et al. Absence of Type I Interferon Autoantibodies or Significant Interferon Signature Alterations in Adults With Post-COVID-19 Syndrome. Open Forum Infect. Dis. 2023;11:ofad641. doi: 10.1093/ofid/ofad641. PubMed DOI PMC
Fernbach S., Mair N.K., Abela I.A., Groen K., Kuratli R., Lork M., Thorball C.W., Bernasconi E., Filippidis P., Leuzinger K., et al. Loss of tolerance precedes triggering and lifelong persistence of pathogenic type I interferon autoantibodies. J. Exp. Med. 2024;221:e20240365. doi: 10.1084/jem.20240365. PubMed DOI PMC
Sacchi M.C., Tamiazzo S., Stobbione P., Agatea L., De Gaspari P., Stecca A., Lauritano E.C., Roveta A., Tozzoli R., Guaschino R., et al. SARS-CoV-2 infection as a trigger of autoimmune response. Clin. Transl. Sci. 2021;14:898–907. doi: 10.1111/cts.12953. PubMed DOI PMC
Dobrowolska K., Zarębska-Michaluk D., Poniedziałek B., Jaroszewicz J., Flisiak R., Rzymski P. Overview of autoantibodies in COVID-19 convalescents. J. Med. Virol. 2023;95:e28864. doi: 10.1002/jmv.28864. PubMed DOI
Notarte K.I., Carandang T.H.D.C., Velasco J.V., Pastrana A., Ver A.T., Manalo G.N., Ng J.A., Grecia S., Lippi G., Henry B.M., et al. Autoantibodies in COVID-19 survivors with post-COVID symptoms: A systematic review. Front. Immunol. 2024;15:1428645. doi: 10.3389/fimmu.2024.1428645. PubMed DOI PMC
Oakes E.G., Dillon E., Buhler K.A., Guan H., Paudel M., Marks K., Adejoorin I., Yee J., Ellrodt J., Tedeschi S., et al. Earlier vs. later time period of COVID-19 infection and emergent autoimmune signs, symptoms, and serologies. J. Autoimm. 2024;148:103299. doi: 10.1016/j.jaut.2024.103299. PubMed DOI
Laskowski K., Paszkiewicz J., Plewik D., Szepeluk A., Hozyasz K.K. Association Between SARS-CoV-2 Vaccination and Development of Antinuclear Antibodies Among Students. J. Prim. Care Community Health. 2024;15:21501319241273213. doi: 10.1177/21501319241273213. PubMed DOI PMC
Muri J., Cecchinato V., Cavalli A., Shanbhag A.A., Matkovic M., Biggiogero M., Maida P.A., Moritz J., Toscano C., Ghovehoud E., et al. Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nat. Immunol. 2023;24:604–611. doi: 10.1038/s41590-023-01445-w. PubMed DOI PMC
Chen P.K., Yeo K.J., Chang S.H., Liao T.L., Chou C.H., Lan J.L., Chang C.K., Chen D.Y. The detectable anti-interferon-γ autoantibodies in COVID-19 patients may be associated with disease severity. Virol. J. 2023;20:33. doi: 10.1186/s12985-023-01989-1. PubMed DOI PMC
Akbari A., Hadizadeh A., Amiri M., Najafi N.N., Shahriari Z., Jamialahmadi T., Sahebkar A. Role of autoantibodies targeting interferon type 1 in COVID-19 severity: A systematic review and meta-analysis. J. Trans. Autoimm. 2023;7:100219. doi: 10.1016/j.jtauto.2023.100219. PubMed DOI PMC
Shih H.P., Ding J.Y., Sotolongo Bellón J., Lo Y.F., Chung P.H., Ting H.T., Peng J.J., Wu T.Y., Lin C.H., Lo C.C., et al. Pathogenic autoantibodies to IFN-γ act through the impedance of receptor assembly and Fc-mediated response. J. Exp. Med. 2022;219:e20212126. doi: 10.1084/jem.20212126. PubMed DOI PMC
Quirino-Teixeira A.C., Andrade F.B., Pinheiro M.B.M., Rozini S.V., Hottz E.D. Platelets in dengue infection: More than a numbers game. Platelets. 2022;33:176–183. doi: 10.1080/09537104.2021.1921722. PubMed DOI
Fagyas M., Nagy B., Jr., Ráduly A.P., Mányiné I.S., Mártha L., Erdősi G., Sipka S., Jr., Enyedi E., Szabó A.Á., Pólik Z., et al. The majority of severe COVID-19 patients develop anti-cardiac autoantibodies. Geroscience. 2022;44:2347–2360. doi: 10.1007/s11357-022-00649-6. PubMed DOI PMC
Hallmann E., Sikora D., Poniedziałek B., Szymański K., Kondratiuk K., Żurawski J., Brydak L., Rzymski P. IgG autoantibodies against ACE2 in SARS-CoV-2 infected patients. J. Med. Virol. 2023;95:e28273. doi: 10.1002/jmv.28273. PubMed DOI PMC
Liu Q., Miao H., Li S., Zhang P., Gerber G.F., Follmann D., Ji H., Zeger S.L., Chertow D.S., Quinn T.C., et al. Anti-PF4 antibodies associated with disease severity in COVID-19. Proc. Natl. Acad. Sci. USA. 2022;119:e2213361119. doi: 10.1073/pnas.2213361119. PubMed DOI PMC
Tsai C.L., Sun D.S., Su M.T., Lien T.S., Chen Y.H., Lin C.Y., Huang C.H., King C.C., Li C.R., Chen T.H., et al. Suppressed humoral immunity is associated with dengue nonstructural protein NS1-elicited anti-death receptor antibody fractions in mice. Sci. Rep. 2020;10:6294. doi: 10.1038/s41598-020-62958-0. PubMed DOI PMC
Burbelo P.D., Castagnoli R., Shimizu C., Delmonte O.M., Dobbs K., Discepolo V., Lo Vecchio A., Guarino A., Licciardi F., Ramenghi U., et al. Autoantibodies Against Proteins Previously Associated With Autoimmunity in Adult and Pediatric Patients With COVID-19 and Children With MIS-C. Front. Immunol. 2022;13:841126. doi: 10.3389/fimmu.2022.841126. PubMed DOI PMC
Sinnberg T., Lichtensteiger C., Ali O.H., Pop O.T., Jochum A.K., Risch L., Brugger S.D., Velic A., Bomze D., Kohler P., et al. Pulmonary Surfactant Proteins Are Inhibited by Immunoglobulin A Autoantibodies in Severe COVID-19. Am. J. Respir. Crit. Care Med. 2023;207:38–49. doi: 10.1164/rccm.202201-0011OC. PubMed DOI PMC
Vo H.T.M., Duong V., Ly S., Li Q.Z., Dussart P., Cantaert T. Autoantibody Profiling in Plasma of Dengue Virus-Infected Individuals. Pathogens. 2020;9:1060. doi: 10.3390/pathogens9121060. PubMed DOI PMC
Tang K.T., Hsu B.C., Chen D.Y. Autoimmune and Rheumatic Manifestations Associated With COVID-19 in Adults: An Updated Systematic Review. Front. Immunol. 2021;12:645013. doi: 10.3389/fimmu.2021.645013. PubMed DOI PMC
Hileman C.O., Malakooti S.K., Patil N., Singer N.G., McComsey G.A. New-onset autoimmune disease after COVID-19. Front. Immunol. 2024;15:1337406. doi: 10.3389/fimmu.2024.1337406. PubMed DOI PMC
Damoiseaux J., Dotan A., Fritzler M.J., Bogdanos D.P., Meroni P.L., Roggenbuck D., Goldman M., Landegren N., Bastard P., Shoenfeld Y., et al. Autoantibodies and SARS-CoV2 infection: The spectrum from association to clinical implication: Report of the 15th Dresden Symposium on Autoantibodies. Autoimmun. Rev. 2022;21:103012. doi: 10.1016/j.autrev.2021.103012. PubMed DOI PMC
Noordermeer T., Schutgens R.E.G., Visser C., Rademaker E., de Maat M.P.M., Jansen A.J.G., Limper M., Cremer O.L., Kruip M.J., Endeman H., et al. Lupus anticoagulant associates with thrombosis in patients with COVID-19 admitted to intensive care units: A retrospective cohort study. Res. Pract. Thromb. Haemos. 2022;6:e12809. doi: 10.1002/rth2.12809. PubMed DOI PMC
Tonutti A., Motta F., Ceribelli A., Isailovic N., Selmi C., De Santis M. Anti-MDA5 Antibody Linking COVID-19, Type I Interferon, and Autoimmunity: A Case Report and Systematic Literature Review. Front. Immunol. 2022;13:937667. doi: 10.3389/fimmu.2022.937667. PubMed DOI PMC
McHugh J. COVID-19 linked to rise in anti-MDA5 autoimmunity. Nat. Rev. Rheumatol. 2024;20:395. doi: 10.1038/s41584-024-01134-4. PubMed DOI
Emmenegger M., Kumar S.S., Emmenegger V., Malinauskas T., Buettner T., Rose L., Schierack P., Sprinzl M.F., Sommer C.J., Lackner K.J., et al. Anti-prothrombin autoantibodies enriched after infection with SARS-CoV-2 and influenced by strength of antibody response against SARS-CoV-2 proteins. PLoS Pathog. 2021;17:e1010118. doi: 10.1371/journal.ppat.1010118. PubMed DOI PMC
Cabral-Marques O., Halpert G., Schimke L.F., Ostrinski Y., Vojdani A., Baiocchi G.C., Freire P.P., Filgueiras I.S., Zyskind I., Lattin M.T., et al. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat. Comm. 2022;13:1220. doi: 10.1038/s41467-022-28905-5. PubMed DOI PMC
Sanchez-Vargas L.A., Mathew A., Salje H., Sousa D., Casale N.A., Farmer A., Buddhari D., Anderson K., Iamsirithaworn S., Kaewhiran S., et al. Protective Role of NS1-Specific Antibodies in the Immune Response to Dengue Virus through Antibody-Dependent Cellular Cytotoxicity. J. Inf. Dis. 2024:jiae137. doi: 10.1093/infdis/jiae137. Advanced online publication. PubMed DOI PMC
Rossini A., Cassibba S., Perticone F., Benatti S.V., Venturelli S., Carioli G., Ghirardi A., Rizzi M., Barbui T., Trevisan R., et al. Increased prevalence of autoimmune thyroid disease after COVID-19: A single-center, prospective study. Front. Endocrinol. 2023;14:1126683. doi: 10.3389/fendo.2023.1126683. PubMed DOI PMC
Islam A., Cockcroft C., Elshazly S., Ahmed J., Joyce K., Mahfuz H., Islam T., Rashid H., Laher I. Coagulopathy of Dengue and COVID-19: Clinical Considerations. Trop. Med. Infect. Dis. 2022;7:210. doi: 10.3390/tropicalmed7090210. PubMed DOI PMC
Obeagu E.I., Obeagu G.U., Aja P.M., Okoroiwu G.I.A., Ubosi N.I., Pius T., Ashiru M., Akaba K., Adias T.C. Soluble platelet selectin and platelets in COVID-19: A multifaceted connection. Ann. Med. Surg. 2024;86:4634–4642. doi: 10.1097/MS9.0000000000002302. PubMed DOI PMC
Modhiran N., Watterson D., Blumenthal A., Baxter A.G., Young P.R., Stacey K.J. Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunol. Cell Biol. 2017;95:491–495. doi: 10.1038/icb.2017.5. PubMed DOI
Lippi G., Plebani M., Henry B.M. Thrombocytopenia Is Associated with Severe Coronavirus Disease 2019 (COVID-19) Infections: A Meta-Analysis. Clin. Chim. Acta. 2020;506:145–148. doi: 10.1016/j.cca.2020.03.022. PubMed DOI PMC
Xu P., Zhou Q., Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann. Hematol. 2020;99:1205–1208. doi: 10.1007/s00277-020-04019-0. PubMed DOI PMC
de Azeredo E.L., Monteiro R.Q., de-Oliveira Pinto L.M. Thrombocytopenia in Dengue: Interrelationship between Virus and the Imbalance between Coagulation and Fibrinolysis and Inflammatory Mediators. Mediat. Inflamm. 2015;2015:313842. doi: 10.1155/2015/313842. PubMed DOI PMC
Putintseva E., Vega G., Fernández L. Alterations in thrombopoiesis in patients with thrombocytopenia produced by dengue hemorrhagic fever. Nouv. Rev. Fr. Hematol. 1986;28:269–273. PubMed
Guo L., Zhang Q., Gu X., Ren L., Huang T., Li Y., Zhang H., Liu Y., Zhong J., Wang X., et al. Durability and cross-reactive immune memory to SARS-CoV-2 in individuals 2 years after recovery from COVID-19: A longitudinal cohort study. Lancet Microbe. 2024;5:e24–e33. doi: 10.1016/S2666-5247(23)00255-0. PubMed DOI PMC
Carabelli A.M., Peacock T.P., Thorne L.G., Harvey W.T., Hughes J., COVID-19 Genomics UK Consortium. Peacock S.J., Barclay W.S., de Silva T.I., Towers G.J., et al. SARS-CoV-2 variant biology: Immune escape, transmission and fitness. Nat. Rev. Microbiol. 2023;21:162–177. doi: 10.1038/s41579-022-00841-7. PubMed DOI PMC
Sharma C., Bayry J. High risk of autoimmune diseases after COVID-19. Nat. Rev. Rheumatol. 2023;19:399–400. doi: 10.1038/s41584-023-00964-y. PubMed DOI PMC
Onofrio L.I., Marin C., Dutto J., Brugo M.B., Baigorri R.E., Bossio S.N., Quiroz J.N., Almada L., Moreno F.R., Olivera C., et al. COVID-19 patients display changes in lymphocyte subsets with a higher frequency of dysfunctional CD8lo T cells associated with disease severity. Front. Immunol. 2023;14:1223730. doi: 10.3389/fimmu.2023.1223730. PubMed DOI PMC
Bobcakova A., Barnova M., Vysehradsky R., Petriskova J., Kocan I., Diamant Z., Jesenak M. Activated CD8+CD38+ Cells Are Associated with Worse Clinical Outcome in Hospitalized COVID-19 Patients. Front. Immunol. 2022;13:861666. doi: 10.3389/fimmu.2022.861666. PubMed DOI PMC
Gil-Bescós R., Ostiz A., Zalba S., Tamayo I., Bandrés E., Rojas-de-Miguel E., Redondo M., Zabalza A., Ramírez N. Potency assessment of IFNγ-producing SARS-CoV-2-specific T cells from COVID-19 convalescent subjects. Life Sci. Alliance. 2023;6:e202201759. doi: 10.26508/lsa.202201759. PubMed DOI PMC
Chen M., Venturi V., Munier C.M.L. Dissecting the Protective Effect of CD8+ T Cells in Response to SARS-CoV-2 mRNA Vaccination and the Potential Link with Lymph Node CD8+ T Cells. Biology. 2023;12:1035. doi: 10.3390/biology12071035. PubMed DOI PMC
Du J., Wei L., Li G., Hua M., Sun Y., Wang D., Han K., Yan Y., Song C., Song R., et al. Persistent High Percentage of HLA-DR+CD38high CD8+ T Cells Associated With Immune Disorder and Disease Severity of COVID-19. Front. Immunol. 2021;12:735125. doi: 10.3389/fimmu.2021.735125. PubMed DOI PMC
Fan X., Song J.W., Cao W.J., Zhou M.J., Yang T., Wang J., Meng F.-P., Shi M., Zhang C., Wang F.-S. T-Cell Epitope Mapping of SARS-CoV-2 Reveals Coordinated IFN-γ Production and Clonal Expansion of T Cells Facilitates Recovery from COVID-19. Viruses. 2024;16:1006. doi: 10.3390/v16071006. PubMed DOI PMC
Gonçalves Pereira M.H., Figueiredo M.M., Queiroz C.P., Magalhães T.V.B., Mafra A., Diniz L.M.O., da Costa L., Gollob K.J., Antonelli L.R.D.V., Santiago H.d.C. T-cells producing multiple combinations of IFNγ, TNF and IL10 are associated with mild forms of dengue infection. Immunology. 2020;160:90–102. doi: 10.1111/imm.13185. PubMed DOI PMC
Zhao J., Xu X., Gao Y., Yu Y., Li C. Crosstalk between Platelets and SARS-CoV-2: Implications in Thrombo-Inflammatory Complications in COVID-19. Int. J. Mol. Sci. 2023;24:14133. doi: 10.3390/ijms241814133. PubMed DOI PMC
Davis H.E., McCorkell L., Vogel J.M., Topol E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023;21:133–146. doi: 10.1038/s41579-022-00846-2. PubMed DOI PMC
da Silva R., Vallinoto A.C.R., Dos Santos E.J.M. The Silent Syndrome of Long COVID and Gaps in Scientific Knowledge: A Narrative Review. Viruses. 2024;16:1256. doi: 10.3390/v16081256. PubMed DOI PMC
Tully D., Griffiths C.L. Dengvaxia: The world’s first vaccine for prevention of secondary dengue. Ther. Adv. Vaccines Immunother. 2021;9:25151355211015839. doi: 10.1177/25151355211015839. PubMed DOI PMC
Thomas S.J. Is new dengue vaccine efficacy data a relief or cause for concern? npj Vaccines. 2023;8:55. doi: 10.1038/s41541-023-00658-2. PubMed DOI PMC
López-Medina E., Biswal S., Saez-Llorens X., Borja-Tabora C., Bravo L., Sirivichayakul C., Vargas L.M., Alera M.T., Velásquez H., Reynales H., et al. Efficacy of a Dengue Vaccine Candidate (TAK-003) in Healthy Children and Adolescents 2 Years after Vaccination. J. Infect. Dis. 2022;225:1521–1532. doi: 10.1093/infdis/jiaa761. PubMed DOI PMC
Flacco M.E., Bianconi A., Cioni G., Fiore M., Calò G.L., Imperiali G., Orazi V., Tiseo M., Troia A., Rosso A., et al. Immunogenicity, Safety and Efficacy of the Dengue Vaccine TAK-003: A Meta-Analysis. Vaccines. 2024;12:770. doi: 10.3390/vaccines12070770. PubMed DOI PMC
Angelin M., Sjölin J., Kahn F., Hedberg A.L., Rosdahl A., Skorup P., Werner S., Woxenius S., Askling H.H. Qdenga®—A promising dengue fever vaccine; can it be recommended to non-immune travelers? Travel Med. Infect. Dis. 2023;54:102598. doi: 10.1016/j.tmaid.2023.102598. PubMed DOI
Kariyawasam R., Lachman M., Mansuri S., Chakrabarti S., Boggild A.K. A dengue vaccine whirlwind update. Ther. Adv. Infect. Dis. 2023;10:20499361231167274. doi: 10.1177/20499361231167274. PubMed DOI PMC
Young A. T cells in SARS-CoV-2 infection and vaccination. Ther. Adv. Vaccines Immunother. 2022;10:25151355221115011. doi: 10.1177/25151355221115011. PubMed DOI PMC
Najimi N., Kadi C., Elmtili N., Seghrouchni F., Bakri Y. Unravelling humoral immunity in SARS-CoV-2: Insights from infection and vaccination. Hum. Antibodies. 2024;32:85–106. doi: 10.3233/HAB-230017. PubMed DOI
Kim W. Germinal Center Response to mRNA Vaccination and Impact of Immunological Imprinting on Subsequent Vaccination. Immune Netw. 2024;24:e28. doi: 10.4110/in.2024.24.e28. PubMed DOI PMC
Scully M., Singh D., Lown R., Poles A., Solomon T., Levi M., Goldblatt D., Kotoucek P., Thomas W., Lester W. Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination. N. Engl. J. Med. 2021;384:2202–2211. doi: 10.1056/NEJMoa2105385. PubMed DOI PMC
Ikewaki N., Kurosawa G., Levy G.A., Preethy S., Abraham S.J.K. Antibody-dependent disease enhancement (ADE) after COVID-19 vaccination and beta-glucans as a safer strategy in management. Vaccine. 2023;41:2427–2429. doi: 10.1016/j.vaccine.2023.03.005. PubMed DOI PMC
Azim Majumder M.A., Razzaque M.S. Repeated vaccination and ‘vaccine exhaustion’: Relevance to the COVID-19 crisis. Expert Rev. Vaccines. 2022;21:1011–1014. doi: 10.1080/14760584.2022.2071705. PubMed DOI
Benitez Fuentes J.D., Mohamed Mohamed K., de Luna Aguilar A., Jimenez Garcia C., Guevara-Hoyer K., Fernandez-Arquero M., Rodriguez de la Pena M.A., Garciia Bravo L., Jimenez Ortega A.F., Flores Navarro P., et al. Evidence of exhausted lymphocytes after the third anti-SARS-CoV-2 vaccine dose in cancer patients. Front. Oncol. 2022;12:975980. doi: 10.3389/fonc.2022.975980. PubMed DOI PMC
Echaide M., Chocarro de Erauso L., Bocanegra A., Blanco E., Kochan G., Escors D. mRNA Vaccines against SARS-CoV-2: Advantages and Caveats. Int. J. Mol. Sci. 2023;24:5944. doi: 10.3390/ijms24065944. PubMed DOI PMC
Anderson E., Powell M., Yang E., Kar A., Leung T.M., Sison C., Steinberg R., Mims R., Choudhury A., Espinosa C., et al. Factors associated with immune responses to SARS-CoV-2 vaccination in individuals with autoimmune diseases. JCI Insight. 2024;9:e180750. doi: 10.1172/jci.insight.180750. PubMed DOI PMC
Yalcinkaya A., Cavalli M., Aranda-Guillén M., Cederholm A., Güner A., Rietrae I., Mildner H., Behere A., Eriksson O., Gonzalez L., et al. Autoantibodies to protein S may explain rare cases of coagulopathy following COVID-19 vaccination. Sci. Rep. 2024;14:24512. doi: 10.1038/s41598-024-75514-x. PubMed DOI PMC