Exploring the Contrasts and Similarities of Dengue and SARS-CoV-2 Infections During the COVID-19 Era

. 2024 Oct 29 ; 25 (21) : . [epub] 20241029

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39519178

Grantová podpora
LX22NPO5103 Ministry of Education, Youth, and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000868, IMTM #869/V19 Ministry of Education, Youth, and Sports of the Czech Republic
22/2024 National Fund for Science, Technology, and Innovation

Extensive research has been conducted on the SARS-CoV-2 virus in association with various infectious diseases to understand the pathophysiology of the infection and potential co-infections. In tropical countries, exposure to local viruses may alter the course of SARS-CoV-2 infection and coinfection. Notably, only a portion of the antibodies produced against SARS-CoV-2 proteins demonstrate neutralizing properties, and the immune response following natural infection tends to be temporary. In contrast, long-lasting IgG antibodies are common after dengue virus infections. In cases where preexisting antibodies from an initial dengue virus infection bind to a different dengue serotype during a subsequent infection, there is a potential for antibody-dependent enhancement (ADE) and the formation of immune complexes associated with disease severity. Both SARS-CoV-2 and dengue infections can result in immunodeficiency. Viral proteins of both viruses interfere with the host's IFN-I signaling. Additionally, a cytokine storm can occur after viral infection, impairing a proper response, and autoantibodies against a wide array of proteins can appear during convalescence. Most of the reported autoantibodies are typically short-lived. Vaccines against both viruses alter the immune response, affecting the course of viral infection and enhancing clearance. A comprehensive analysis of both viral infections and pathogenicity is revisited to prevent infection, severity, and mortality.

Zobrazit více v PubMed

World Health Organization (WHO) Dengue and Severe Dengue: World Health Organization. 2024. [(accessed on 9 September 2024)]. Available online: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.

World Health Organization (WHO) Coronavirus Disease (COVID-19) [(accessed on 9 September 2024)]. Available online: https://www.who.int/health-topics/coronavirus#tab=tab_1.

Hung Y.P., Lee C.C., Chen Y.W., Lee J.C., Chiu C.W., Hsueh P.R., Ko W.C. Incidence and co-infection with COVID-19 of dengue during the COVID-19 pandemic. J. Formos. Med. Assoc. 2024:S0929-6646(24)00283-3. doi: 10.1016/j.jfma.2024.06.007. PubMed DOI

Bukhari M.H., Annan E., Haque U., Arango P., Falconar A.K.I., Romero-Vivas C.M. Pre-or co-SARS-CoV-2 Infections Significantly Increase Severe Dengue Virus Disease Criteria: Implications for Clinicians. Pathogens. 2024;13:573. doi: 10.3390/pathogens13070573. PubMed DOI PMC

Tang N., Lim J.T., Dickens B., Chiew C., Ng L.C., Chia P.Y., Leo Y.S., Lye D.C., Tan K.B., Wee L.E. Effects of Recent Prior Dengue Infection on Risk and Severity of Subsequent SARS-CoV-2 Infection: A Retrospective Cohort Study. Open Forum Infect. Dis. 2024;11:ofae397. doi: 10.1093/ofid/ofae397. PubMed DOI PMC

Cheng Y.L., Chao C.H., Lai Y.C., Hsieh K.H., Wang J.R., Wan S.W., Huang H.J., Chuang Y.C., Chuang W.J., Yeh T.M. Antibodies against the SARS-CoV-2 S1-RBD cross-react with dengue virus and hinder dengue pathogenesis. Front. Immunol. 2024;13:941923. doi: 10.3389/fimmu.2022.941923. PubMed DOI PMC

Pajor M.J., Long B., Liang S.Y. Dengue: A focused review for the emergency clinician. Am. J. Emerg. Med. 2024;82:82–87. doi: 10.1016/j.ajem.2024.05.022. PubMed DOI PMC

León-Figueroa D.A., Abanto-Urbano S., Olarte-Durand M., Nuñez-Lupaca J.N., Barboza J.J., Bonilla-Aldana D.K., Yrene-Cubas R.A., Rodriguez-Morales A.J. COVID-19 and dengue coinfection in Latin America: A systematic review. New Microbes New Infect. 2022;49:101041. doi: 10.1016/j.nmni.2022.101041. PubMed DOI PMC

Harapan H., Ryan M., Yohan B., Abidin R.S., Nainu F., Rakib A., Jahan I., Emran T.B., Ullah I., Panta K., et al. COVID-19 and dengue: Double punches for dengue-endemic countries in Asia. Rev. Med. Virol. 2021;31:e2161. doi: 10.1002/rmv.2161. PubMed DOI PMC

Khan M.B., Yang Z.S., Lin C.Y., Hsu M.C., Urbina A.N., Assavalapsakul W., Wang W.H., Chen Y.H., Wang S.F. Dengue overview: An updated systemic review. J. Infect. Public Health. 2023;16:1625–1642. doi: 10.1016/j.jiph.2023.08.001. PubMed DOI

Li H.H., Su M.P., Wu S.C., Tsou H.H., Chang M.C., Cheng Y.C., Tsai K.N., Wang H.W., Chen G.H., Tang C.K., et al. Mechanical transmission of dengue virus by Aedes aegypti may influence disease transmission dynamics during outbreaks. EBioMedicine. 2023;94:104723. doi: 10.1016/j.ebiom.2023.104723. PubMed DOI PMC

Safadi D.E., Lebeau G., Lagrave A., Mélade J., Grondin L., Rosanaly S., Begue F., Hoareau M., Veeren B., Roche M., et al. Extracellular Vesicles Are Conveyors of the NS1 Toxin during Dengue Virus and Zika Virus Infection. Viruses. 2023;15:364. doi: 10.3390/v15020364. PubMed DOI PMC

Reyes-Ruiz J.M., Osuna-Ramos J.F., De Jesús-González L.A., Hurtado-Monzón A.M., Farfan-Morales C.N., Cervantes-Salazar M., Bolaños J., Cigarroa-Mayorga O.E., Martín-Martínez E.S., Medina F., et al. Isolation and characterization of exosomes released from mosquito cells infected with dengue virus. Virus Res. 2019;266:1–14. doi: 10.1016/j.virusres.2019.03.015. PubMed DOI

Vedpathak S., Sharma A., Palkar S., Bhatt V.R., Patil V.C., Kakrani A.L., Mishra A., Bhosle D., Arankalle V.A., Shrivastava S. Platelet-derived exosomes disrupt endothelial cell monolayer integrity and enhance vascular inflammation in dengue patients. Front. Immunol. 2024;14:1285162. doi: 10.3389/fimmu.2023.1285162. PubMed DOI PMC

Khanam A., Gutiérrez-Barbosa H., Lyke K.E., Chua J.V. Immune-Mediated Pathogenesis in Dengue Virus Infection. Viruses. 2022;14:2575. doi: 10.3390/v14112575. PubMed DOI PMC

Wahala W.M.P.B., De Silva A.M. The Human Antibody Response to Dengue Virus Infection. Viruses. 2011;3:2374–2395. doi: 10.3390/v3122374. PubMed DOI PMC

Imrie A., Meeks J., Gurary A., Sukhbaatar M., Truong T.T., Cropp C.B., Effler P. Antibody to dengue 1 detected more than 60 years after infection. Viral Immunol. 2007;20:672–675. doi: 10.1089/vim.2007.0050. PubMed DOI PMC

St. John A.L., Rathore A.P.S. Adaptive immune responses to primary and secondary dengue virus infections. Nat. Rev. Immunol. 2019;19:218–230. doi: 10.1038/s41577-019-0123-x. PubMed DOI

Wu Q., Jing Q., Wang X., Yang L., Li Y., Chen Z., Ma M., Yang Z. Kinetics of IgG Antibodies in Previous Cases of Dengue Fever-A Longitudinal Serological Survey. Int. J. Environ. Res. Public Health. 2020;17:6580. doi: 10.3390/ijerph17186580. PubMed DOI PMC

Sawant J., Patil A., Kurle S. A Review: Understanding Molecular Mechanisms of Antibody-Dependent Enhancement in Viral Infections. Vaccines. 2023;11:1240. doi: 10.3390/vaccines11071240. PubMed DOI PMC

Narayan R., Tripathi S. Intrinsic ADE: The Dark Side of Antibody-Dependent Enhancement During Dengue Infection. Front. Cell. Infect. Microbiol. 2020;10:580096. doi: 10.3389/fcimb.2020.580096. PubMed DOI PMC

Schmid M.A., Diamond M.S., Harris E. Dendritic cells in dengue virus infection: Targets of virus replication and mediators of immunity. Front. Immunol. 2014;5:647. doi: 10.3389/fimmu.2014.00647. PubMed DOI PMC

Sinha S., Singh K., Ravi Kumar Y.S., Roy R., Phadnis S., Meena V., Bhattacharyya S., Verma B. Dengue virus pathogenesis and host molecular machineries. J. Biomed. Sci. 2024;31:43. doi: 10.1186/s12929-024-01030-9. PubMed DOI PMC

Cabezas S., Bracho G., Aloia A.L., Adamson P.J., Bonder C.S., Smith J.R., Gordon D.L., Carr J.M. Dengue Virus Induces Increased Activity of the Complement Alternative Pathway in Infected Cells. J. Virol. 2018;92:10–1128. doi: 10.1128/JVI.00633-18. PubMed DOI PMC

Jayathilaka D., Gomes L., Jeewandara C., Jayarathna G.S.B., Herath D., Perera P.A., Fernando S., Wijewickrama A., Hardman C.S., Ogg G.S., et al. Role of NS1 antibodies in the pathogenesis of acute secondary dengue infection. Nat. Commun. 2018;9:5242. doi: 10.1038/s41467-018-07667-z. PubMed DOI PMC

Singh A., Bisht P., Bhattacharya S., Guchhait P. Role of Platelet Cytokines in Dengue Virus Infection. Front. Cell. Infect. Microbiol. 2020;10:561366. doi: 10.3389/fcimb.2020.561366. PubMed DOI PMC

Muller D.A., Depelsenaire A.C., Young P.R. Clinical and Laboratory Diagnosis of Dengue Virus Infection. J. Infect. Dis. 2017;215((Suppl. S2)):S89–S95. doi: 10.1093/infdis/jiw649. PubMed DOI

Glasner D.R., Ratnasiri K., Puerta-Guardo H., Espinosa D.A., Beatty P.R., Harris E. Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLoS Pathog. 2017;13:e1006673. doi: 10.1371/journal.ppat.1006673. PubMed DOI PMC

Chao C.H., Wu W.C., Lai Y.C., Tsai P.J., Perng G.C., Lin Y.S., Yeh T.M. Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathog. 2019;15:e1007625. doi: 10.1371/journal.ppat.1007625. PubMed DOI PMC

Choi Y., Saron W.A., O’Neill A., Senanayake M., Wilder-Smith A., Rathore A.P., St John A.L. NKT cells promote Th1 immune bias to dengue virus that governs long-term protective antibody dynamics. J. Clin. Investig. 2024;134:e169251. doi: 10.1172/JCI169251. PubMed DOI PMC

Hilligan K.L., Namasivayam S., Sher A. BCG mediated protection of the lung against experimental SARS-CoV-2 infection. Front. Immunol. 2023;14:1232764. doi: 10.3389/fimmu.2023.1232764. PubMed DOI PMC

Puc I., Jain H., Odat R.M., Hussein A.M., Dey D., Ahmed M., Jain J., Goyal A., Ratnani T., Idrees M., et al. Efficacy and outcomes of BCG re-vaccination in COVID-19: A systematic review, meta-analysis, and meta-regression of randomized controlled trials. Ann. Med. Surg. 2024;86:5439–5446. doi: 10.1097/MS9.0000000000002370. PubMed DOI PMC

Shereen M.A., Khan S., Kazmi A., Bashir N., Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 2020;24:91–98. doi: 10.1016/j.jare.2020.03.005. PubMed DOI PMC

Yan X., Zhao X., Du Y., Wang H., Liu L., Wang Q., Liu J., Wei S. Dynamics of anti-SARS-CoV-2 IgG antibody responses following breakthrough infection and the predicted protective efficacy: A longitudinal community-based population study in China. Int. J. Infect. Dis. 2024;145:107075. doi: 10.1016/j.ijid.2024.107075. PubMed DOI

Movsisyan M., Truzyan N., Kasparova I., Chopikyan A., Sawaqed R., Bedross A., Sukiasyan M., Dilbaryan K., Shariff S., Kwantala B., et al. Tracking the evolution of anti-SARS-CoV-2 antibodies and long-term humoral immunity within 2 years after COVID-19 infection. Sci. Rep. 2024;14:13417. doi: 10.1038/s41598-024-64414-9. PubMed DOI PMC

Swadźba J., Panek A., Wąsowicz P., Anyszek T., Martin E. High Concentration of Anti-SARS-CoV-2 Antibodies 2 Years after COVID-19 Vaccination Stems Not Only from Boosters but Also from Widespread, Often Unrecognized, Contact with the Virus. Vaccines. 2024;12:471. doi: 10.3390/vaccines12050471. PubMed DOI PMC

De Sanctis J.B., García A.H., Moreno D., Hajduch M. Coronavirus infection: An immunologists’ perspective. Scand. J. Immunol. 2021;93:e13043. doi: 10.1111/sji.13043. PubMed DOI PMC

Jackson C.B., Farzan M., Chen B., Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell. Biol. 2022;23:3–20. doi: 10.1038/s41580-021-00418-x. PubMed DOI PMC

Alla D., Alla S.S.M., Vempati R., Bhatt H., Sultana Q., Bhatt S., Mohsin T., Siddiqua A. Dengue & COVID-19: A Comparison and the Challenges at Hand. Cureus. 2022;14:e31877. doi: 10.7759/cureus.31877. PubMed DOI PMC

Malavige G.N., Jeewandara C., Ogg G.S. Dengue and COVID-19: Two sides of the same coin. J. Biomed. Sci. 2022;29:48. doi: 10.1186/s12929-022-00833-y. PubMed DOI PMC

Wang X., Tang G., Liu Y., Zhang L., Chen B., Han Y., Fu Z., Wang L., Hu G., Ma Q., et al. The role of IL-6 in coronavirus, especially in COVID-19. Front. Pharmacol. 2022;13:1033674. doi: 10.3389/fphar.2022.1033674. PubMed DOI PMC

Garmendia J.V., García A.H., De Sanctis C.V., Hajdúch M., De Sanctis J.B. Autoimmunity and Immunodeficiency in Severe SARS-CoV-2 Infection and Prolonged COVID-19. Curr. Issues Mol. Biol. 2022;45:33–50. doi: 10.3390/cimb45010003. PubMed DOI PMC

Shurrab F.M., Al-Sadeq D.W., Amanullah F.H., Al-Absi E.S., Qotba H., Yassine H.M., Abu-Raddad L.J., Nasrallah G.K. Low Risk of Serological Cross-Reactivity between the Dengue Virus and SARS-CoV-2-IgG Antibodies Using Advanced Detection Assays. Intervirology. 2022;65:224–229. doi: 10.1159/000522479. PubMed DOI PMC

Silvestre O.M., Costa L.R., Lopes B.V.R., Barbosa M.R., Botelho K.K.P., Albuquerque K.L.C., Souza A.G.S., A Coelho L., de Oliveira A.J., Barantini C.B., et al. Previous Dengue Infection and Mortality in Coronavirus Disease 2019 (COVID-19) Clin. Infect. Dis. 2021;73:e1219–e1221. doi: 10.1093/cid/ciaa1895. PubMed DOI PMC

Castillo Ramirez J.A., Urcuqui-Inchima S. Dengue Virus Control of Type I IFN Responses: A History of Manipulation and Control. J. Interf. Cytokine Res. 2015;35:421–430. doi: 10.1089/jir.2014.0129. PubMed DOI PMC

Hoang H.D., Naeli P., Alain T., Jafarnejad S.M. Mechanisms of impairment of interferon production by SARS-CoV-2. Biochem. Soc. Trans. 2023;51:1047–1056. doi: 10.1042/BST20221037. PubMed DOI PMC

Brzoska J., von Eick H., Hündgen M. Interferons in COVID-19: Missed opportunities to prove efficacy in clinical phase III trials? Front. Med. 2023;10:1198576. doi: 10.3389/fmed.2023.1198576. PubMed DOI PMC

Su Y., Lin T., Liu C., Cheng C., Han X., Jiang X. microRNAs, the Link Between Dengue Virus and the Host Genome. Front. Microbiol. 2021;12:714409. doi: 10.3389/fmicb.2021.714409. PubMed DOI PMC

Limothai U., Jantarangsi N., Suphavejkornkij N., Tachaboon S., Dinhuzen J., Chaisuriyong W., Trongkamolchai S., Wanpaisitkul M., Chulapornsiri C., Tiawilai A., et al. Discovery and validation of circulating miRNAs for the clinical prognosis of severe dengue. PLoS Negl. Trop. Dis. 2022;16:e0010836. doi: 10.1371/journal.pntd.0010836. PubMed DOI PMC

De Sanctis J.B., García A., Garmendia J.V., Moreno D., Hajduch M., Radzioch D. Importance of miRNA in SARS-CoV-2 infection. Gac. Med. Caracas. 2020;128((Suppl. S1)):S17–S22. doi: 10.47307/GMC.2020.128.s1.3. DOI

Ergün S., Sankaranarayanan R., Petrović N. Clinically informative microRNAs for SARS-CoV-2 infection. Epigenomics. 2023;15:705–716. doi: 10.2217/epi-2023-0179. PubMed DOI PMC

Ho T.C., Yen K.L., Vats A., Tsai J.J., Chen P.L., Chien Y.W., Lo Y.C., Perng G.C. Cytokine Signature of Dengue Patients at Different Severity of the Disease. Int. J. Mol. Sci. 2021;22:2879. doi: 10.3390/ijms22062879. PubMed DOI PMC

Bonny T.S., Patel E.U., Zhu X., Bloch E.M., Grabowski M.K., Abraham A.G., Abraham A.G., Littlefield K., Shrestha R., Benner S.E., et al. Cytokine and Chemokine Levels in Coronavirus Disease 2019 Convalescent Plasma. Open Forum Infect. Dis. 2020;8:ofaa574. doi: 10.1093/ofid/ofaa574. PubMed DOI PMC

Feng E., Balint E., Poznanski S.M., Ashkar A.A., Loeb M. Aging and Interferons: Impacts on Inflammation and Viral Disease Outcomes. Cells. 2021;10:708. doi: 10.3390/cells10030708. PubMed DOI PMC

Cremoni M., Allouche J., Graça D., Zorzi K., Fernandez C., Teisseyre M., Benzaken S., Ruetsch-Chelli C., Esnault V.L.M., Dellamonica J., et al. Low baseline IFN-γ response could predict hospitalization in COVID-19 patients. Front. Immunol. 2022;13:953502. doi: 10.3389/fimmu.2022.953502. PubMed DOI PMC

Batista M.A., Calvo-Fortes F., Silveira-Nunes G., Camatta G.C., Speziali E., Turroni S., Teixeira-Carvalho A., Martins-Filho O.A., Neretti N., Maioli T.U., et al. Inflammaging in Endemic Areas for Infectious Diseases. Front. Immunol. 2020;11:579972. doi: 10.3389/fimmu.2020.579972. PubMed DOI PMC

Queiroz M.A.F., Brito W.R.D.S., Pereira K.A.S., Pereira L.M.S., Amoras E.D.S.G., Lima S.S., Santos E.F.D., Costa F.P.D., Sarges K.M.L., Cantanhede M.H.D., et al. Severe COVID-19 and long COVID are associated with high expression of STING, cGAS and IFN-α. Sci. Rep. 2024;14:4974. doi: 10.1038/s41598-024-55696-0. PubMed DOI PMC

Ubah C.S., Kearney G.D., Pokhrel L.R. Asthma May Not be a Potential Risk Factor for Severe COVID-19 Illness: A Scoping Review. Environ. Health Insights. 2024;18:11786302231221925. doi: 10.1177/11786302231221925. PubMed DOI PMC

Augustin M., Schommers P., Stecher M., Dewald F., Gieselmann L., Gruell H., Horn C., Vanshylla K., Di Cristanziano V., Osebold L., et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: A longitudinal prospective cohort study. Lancet Reg. Health Eur. 2021;6:100122. doi: 10.1016/j.lanepe.2021.100122. PubMed DOI PMC

Dayarathna S., Jeewandara C., Gomes L., Somathilaka G., Jayathilaka D., Vimalachandran V., Wijewickrama A., Narangoda E., Idampitiya D., Ogg G.S., et al. Similarities and differences between the ’cytokine storms’ in acute dengue and COVID-19. Sci. Rep. 2020;10:19839. doi: 10.1038/s41598-020-76836-2. PubMed DOI PMC

Bhatt P., Varma M., Sood V., Ambikan A., Jayaram A., Babu N., Gupta S., Mukhopadhyay C., Neogi U. Temporal cytokine storm dynamics in dengue infection predicts severity. Virus Res. 2024;341:199306. doi: 10.1016/j.virusres.2023.199306. PubMed DOI PMC

Zhang J. Immune responses in COVID-19 patients: Insights into cytokine storms and adaptive immunity kinetics. Heliyon. 2024;10:e34577. doi: 10.1016/j.heliyon.2024.e34577. PubMed DOI PMC

Reis G., Moreira Silva E.A.S., Medeiros Silva D.C., Thabane L., Campos V.H.S., Ferreira T.S., Santos C.V.Q., Nogueira A.M.R., Almeida A.P.F.G., Savassi L.C., et al. Early Treatment with Pegylated Interferon Lambda for COVID-19. N. Engl. J. Med. 2023;388:518–528. doi: 10.1056/NEJMoa2209760. PubMed DOI PMC

Palma-Ocampo H.K., Flores-Alonso J.C., Vallejo-Ruiz V., Reyes-Leyva J., Flores-Mendoza L., Herrera-Camacho I., Rosas-Murrieta N.H., Santos-López G. Interferon lambda inhibits dengue virus replication in epithelial cells. Virol. J. 2015;12:150. doi: 10.1186/s12985-015-0383-4. PubMed DOI PMC

Sanchez-Vargas L.A., Anderson K.B., Srikiatkhachorn A., Currier J.R., Friberg H., Endy T.P., Fernandez S., Mathew A., Rothman A.L. Longitudinal Analysis of Dengue Virus-Specific Memory T Cell Responses and Their Association With Clinical Outcome in Subsequent DENV Infection. Front. Immunol. 2021;12:710300. doi: 10.3389/fimmu.2021.710300. PubMed DOI PMC

Sánchez-Vargas L.A., Kounlavouth S., Smith M.L., Anderson K.B., Srikiatkhachorn A., Ellison D.W., Currier J.R., Endy T.P., Mathew A., Rothman A.L. Longitudinal Analysis of Memory B and T Cell Responses to Dengue Virus in a 5-Year Prospective Cohort Study in Thailand. Front. Immunol. 2019;10:1359. doi: 10.3389/fimmu.2019.01359. PubMed DOI PMC

Ramu S.T., Dissanayake M., Jeewandara C., Bary F., Harvie M., Gomes L., Wijesinghe A., Ariyaratne D., Ogg G.S., Malavige G.N. Antibody and memory B cell responses to the dengue virus NS1 antigen in individuals with varying severity of past infection. Immunology. 2023;170:47–59. doi: 10.1111/imm.13651. PubMed DOI PMC

Nakayama E.E., Shioda T. SARS-CoV-2 Related Antibody-Dependent Enhancement Phenomena In Vitro and In Vivo. Microorganisms. 2023;11:1015. doi: 10.3390/microorganisms11041015. PubMed DOI PMC

Wang S., Wang J., Yu X., Jiang W., Chen S., Wang R., Wang M., Jiao S., Yang Y., Wang W., et al. Antibody-dependent enhancement (ADE) of SARS-CoV-2 pseudoviral infection requires FcγRIIB and virus-antibody complex with bivalent interaction. Commun. Biol. 2022;5:262. doi: 10.1038/s42003-022-03207-0. PubMed DOI PMC

Thomas S., Smatti M.K., Alsulaiti H., Zedan H.T., Eid A.H., Hssain A.A., Abu Raddad L.J., Gentilcore G., Ouhtit A., Althani A.A., et al. Antibody-dependent enhancement (ADE) of SARS-CoV-2 in patients exposed to MERS-CoV and SARS-CoV-2 antigens. J. Med. Virol. 2024;96:e29628. doi: 10.1002/jmv.29628. PubMed DOI

Lechuga G.C., Temerozo J.R., Napoleão-Pêgo P., Carvalho J.P.R.S., Gomes L.R., Bou-Habib D.C., Morel C.M., Provance D.W., Jr., Souza T.M.L., De-Simone S.G. Enhanced Assessment of Cross-Reactive Antigenic Determinants within the Spike Protein. Int. J. Mol. Sci. 2024;25:8180. doi: 10.3390/ijms25158180. PubMed DOI PMC

Ghorai T., Sarkar A., Roy A., Bhowmick B., Nayak D., Das S. Role of autoantibodies in the mechanisms of dengue pathogenesis and its progression: A comprehensive review. Arch. Microbiol. 2024;206:214. doi: 10.1007/s00203-024-03954-0. PubMed DOI

Shih H.I., Chi C.Y., Tsai P.F., Wang Y.P., Chien Y.W. Re-examination of the risk of autoimmune diseases after dengue virus infection: A population-based cohort study. PLoS Negl. Trop. Dis. 2023;17:e0011127. doi: 10.1371/journal.pntd.0011127. PubMed DOI PMC

Chuang Y.C., Lin Y.S., Liu H.S., Yeh T.M. Molecular mimicry between dengue virus and coagulation factors induces antibodies to inhibit thrombin activity and enhance fibrinolysis. J. Virol. 2014;88:13759–13768. doi: 10.1128/JVI.02166-14. PubMed DOI PMC

Bastard P., Rosen L.B., Zhang Q., Michailidis E., Hoffmann H.H., Zhang Y., Dorgham K., Philippot Q., Rosain J., Béziat V., et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370:eabd4585. doi: 10.1126/science.abd4585. PubMed DOI PMC

Crow Y.J., Casanova J.L. Human life within a narrow range: The lethal ups and downs of type I interferons. Sci. Immunol. 2024;9:eadm8185. doi: 10.1126/sciimmunol.adm8185. PubMed DOI

Zhang Q., Kisand K., Feng Y., Rinchai D., Jouanguy E., Cobat A., Casanova J.L., Zhang S.Y. In search of a function for human type III interferons: Insights from inherited and acquired deficits. Curr. Opin. Immunol. 2024;87:102427. doi: 10.1016/j.coi.2024.102427. PubMed DOI PMC

Quiros-Roldan E., Sottini A., Signorini S.G., Serana F., Tiecco G., Imberti L. Autoantibodies to Interferons in Infectious Diseases. Viruses. 2023;15:1215. doi: 10.3390/v15051215. PubMed DOI PMC

Busnadiego I., Abela I.A., Frey P.M., Hofmaenner D.A., Scheier T.C., Schuepbach R.A., Buehler P.K., Brugger S.D., Hale B.G. Critically ill COVID-19 patients with neutralizing autoantibodies against type I interferons have increased risk of herpesvirus disease. PLoS Biol. 2022;20:e3001709. doi: 10.1371/journal.pbio.3001709. PubMed DOI PMC

Achleitner M., Mair N.K., Dänhardt J., Kardashi R., Puhan M.A., Abela I.A., Toepfner N., de With K., Kanczkowski W., Jarzebska N., et al. Absence of Type I Interferon Autoantibodies or Significant Interferon Signature Alterations in Adults With Post-COVID-19 Syndrome. Open Forum Infect. Dis. 2023;11:ofad641. doi: 10.1093/ofid/ofad641. PubMed DOI PMC

Fernbach S., Mair N.K., Abela I.A., Groen K., Kuratli R., Lork M., Thorball C.W., Bernasconi E., Filippidis P., Leuzinger K., et al. Loss of tolerance precedes triggering and lifelong persistence of pathogenic type I interferon autoantibodies. J. Exp. Med. 2024;221:e20240365. doi: 10.1084/jem.20240365. PubMed DOI PMC

Sacchi M.C., Tamiazzo S., Stobbione P., Agatea L., De Gaspari P., Stecca A., Lauritano E.C., Roveta A., Tozzoli R., Guaschino R., et al. SARS-CoV-2 infection as a trigger of autoimmune response. Clin. Transl. Sci. 2021;14:898–907. doi: 10.1111/cts.12953. PubMed DOI PMC

Dobrowolska K., Zarębska-Michaluk D., Poniedziałek B., Jaroszewicz J., Flisiak R., Rzymski P. Overview of autoantibodies in COVID-19 convalescents. J. Med. Virol. 2023;95:e28864. doi: 10.1002/jmv.28864. PubMed DOI

Notarte K.I., Carandang T.H.D.C., Velasco J.V., Pastrana A., Ver A.T., Manalo G.N., Ng J.A., Grecia S., Lippi G., Henry B.M., et al. Autoantibodies in COVID-19 survivors with post-COVID symptoms: A systematic review. Front. Immunol. 2024;15:1428645. doi: 10.3389/fimmu.2024.1428645. PubMed DOI PMC

Oakes E.G., Dillon E., Buhler K.A., Guan H., Paudel M., Marks K., Adejoorin I., Yee J., Ellrodt J., Tedeschi S., et al. Earlier vs. later time period of COVID-19 infection and emergent autoimmune signs, symptoms, and serologies. J. Autoimm. 2024;148:103299. doi: 10.1016/j.jaut.2024.103299. PubMed DOI

Laskowski K., Paszkiewicz J., Plewik D., Szepeluk A., Hozyasz K.K. Association Between SARS-CoV-2 Vaccination and Development of Antinuclear Antibodies Among Students. J. Prim. Care Community Health. 2024;15:21501319241273213. doi: 10.1177/21501319241273213. PubMed DOI PMC

Muri J., Cecchinato V., Cavalli A., Shanbhag A.A., Matkovic M., Biggiogero M., Maida P.A., Moritz J., Toscano C., Ghovehoud E., et al. Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course. Nat. Immunol. 2023;24:604–611. doi: 10.1038/s41590-023-01445-w. PubMed DOI PMC

Chen P.K., Yeo K.J., Chang S.H., Liao T.L., Chou C.H., Lan J.L., Chang C.K., Chen D.Y. The detectable anti-interferon-γ autoantibodies in COVID-19 patients may be associated with disease severity. Virol. J. 2023;20:33. doi: 10.1186/s12985-023-01989-1. PubMed DOI PMC

Akbari A., Hadizadeh A., Amiri M., Najafi N.N., Shahriari Z., Jamialahmadi T., Sahebkar A. Role of autoantibodies targeting interferon type 1 in COVID-19 severity: A systematic review and meta-analysis. J. Trans. Autoimm. 2023;7:100219. doi: 10.1016/j.jtauto.2023.100219. PubMed DOI PMC

Shih H.P., Ding J.Y., Sotolongo Bellón J., Lo Y.F., Chung P.H., Ting H.T., Peng J.J., Wu T.Y., Lin C.H., Lo C.C., et al. Pathogenic autoantibodies to IFN-γ act through the impedance of receptor assembly and Fc-mediated response. J. Exp. Med. 2022;219:e20212126. doi: 10.1084/jem.20212126. PubMed DOI PMC

Quirino-Teixeira A.C., Andrade F.B., Pinheiro M.B.M., Rozini S.V., Hottz E.D. Platelets in dengue infection: More than a numbers game. Platelets. 2022;33:176–183. doi: 10.1080/09537104.2021.1921722. PubMed DOI

Fagyas M., Nagy B., Jr., Ráduly A.P., Mányiné I.S., Mártha L., Erdősi G., Sipka S., Jr., Enyedi E., Szabó A.Á., Pólik Z., et al. The majority of severe COVID-19 patients develop anti-cardiac autoantibodies. Geroscience. 2022;44:2347–2360. doi: 10.1007/s11357-022-00649-6. PubMed DOI PMC

Hallmann E., Sikora D., Poniedziałek B., Szymański K., Kondratiuk K., Żurawski J., Brydak L., Rzymski P. IgG autoantibodies against ACE2 in SARS-CoV-2 infected patients. J. Med. Virol. 2023;95:e28273. doi: 10.1002/jmv.28273. PubMed DOI PMC

Liu Q., Miao H., Li S., Zhang P., Gerber G.F., Follmann D., Ji H., Zeger S.L., Chertow D.S., Quinn T.C., et al. Anti-PF4 antibodies associated with disease severity in COVID-19. Proc. Natl. Acad. Sci. USA. 2022;119:e2213361119. doi: 10.1073/pnas.2213361119. PubMed DOI PMC

Tsai C.L., Sun D.S., Su M.T., Lien T.S., Chen Y.H., Lin C.Y., Huang C.H., King C.C., Li C.R., Chen T.H., et al. Suppressed humoral immunity is associated with dengue nonstructural protein NS1-elicited anti-death receptor antibody fractions in mice. Sci. Rep. 2020;10:6294. doi: 10.1038/s41598-020-62958-0. PubMed DOI PMC

Burbelo P.D., Castagnoli R., Shimizu C., Delmonte O.M., Dobbs K., Discepolo V., Lo Vecchio A., Guarino A., Licciardi F., Ramenghi U., et al. Autoantibodies Against Proteins Previously Associated With Autoimmunity in Adult and Pediatric Patients With COVID-19 and Children With MIS-C. Front. Immunol. 2022;13:841126. doi: 10.3389/fimmu.2022.841126. PubMed DOI PMC

Sinnberg T., Lichtensteiger C., Ali O.H., Pop O.T., Jochum A.K., Risch L., Brugger S.D., Velic A., Bomze D., Kohler P., et al. Pulmonary Surfactant Proteins Are Inhibited by Immunoglobulin A Autoantibodies in Severe COVID-19. Am. J. Respir. Crit. Care Med. 2023;207:38–49. doi: 10.1164/rccm.202201-0011OC. PubMed DOI PMC

Vo H.T.M., Duong V., Ly S., Li Q.Z., Dussart P., Cantaert T. Autoantibody Profiling in Plasma of Dengue Virus-Infected Individuals. Pathogens. 2020;9:1060. doi: 10.3390/pathogens9121060. PubMed DOI PMC

Tang K.T., Hsu B.C., Chen D.Y. Autoimmune and Rheumatic Manifestations Associated With COVID-19 in Adults: An Updated Systematic Review. Front. Immunol. 2021;12:645013. doi: 10.3389/fimmu.2021.645013. PubMed DOI PMC

Hileman C.O., Malakooti S.K., Patil N., Singer N.G., McComsey G.A. New-onset autoimmune disease after COVID-19. Front. Immunol. 2024;15:1337406. doi: 10.3389/fimmu.2024.1337406. PubMed DOI PMC

Damoiseaux J., Dotan A., Fritzler M.J., Bogdanos D.P., Meroni P.L., Roggenbuck D., Goldman M., Landegren N., Bastard P., Shoenfeld Y., et al. Autoantibodies and SARS-CoV2 infection: The spectrum from association to clinical implication: Report of the 15th Dresden Symposium on Autoantibodies. Autoimmun. Rev. 2022;21:103012. doi: 10.1016/j.autrev.2021.103012. PubMed DOI PMC

Noordermeer T., Schutgens R.E.G., Visser C., Rademaker E., de Maat M.P.M., Jansen A.J.G., Limper M., Cremer O.L., Kruip M.J., Endeman H., et al. Lupus anticoagulant associates with thrombosis in patients with COVID-19 admitted to intensive care units: A retrospective cohort study. Res. Pract. Thromb. Haemos. 2022;6:e12809. doi: 10.1002/rth2.12809. PubMed DOI PMC

Tonutti A., Motta F., Ceribelli A., Isailovic N., Selmi C., De Santis M. Anti-MDA5 Antibody Linking COVID-19, Type I Interferon, and Autoimmunity: A Case Report and Systematic Literature Review. Front. Immunol. 2022;13:937667. doi: 10.3389/fimmu.2022.937667. PubMed DOI PMC

McHugh J. COVID-19 linked to rise in anti-MDA5 autoimmunity. Nat. Rev. Rheumatol. 2024;20:395. doi: 10.1038/s41584-024-01134-4. PubMed DOI

Emmenegger M., Kumar S.S., Emmenegger V., Malinauskas T., Buettner T., Rose L., Schierack P., Sprinzl M.F., Sommer C.J., Lackner K.J., et al. Anti-prothrombin autoantibodies enriched after infection with SARS-CoV-2 and influenced by strength of antibody response against SARS-CoV-2 proteins. PLoS Pathog. 2021;17:e1010118. doi: 10.1371/journal.ppat.1010118. PubMed DOI PMC

Cabral-Marques O., Halpert G., Schimke L.F., Ostrinski Y., Vojdani A., Baiocchi G.C., Freire P.P., Filgueiras I.S., Zyskind I., Lattin M.T., et al. Autoantibodies targeting GPCRs and RAS-related molecules associate with COVID-19 severity. Nat. Comm. 2022;13:1220. doi: 10.1038/s41467-022-28905-5. PubMed DOI PMC

Sanchez-Vargas L.A., Mathew A., Salje H., Sousa D., Casale N.A., Farmer A., Buddhari D., Anderson K., Iamsirithaworn S., Kaewhiran S., et al. Protective Role of NS1-Specific Antibodies in the Immune Response to Dengue Virus through Antibody-Dependent Cellular Cytotoxicity. J. Inf. Dis. 2024:jiae137. doi: 10.1093/infdis/jiae137. Advanced online publication. PubMed DOI PMC

Rossini A., Cassibba S., Perticone F., Benatti S.V., Venturelli S., Carioli G., Ghirardi A., Rizzi M., Barbui T., Trevisan R., et al. Increased prevalence of autoimmune thyroid disease after COVID-19: A single-center, prospective study. Front. Endocrinol. 2023;14:1126683. doi: 10.3389/fendo.2023.1126683. PubMed DOI PMC

Islam A., Cockcroft C., Elshazly S., Ahmed J., Joyce K., Mahfuz H., Islam T., Rashid H., Laher I. Coagulopathy of Dengue and COVID-19: Clinical Considerations. Trop. Med. Infect. Dis. 2022;7:210. doi: 10.3390/tropicalmed7090210. PubMed DOI PMC

Obeagu E.I., Obeagu G.U., Aja P.M., Okoroiwu G.I.A., Ubosi N.I., Pius T., Ashiru M., Akaba K., Adias T.C. Soluble platelet selectin and platelets in COVID-19: A multifaceted connection. Ann. Med. Surg. 2024;86:4634–4642. doi: 10.1097/MS9.0000000000002302. PubMed DOI PMC

Modhiran N., Watterson D., Blumenthal A., Baxter A.G., Young P.R., Stacey K.J. Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunol. Cell Biol. 2017;95:491–495. doi: 10.1038/icb.2017.5. PubMed DOI

Lippi G., Plebani M., Henry B.M. Thrombocytopenia Is Associated with Severe Coronavirus Disease 2019 (COVID-19) Infections: A Meta-Analysis. Clin. Chim. Acta. 2020;506:145–148. doi: 10.1016/j.cca.2020.03.022. PubMed DOI PMC

Xu P., Zhou Q., Xu J. Mechanism of thrombocytopenia in COVID-19 patients. Ann. Hematol. 2020;99:1205–1208. doi: 10.1007/s00277-020-04019-0. PubMed DOI PMC

de Azeredo E.L., Monteiro R.Q., de-Oliveira Pinto L.M. Thrombocytopenia in Dengue: Interrelationship between Virus and the Imbalance between Coagulation and Fibrinolysis and Inflammatory Mediators. Mediat. Inflamm. 2015;2015:313842. doi: 10.1155/2015/313842. PubMed DOI PMC

Putintseva E., Vega G., Fernández L. Alterations in thrombopoiesis in patients with thrombocytopenia produced by dengue hemorrhagic fever. Nouv. Rev. Fr. Hematol. 1986;28:269–273. PubMed

Guo L., Zhang Q., Gu X., Ren L., Huang T., Li Y., Zhang H., Liu Y., Zhong J., Wang X., et al. Durability and cross-reactive immune memory to SARS-CoV-2 in individuals 2 years after recovery from COVID-19: A longitudinal cohort study. Lancet Microbe. 2024;5:e24–e33. doi: 10.1016/S2666-5247(23)00255-0. PubMed DOI PMC

Carabelli A.M., Peacock T.P., Thorne L.G., Harvey W.T., Hughes J., COVID-19 Genomics UK Consortium. Peacock S.J., Barclay W.S., de Silva T.I., Towers G.J., et al. SARS-CoV-2 variant biology: Immune escape, transmission and fitness. Nat. Rev. Microbiol. 2023;21:162–177. doi: 10.1038/s41579-022-00841-7. PubMed DOI PMC

Sharma C., Bayry J. High risk of autoimmune diseases after COVID-19. Nat. Rev. Rheumatol. 2023;19:399–400. doi: 10.1038/s41584-023-00964-y. PubMed DOI PMC

Onofrio L.I., Marin C., Dutto J., Brugo M.B., Baigorri R.E., Bossio S.N., Quiroz J.N., Almada L., Moreno F.R., Olivera C., et al. COVID-19 patients display changes in lymphocyte subsets with a higher frequency of dysfunctional CD8lo T cells associated with disease severity. Front. Immunol. 2023;14:1223730. doi: 10.3389/fimmu.2023.1223730. PubMed DOI PMC

Bobcakova A., Barnova M., Vysehradsky R., Petriskova J., Kocan I., Diamant Z., Jesenak M. Activated CD8+CD38+ Cells Are Associated with Worse Clinical Outcome in Hospitalized COVID-19 Patients. Front. Immunol. 2022;13:861666. doi: 10.3389/fimmu.2022.861666. PubMed DOI PMC

Gil-Bescós R., Ostiz A., Zalba S., Tamayo I., Bandrés E., Rojas-de-Miguel E., Redondo M., Zabalza A., Ramírez N. Potency assessment of IFNγ-producing SARS-CoV-2-specific T cells from COVID-19 convalescent subjects. Life Sci. Alliance. 2023;6:e202201759. doi: 10.26508/lsa.202201759. PubMed DOI PMC

Chen M., Venturi V., Munier C.M.L. Dissecting the Protective Effect of CD8+ T Cells in Response to SARS-CoV-2 mRNA Vaccination and the Potential Link with Lymph Node CD8+ T Cells. Biology. 2023;12:1035. doi: 10.3390/biology12071035. PubMed DOI PMC

Du J., Wei L., Li G., Hua M., Sun Y., Wang D., Han K., Yan Y., Song C., Song R., et al. Persistent High Percentage of HLA-DR+CD38high CD8+ T Cells Associated With Immune Disorder and Disease Severity of COVID-19. Front. Immunol. 2021;12:735125. doi: 10.3389/fimmu.2021.735125. PubMed DOI PMC

Fan X., Song J.W., Cao W.J., Zhou M.J., Yang T., Wang J., Meng F.-P., Shi M., Zhang C., Wang F.-S. T-Cell Epitope Mapping of SARS-CoV-2 Reveals Coordinated IFN-γ Production and Clonal Expansion of T Cells Facilitates Recovery from COVID-19. Viruses. 2024;16:1006. doi: 10.3390/v16071006. PubMed DOI PMC

Gonçalves Pereira M.H., Figueiredo M.M., Queiroz C.P., Magalhães T.V.B., Mafra A., Diniz L.M.O., da Costa L., Gollob K.J., Antonelli L.R.D.V., Santiago H.d.C. T-cells producing multiple combinations of IFNγ, TNF and IL10 are associated with mild forms of dengue infection. Immunology. 2020;160:90–102. doi: 10.1111/imm.13185. PubMed DOI PMC

Zhao J., Xu X., Gao Y., Yu Y., Li C. Crosstalk between Platelets and SARS-CoV-2: Implications in Thrombo-Inflammatory Complications in COVID-19. Int. J. Mol. Sci. 2023;24:14133. doi: 10.3390/ijms241814133. PubMed DOI PMC

Davis H.E., McCorkell L., Vogel J.M., Topol E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023;21:133–146. doi: 10.1038/s41579-022-00846-2. PubMed DOI PMC

da Silva R., Vallinoto A.C.R., Dos Santos E.J.M. The Silent Syndrome of Long COVID and Gaps in Scientific Knowledge: A Narrative Review. Viruses. 2024;16:1256. doi: 10.3390/v16081256. PubMed DOI PMC

Tully D., Griffiths C.L. Dengvaxia: The world’s first vaccine for prevention of secondary dengue. Ther. Adv. Vaccines Immunother. 2021;9:25151355211015839. doi: 10.1177/25151355211015839. PubMed DOI PMC

Thomas S.J. Is new dengue vaccine efficacy data a relief or cause for concern? npj Vaccines. 2023;8:55. doi: 10.1038/s41541-023-00658-2. PubMed DOI PMC

López-Medina E., Biswal S., Saez-Llorens X., Borja-Tabora C., Bravo L., Sirivichayakul C., Vargas L.M., Alera M.T., Velásquez H., Reynales H., et al. Efficacy of a Dengue Vaccine Candidate (TAK-003) in Healthy Children and Adolescents 2 Years after Vaccination. J. Infect. Dis. 2022;225:1521–1532. doi: 10.1093/infdis/jiaa761. PubMed DOI PMC

Flacco M.E., Bianconi A., Cioni G., Fiore M., Calò G.L., Imperiali G., Orazi V., Tiseo M., Troia A., Rosso A., et al. Immunogenicity, Safety and Efficacy of the Dengue Vaccine TAK-003: A Meta-Analysis. Vaccines. 2024;12:770. doi: 10.3390/vaccines12070770. PubMed DOI PMC

Angelin M., Sjölin J., Kahn F., Hedberg A.L., Rosdahl A., Skorup P., Werner S., Woxenius S., Askling H.H. Qdenga®—A promising dengue fever vaccine; can it be recommended to non-immune travelers? Travel Med. Infect. Dis. 2023;54:102598. doi: 10.1016/j.tmaid.2023.102598. PubMed DOI

Kariyawasam R., Lachman M., Mansuri S., Chakrabarti S., Boggild A.K. A dengue vaccine whirlwind update. Ther. Adv. Infect. Dis. 2023;10:20499361231167274. doi: 10.1177/20499361231167274. PubMed DOI PMC

Young A. T cells in SARS-CoV-2 infection and vaccination. Ther. Adv. Vaccines Immunother. 2022;10:25151355221115011. doi: 10.1177/25151355221115011. PubMed DOI PMC

Najimi N., Kadi C., Elmtili N., Seghrouchni F., Bakri Y. Unravelling humoral immunity in SARS-CoV-2: Insights from infection and vaccination. Hum. Antibodies. 2024;32:85–106. doi: 10.3233/HAB-230017. PubMed DOI

Kim W. Germinal Center Response to mRNA Vaccination and Impact of Immunological Imprinting on Subsequent Vaccination. Immune Netw. 2024;24:e28. doi: 10.4110/in.2024.24.e28. PubMed DOI PMC

Scully M., Singh D., Lown R., Poles A., Solomon T., Levi M., Goldblatt D., Kotoucek P., Thomas W., Lester W. Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination. N. Engl. J. Med. 2021;384:2202–2211. doi: 10.1056/NEJMoa2105385. PubMed DOI PMC

Ikewaki N., Kurosawa G., Levy G.A., Preethy S., Abraham S.J.K. Antibody-dependent disease enhancement (ADE) after COVID-19 vaccination and beta-glucans as a safer strategy in management. Vaccine. 2023;41:2427–2429. doi: 10.1016/j.vaccine.2023.03.005. PubMed DOI PMC

Azim Majumder M.A., Razzaque M.S. Repeated vaccination and ‘vaccine exhaustion’: Relevance to the COVID-19 crisis. Expert Rev. Vaccines. 2022;21:1011–1014. doi: 10.1080/14760584.2022.2071705. PubMed DOI

Benitez Fuentes J.D., Mohamed Mohamed K., de Luna Aguilar A., Jimenez Garcia C., Guevara-Hoyer K., Fernandez-Arquero M., Rodriguez de la Pena M.A., Garciia Bravo L., Jimenez Ortega A.F., Flores Navarro P., et al. Evidence of exhausted lymphocytes after the third anti-SARS-CoV-2 vaccine dose in cancer patients. Front. Oncol. 2022;12:975980. doi: 10.3389/fonc.2022.975980. PubMed DOI PMC

Echaide M., Chocarro de Erauso L., Bocanegra A., Blanco E., Kochan G., Escors D. mRNA Vaccines against SARS-CoV-2: Advantages and Caveats. Int. J. Mol. Sci. 2023;24:5944. doi: 10.3390/ijms24065944. PubMed DOI PMC

Anderson E., Powell M., Yang E., Kar A., Leung T.M., Sison C., Steinberg R., Mims R., Choudhury A., Espinosa C., et al. Factors associated with immune responses to SARS-CoV-2 vaccination in individuals with autoimmune diseases. JCI Insight. 2024;9:e180750. doi: 10.1172/jci.insight.180750. PubMed DOI PMC

Yalcinkaya A., Cavalli M., Aranda-Guillén M., Cederholm A., Güner A., Rietrae I., Mildner H., Behere A., Eriksson O., Gonzalez L., et al. Autoantibodies to protein S may explain rare cases of coagulopathy following COVID-19 vaccination. Sci. Rep. 2024;14:24512. doi: 10.1038/s41598-024-75514-x. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...