Autoimmunity and Immunodeficiency in Severe SARS-CoV-2 Infection and Prolonged COVID-19

. 2022 Dec 21 ; 45 (1) : 33-50. [epub] 20221221

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36661489

Grantová podpora
FW03010472 Czech Ministry of Innovation
CZ.02.1.01/0.0/0.0/16_019/0000868 European Structural and Investment Operational Funds Program Research
LX22NPO5103 EXCELES

SARS-CoV-2 causes the complex and heterogeneous illness known as COVID-19. The disease primarily affects the respiratory system but can quickly become systemic, harming multiple organs and leading to long-lasting sequelae in some patients. Most infected individuals are asymptomatic or present mild symptoms. Antibodies, complement, and immune cells can efficiently eliminate the virus. However, 20% of individuals develop severe respiratory illness and multiple organ failure. Virus replication has been described in several organs in patients who died from COVID-19, suggesting a compromised immune response. Immunodeficiency and autoimmunity are responsible for this impairment and facilitate viral escape. Mutations in IFN signal transduction and T cell activation are responsible for the inadequate response in young individuals. Autoantibodies are accountable for secondary immunodeficiency in patients with severe infection or prolonged COVID-19. Antibodies against cytokines (interferons α, γ and ω, IL1β, IL6, IL10, IL-17, IL21), chemokines, complement, nuclear proteins and DNA, anticardiolipin, and several extracellular proteins have been reported. The type and titer of autoantibodies depend on age and gender. Organ-specific autoantibodies have been described in prolonged COVID-19. Their role in the disease is under study. Autoimmunity and immunodeficiency should be screened as risk factors for severe or prolonged COVID-19.

Zobrazit více v PubMed

Chams N., Chams S., Badran R., Shams A., Araji A., Raad M., Mukhopadhyay S., Stroberg E., Duval E.J., Barton L.M., et al. COVID-19: A Multidisciplinary Review. Front. Public Health. 2020;8:383. doi: 10.3389/fpubh.2020.00383. PubMed DOI PMC

Fehr A.R., Perlman S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol. 2015;1282:1–23. PubMed PMC

Rahman S., Montero M.T.V., Rowe K., Kirton R., Kunik F., Jr. Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: A review of current evidence. Expert Rev. Clin. Pharmacol. 2021;14:601–621. doi: 10.1080/17512433.2021.1902303. PubMed DOI PMC

Araf Y., Akter F., Tang Y.D., Fatemi R., Parvez S.A., Zhen C., Hossain G. Omicron variant of SARS-CoV-2: Genomic, transmissibility, and responses to current COVID-19 vaccines. J. Med. Virol. 2022;94:1825–1832. doi: 10.1002/jmv.27588. PubMed DOI PMC

Kared H., Wolf A.S., Alirezaylavasani A., Ravussin A., Solum G., Tran T.T., Lund-Johansen F., Vaage J.T., Nissen-Meyer L.S., Nygaard U.C., et al. Immune responses in Omicron SARS-CoV-2 breakthrough infection in vaccinated adults. Nat. Commun. 2022;13:4165. doi: 10.1038/s41467-022-31888-y. PubMed DOI PMC

Bansal K., Kumar S. Mutational cascade of SARS-CoV-2 leading to evolution and emergence of omicron variant. Virus Res. 2022;315:198765. doi: 10.1016/j.virusres.2022.198765. PubMed DOI PMC

Ochani R., Asad A., Yasmin F., Shaikh S., Khalid H., Batra S., Sohail M.R., Mahmood S.F., Ochani R., Hussham Arshad M., et al. COVID-19 pandemic: From origins to outcomes. A comprehensive review of viral pathogenesis, clinical manifestations, diagnostic evaluation, and management. Infez. Med. 2021;29:20–36. PubMed

Riou J., Althaus C.L. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus [2019-nCoV), December 2019 to January 2020. Euro Surveill. 2020;25:2000058. doi: 10.2807/1560-7917.ES.2020.25.4.2000058. PubMed DOI PMC

van Doremalen N., Bushmaker T., Morris D.H., Holbrook M.G., Gamble A., Williamson B.N., Tamin A., Harcourt J.L., Thornburg N.J., Gerber S.I., et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020;382:1564–1567. doi: 10.1056/NEJMc2004973. PubMed DOI PMC

Nikolaidis M., Papakyriakou A., Chlichlia K., Markoulatos P., Oliver S.G., Amoutzias G.D. Comparative Analysis of SARS-CoV-2 Variants of Concern, Including Omicron, Highlights Their Common and Distinctive Amino Acid Substitution Patterns, Especially at the Spike ORF. Viruses. 2022;14:707. doi: 10.3390/v14040707. PubMed DOI PMC

Marik P.E., Iglesias J., Varon J., Kory P. A scoping review of the pathophysiology of COVID-19. Int. J. Immunopathol. Pharmacol. 2021;35 doi: 10.1177/20587384211048026. PubMed DOI PMC

Nalbadian A., Sehgal K., Gupta A., Madhavan M.V., McGroder C., Stevens J.S., Cook J.R., Nordvig A.S., Shalev D., Sehrawat T.S., et al. Post-acute COVID-19 syn-drome. Nat. Med. 2021;27:601–615. doi: 10.1038/s41591-021-01283-z. PubMed DOI PMC

Alipoor S.D., Mirsaeidi M. SARS-CoV-2 cell entry beyond the ACE2 receptor. Mol. Biol. Rep. 2022;49:10715–10727. doi: 10.1007/s11033-022-07700-x. PubMed DOI PMC

Nieto-Torres J.L., De Diego M.L., Verdiá-Báguena C., Jimenez-Guardeño J.M., Regla-Nava J.A., Fernandez-Delgado R., Castaño-Rodriguez C., Alcaraz A., Torres J., Aguilella V.M., et al. Severe acute respiratory síndrome coronavirus envelope protein ion cannel activity promotes virus fitness and pathogenesis. PLoS Pathog. 2014;10:e1004077. doi: 10.1371/journal.ppat.1004077. PubMed DOI PMC

Zheng Y., Zhuang M.W., Han L., Zhang J., Nan M.L., Zhan P., Kang D., Liu X., Gao C., Wang P.H. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling. Signal. Transduct. Target Ther. 2020;5:299. doi: 10.1038/s41392-020-00438-7. PubMed DOI PMC

Cui L., Wang H., Ji Y., Yang J., Xu S., Huang X., Wang Z., Qin L., Tien P., Zhou X., et al. The nucleocapsid protein of coronaviruses acts as viral suppressor of RNA silencing in mammalian cells. J. Virol. 2015;89:9029–9043. doi: 10.1128/JVI.01331-15. PubMed DOI PMC

Kim D., Lee L.Y., Yang J.S., Kim J.W., Kim V.N., Chang H. Architecture of SARS-CoV-2 transcriptome. Cell. 2020;14:914–921. doi: 10.1016/j.cell.2020.04.011. PubMed DOI PMC

Lei X., Dong X., Ma R., Xiao X., Tian Z., Wang C., Wang Y., Li L., Ren L., Guo F., et al. activation and evasion of type I interferon responses by SARS.CoV.2. Nat. Commun. 2020;11:3810. doi: 10.1038/s41467-020-17665-9. PubMed DOI PMC

Lu Y., Michel H.A., Wang P.H., Smith G.L. Manipulation of innate immune signaling pathways by SARS-CoV-2 non-structural proteins. Front. Microbiol. 2022;13:1027015. doi: 10.3389/fmicb.2022.1027015. PubMed DOI PMC

Konno Y., Kimura I., Uriu K., Fukushi M., Irie T., Koyanagi Y., Sauter D., Gifford R.J., USFQ-COVID19 Consortium. Nakagawa S., et al. SARS-CoV-2 ORF3b Is a Potent Interferon Antagonist Whose Activity Is Increased by a Naturally Occurring Elongation Variant. Cell Rep. 2020;32:108185. doi: 10.1016/j.celrep.2020.108185. PubMed DOI PMC

Yan W., Zheng Y., Zeng X., He B., Cheng W. Structural biology of SARS-CoV-2: Open the door for novel therapies. Signal. Transduct. Target. Ther. 2022;7:26. doi: 10.1038/s41392-022-00884-5. PubMed DOI PMC

Rashid F., Xie Z., Suleman M., Shah A., Khan S., Luo S. Roles and functions of SARS-CoV-2 proteins in host immune evasion. Front. Immunol. 2022;13:940756. doi: 10.3389/fimmu.2022.940756. PubMed DOI PMC

De Sanctis J.B., Garcia A., Garmendia J., Moreno D., Hajduch M., Radzioch D. Importance of miRNA in SARS-CoV2 infection. Gac. Méd. Caracas. 2020;128((Suppl. 1)):S17–S22. doi: 10.47307/GMC.2020.128.s1.3. DOI

Roustai Geraylow K., Hemmati R., Kadkhoda S., Ghafouri-Fard S. miRNA expression in COVID-19. Gene Rep. 2022;28:101641. doi: 10.1016/j.genrep.2022.101641. PubMed DOI PMC

Zhu Y., Zhang Z., Song J., Qian W., Gu X., Yang C., Shen N., Xue F., Tang Y. SARS-CoV-2-Encoded MiRNAs Inhibit Host Type I Interferon Pathway and Mediate Allelic Differential Expression of Susceptible Gene. Front. Immunol. 2021;12:767726. doi: 10.3389/fimmu.2021.767726. PubMed DOI PMC

Zhang J.J., Dong X., Cao Y.Y., Yuan Y.D., Yang Y.B., Yan Y.Q., Akdis C.A., Gao Y.D. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy. 2020;75:1730–1741. doi: 10.1111/all.14238. PubMed DOI

Lisco G., De Tullio A., Stragapede A., Solimando A.G., Albanese F., Capobianco M., Giagulli V.A., Guastamacchia E., De Pergola G., Vacca A., et al. COVID-19 and the Endocrine System: A Comprehensive Review on the Theme. J. Clin. Med. 2021;10:2920. doi: 10.3390/jcm10132920. PubMed DOI PMC

Smadja D.M., Mentzer S.J., Fontenay M., Laffan M.A., Ackermann M., Helms J., Jonigk D., Chocron R., Pier G.B., Gendron N., et al. COVID-19 is a systemic vascular hemopathy: Insight for mechanistic and clinical aspects. Angiogenesis. 2021;24:755–788. doi: 10.1007/s10456-021-09805-6. PubMed DOI PMC

Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3. PubMed DOI PMC

Hosseini P., Fallahi M.S., Erabi G., Pakdin M., Zarezadeh S.M., Faridzadeh A., Entezari S., Ansari A., Poudineh M., Deravi N. Multisystem Inflammatory Syndrome and Autoimmune Diseases Following COVID-19: Molecular Mechanisms and Therapeutic Opportunities. Front. Mol. Biosci. 2022;9:804109. doi: 10.3389/fmolb.2022.804109. PubMed DOI PMC

Hoste L., Van Paemel R., Haerynck F. Multisystem inflammatory syndrome in children related to COVID-19: A systematic review. Eur. J. Pediatr. 2021;180:2019–2034. doi: 10.1007/s00431-021-03993-5. PubMed DOI PMC

Kunal S., Ish P., Sakthivel P., Malhotra N., Gupta K. The emerging threat of multisystem inflammatory syndrome in adults (MIS-A) in COVID-19: A systematic review. Heart Lung. 2022;54:7–18. doi: 10.1016/j.hrtlng.2022.03.007. PubMed DOI PMC

Henderson L.A., Canna S.W., Friedman K.G., Gorelik M., Lapidus S.K., Bassiri H., Behrens E.M., Ferris A., Kernan K.F., Schulert G.S., et al. American College of Rheumatology Clinical Guidance for Multisystem Inflammatory Syndrome in Children Associated With SARS-CoV-2 and Hyperinflammation in Pediatric COVID-19: Version 2. Arthritis Rheumatol. 2021;73:e13–e29. doi: 10.1002/art.41616. PubMed DOI PMC

Bizjak M., Emeršič N., Zajc Avramovič M., Barbone F., Ronchese F., Della Paolera S., Conversano E., Amoroso S., Vidoni M., Vesel Tajnšek T., et al. High incidence of multisystem inflammatory syndrome and other autoimmune diseases after SARS-CoV-2 infection compared to COVID-19 vaccination in children and adolescents in south central Europe. Clin. Exp. Rheumatol. 2022 doi: 10.55563/clinexprheumatol/i1l2xn. PubMed DOI

Jamieson D.J., Rasmussen S.A. An update on COVID-19 and pregnancy. Am. J. Obstet. Gynecol. 2022;226:177–186. doi: 10.1016/j.ajog.2021.08.054. PubMed DOI PMC

SeyedAlinaghi S., Karimi A., Barzegary A., Mojdeganlou H., Vahedi F., Mirghaderi S.P., Shobeiri P., Ramezani M., Yousefi Konjdar P., Mirzapour P., et al. COVID-19 mortality in patients with immunodeficiency and its predictors: A systematic review. Eur. J. Med. Res. 2022;27:195. doi: 10.1186/s40001-022-00824-7. PubMed DOI PMC

Markarian N.M., Galli G., Patel D., Hemmings M., Nagpal P., Berghuis A.M., Abrahamyan L., Vidal S.M. Identify-ing Markers of Emerging SARS-CoV-2 Variants in Patients with Secondary Immunodeficiency. Front. Microbiol. 2022;13:933983. doi: 10.3389/fmicb.2022.933983. PubMed DOI PMC

De Sanctis J.B., García A.H., Moreno D., Hajduch M. Coronavirus infection: An immunologists’ perspective. Scand. J. Immunol. 2021;93:e13043. doi: 10.1111/sji.13043. PubMed DOI PMC

Gudbjartsson D.F., Norddahl G.L., Melsted P., Gunnarsdottir K., Holm H., Eythorsson E., Arnthorsson A.O., Helgason D., Bjarnadottir K., Ingvarsson R.F., et al. Humoral Immune Response to SARS-CoV-2 in Iceland. N. Engl. J. Med. 2020;383:1724–1734. doi: 10.1056/NEJMoa2026116. PubMed DOI PMC

Sekine T., Perez-Potti A., Rivera-Ballesteros O., Strålin K., Gorin J.B., Olsson A., Llewellyn-Lacey S., Kamal H., Bogdanovic  G., Muschiol S., et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19. Cell. 2020;183:158–168.e14. doi: 10.1016/j.cell.2020.08.017. PubMed DOI PMC

Vijay R., Perlman S. Middle East respiratory syndrome and severe respiratory syndrome. Curr. Opin. Virol. 2016;16:70–76. doi: 10.1016/j.coviro.2016.01.011. PubMed DOI PMC

Channappanavar R., Fehr A.R., Vijay R., Mack M., Zhao J., Meyenholz D.K., Perlman S. Dysregulated type I interferon and inflammatory monocytes-macrophages response cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19:181–193. doi: 10.1016/j.chom.2016.01.007. PubMed DOI PMC

Blanco-Melo D., Nilsson-Payant B.E., Liu W.C., Uhl S., Hoagland D., Møller R., Jordan T.X., Oishi K., Panis M., Sachs D., et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181:1036–1045. doi: 10.1016/j.cell.2020.04.026. PubMed DOI PMC

Lazear H.M., Schoggins J.W., Diamond M.S. Shared and Distinct Functions of Type I and Type III Interferons. Immunity. 2019;50:907–923. doi: 10.1016/j.immuni.2019.03.025. PubMed DOI PMC

Gao D., Ciancanelli M.J., Zhang P., Harschnitz O., Bondet V., Hasek M., Chen J., Mu X., Itan Y., Cobat A., et al. TLR3 controls constitutive IFN-β antiviral immunity in human fibroblasts and cortical neurons. J. Clin. Investig. 2021;131:e134529. doi: 10.1172/JCI134529. PubMed DOI PMC

Schultze J.L., Aschenbrenner A.C. COVID-19 and the human innate immune system. Cell. 2021;184:1671–1692. doi: 10.1016/j.cell.2021.02.029. PubMed DOI PMC

Lee J.S., Park S., Jeong H.W., Ahn J.Y., Choi S.J., Lee H., Choi B., Nam S.K., Sa M., Kwon J.S., et al. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci. Immunol. 2020;5:eabd1554. doi: 10.1126/sciimmunol.abd1554. PubMed DOI PMC

Hadjadj J., Yatim N., Barnabei L., Corneau A., Boussier J., Smith N., Péré H., Charbit B., Bondet V., Chenevier-Gobeaux C., et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369:718–724. doi: 10.1126/science.abc6027. PubMed DOI PMC

Ziegler C.G.K., Miao V.N., Owings A.H., Navia A.W., Tang Y., Bromley J.D., Lotfy P., Sloan M., Laird H., Williams H.B., et al. Impaired local intrinsic immunity to SARS-CoV-2 infection in severe COVID-19. Cell. 2021;184:4713–4733.e22. doi: 10.1016/j.cell.2021.07.023. PubMed DOI PMC

Tay M.Z., Poh C.M., Rénia L., MacAry P.A., Ng L.F.P. The Trinity of COVID-19 immunity: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020;20:363–374. doi: 10.1038/s41577-020-0311-8. PubMed DOI PMC

Lucas C., Wong P., Klein J., Castro T.B.R., Silva J., Sundaram M., Ellingson M.K., Mao T., Oh J.E., Israelow B., et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020;584:463–469. doi: 10.1038/s41586-020-2588-y. PubMed DOI PMC

Henderson L.A., Canna S.W., Schulert G.S., Volpi S., Lee P.Y., Kernan K.F., Caricchio R., Mahmud S., Hazen M.M., Halyabar O., et al. On the Alert for Cytokine Storm: Immunopathology in COVID-19. Arthritis Rheumatol. 2020;72:1059–1063. doi: 10.1002/art.41285. PubMed DOI PMC

Thieme C.J., Anft M., Paniskaki K., Stervbo U., Roch T., Babel N. Robust T cell response toward spike, membrane, and nucleocapsid SARS-CoV-2 proteins is not associated with recovery in critical COVID-19 patients. Cell Rep. Med. 2020;1:1–14. doi: 10.1016/j.xcrm.2020.100092. PubMed DOI PMC

RECOVERY Collaborative Group. Horby P., Lim W.S., Emberson J.R., Mafham M., Bell J.L., Linsell L., Staplin N., Brightling C., Ustianowski A., et al. Dexamethasone in Hospitalised Patients with COVID-19. N. Engl. J. Med. 2021;384:693–704. PubMed PMC

Smadja D.M., Bonnet G., Gendron N., Weizman O., Khider L., Trimaille A., Mirault T., Fauvel C., Diehl J.L., Mika D., et al. Intermediate- vs. Standard-Dose Prophylactic Anticoagulation in Patients With COVID-19 Admitted in Medical Ward: A Propensity Score-Matched Cohort Study. Front. Med. 2021;8:747527. doi: 10.3389/fmed.2021.747527. PubMed DOI PMC

Knyazev E., Nersisyan S., Tonevitsky A. Endocytosis and transcytosis of SARS-CoV-2 across the intestinal epithelium and other tissue barriers. Front. Immunol. 2021;12:636966. doi: 10.3389/fimmu.2021.636966. PubMed DOI PMC

Nersisyan S.A. Induction of Hypoxic Response in Caco-2 Cells Promote the Expression of Genes Involved in SARS-CoV-2 Endocytosis and Transcytosis. Dokl. Biochem. Biophys. 2022;506:206–209. doi: 10.1134/S1607672922050118. PubMed DOI PMC

Wen J., Cheng Y., Ling R., Dai Y., Huang B., Huang W., Zhang S., Jiang Y. Antibody-dependent enhancement of coronavirus. Int. J. Infect. Dis. 2020;100:483–489. doi: 10.1016/j.ijid.2020.09.015. PubMed DOI PMC

Binder R.J. Functions of heat shock proteins in pathways of the innate and adaptive immune system. J. Immunol. 2014;193:5765–5771. doi: 10.4049/jimmunol.1401417. PubMed DOI PMC

Kasperkiewicz M. COVID-19, heat shock proteins, and autoimmune bullous diseases: A potential link deserving further attention. Cell Stress Chaperones. 2021;26:1–2. doi: 10.1007/s12192-020-01180-3. PubMed DOI PMC

Vahabi M., Ghazanfari T., Sepehrnia S. Molecular mimicry, hyperactive immune system, and SARS-COV-2 are three prerequisites of the autoimmune disease triangle following COVID-19 infection. Int. Immunopharmacol. 2022;112:109183. doi: 10.1016/j.intimp.2022.109183. PubMed DOI PMC

Raghav P.K., Kalyanaraman K., Kumar D. Human cell receptors: Potential drug targets to combat COVID-19. Amino Acids. 2021;53:813–842. doi: 10.1007/s00726-021-02991-z. PubMed DOI PMC

Shen X.R., Geng R., Li Q., Chen Y., Li S.F., Wang Q., Min J., Yang Y., Li B., Jiang R.D., et al. ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal. Transduct. Target Ther. 2022;7:83. doi: 10.1038/s41392-022-00919-x. PubMed DOI PMC

Huang J., Liu X., Wei Y., Li X., Gao S., Dong L., Rao X., Zhong J. Emerging Role of Dipeptidyl Peptidase-4 in Autoimmune Disease. Front. Immunol. 2022;13:830863. doi: 10.3389/fimmu.2022.830863. PubMed DOI PMC

Sebastián-Martín A., Sánchez B.G., Mora-Rodríguez J.M., Bort A., Díaz-Laviada I. Role of Dipeptidyl Peptidase-4 (DPP4) on COVID-19 Physiopathology. Biomedicines. 2022;10:2026. doi: 10.3390/biomedicines10082026. PubMed DOI PMC

Luan J., Zhang K., Yang P., Zhang Y., Feng F., Zhu Y.M., Zhu P., Chen Z.N. The combination of FK506 and an anti-CD147 mAb exerts potential therapeutic effects on a mouse model of collagen-induced arthritis. Mol. Immunol. 2018;101:1–9. doi: 10.1016/j.molimm.2018.05.013. PubMed DOI

Cordero O.J., Viéitez I., Altabás I., Nuño-Nuño L., Villalba A., Novella-Navarro M., Peiteado D., Miranda-Carús M.E., Balsa A., Varela-Calviño R., et al. Study of Plasma Anti-CD26 Autoantibody Levels in a Cohort of Treatment-Naïve Early Arthritis Patients. Arch. Immunol. Exp. 2022;70:12. doi: 10.1007/s00005-022-00649-6. PubMed DOI PMC

Urata R., Ikeda K., Yamazaki E., Ueno D., Katayama A., Shin-Ya M., Ohgitani E., Mazda O., Matoba S. Senescent endothelial cells are predisposed to SARS-CoV-2 infection and subsequent endothelial dysfunction. Sci. Rep. 2022;12:11855. doi: 10.1038/s41598-022-15976-z. PubMed DOI PMC

Ramos-Martínez I.E., Ramos-Martínez E., Segura-Velázquez R.Á., Saavedra-Montañez M., Cervantes-Torres J.B., Cerbón M., Papy-Garcia D., Zenteno E., Sánchez-Betancourt J.I. Heparan Sulfate and Sialic Acid in Viral Attachment: Two Sides of the Same Coin? Int. J. Mol. Sci. 2022;23:9842. doi: 10.3390/ijms23179842. PubMed DOI PMC

López-Muñoz A.D., Kosik I., Holly J., Yewdell J.W. Cell surface SARS-CoV-2 nucleocapsid protein modulates innate and adaptive immunity. Sci. Adv. 2022;8:eabp9770. doi: 10.1126/sciadv.abp9770. PubMed DOI PMC

Chen L., Guan W.-J., Qiu Z.-E., Xu J.-B., Bai X., Hou X.-C., Sun J., Qu S., Huang Z.X., Lei T.L., et al. SARS-CoV-2 nucleocapsid protein triggers hyperinflammation via protein-protein interaction-mediated intracellular Cl− accumulation in respiratory epithelium. Signal. Transduct. Target. Ther. 2022;7:255. doi: 10.1038/s41392-022-01048-1. PubMed DOI PMC

ACTIV-3/TICO Study Group The Association of Baseline Plasma SARS-CoV-2 Nucleocapsid Antigen Level and Out-comes in Patients Hospitalised with COVID-19. Ann. Intern. Med. 2022;175:1401–1410. PubMed PMC

Schoeman D., Fielding B.C. Is There a Link Between the Pathogenic Human Coronavirus Envelope Protein and Im-munopathology? A Review of the Literature. Front. Microbiol. 2020;11:2086. doi: 10.3389/fmicb.2020.02086. PubMed DOI PMC

Schoeman D., Cloete R., Fielding B.C. The Flexible, Extended Coil of the PDZ-Binding Motif of the Three Deadly Hu-man Coronavirus E Proteins Plays a Role in Pathogenicity. Viruses. 2022;14:1707. doi: 10.3390/v14081707. PubMed DOI PMC

Lin J., Law R., Korosec C.S., Zhou C., Koh W.H., Ghaemi M.S., Samaan P., Ooi H.K., Matveev V., Yue F., et al. Longitudinal Assessment of SARS-CoV-2-Specific T Cell Cytokine-Producing Responses for 1 Year Reveals Persistence of Multicytokine Proliferative Responses, with Greater Immunity Associated with Disease Severity. J. Virol. 2022;96:e0050922. doi: 10.1128/jvi.00509-22. PubMed DOI PMC

Zhou Y., Liu Z., Li S., Xu W., Zhang Q., Silva I.T., Li C., Wu Y., Jiang Q., Liu Z., et al. Enhancement versus neutralisation by SARS-CoV-2 antibodies from convalescent donor associates with distinct epitopes on the RBD. Cell Rep. 2021;34:108699. doi: 10.1016/j.celrep.2021.108699. PubMed DOI PMC

Negro F. Is antibody-dependent enhancement playing a role in COVID-19 pathogenesis? Swiss Med. Wkly. 2020;150:w20249. doi: 10.4414/smw.2020.20249. PubMed DOI

De Sanctis J.B., Garmendia J.V., Hajdúch M. Overview of Memory NK Cells in Viral Infections: Possible Role in SARS-CoV-2 Infection. Immunology. 2022;2:52–67. doi: 10.3390/immuno2010005. DOI

Chouaki Benmansour N., Carvelli J., Vivier É. Complement cascade in severe forms of COVID-19: Recent advances in therapy. Eur. J. Immunol. 2021;51:1652–1659. doi: 10.1002/eji.202048959. PubMed DOI PMC

Ameratunga R. Assessing Disease Severity in Common Variable Immunodeficiency Disorders (CVID) and CVID-Like Disorders. Front. Immunol. 2018;9:2130. doi: 10.3389/fimmu.2018.02130. PubMed DOI PMC

Ameratunga R., Longhurst H., Steele R., Lehnert K., Leung E., Brooks A.E.S., Woon S.T. Common Variable Immunodeficiency Disorders, T-Cell Responses to SARS-CoV-2 Vaccines, and the Risk of Chronic COVID-19. J. Allergy Clin. Immunol. Pr. 2021;9:3575–3583. doi: 10.1016/j.jaip.2021.06.019. PubMed DOI PMC

Guo K., Barrett B.S., Morrison J.H., Mickens K.L., Vladar E.K., Hasenkrug K.J., Poeschla E.M., Santiago M.L. Interferon resistance of emerging SARS-CoV-2 variants. Proc. Natl. Acad. Sci. USA. 2022;119:e2203760119. doi: 10.1073/pnas.2203760119. PubMed DOI PMC

Rocco J.M., Laghetti P., Di Stefano M., Sereti I., Ortega-Villa A., Wang J., Rupert A., Chironna M., Ye L., Liu X., et al. Impact of Innate Immunity, Endothelial Damage, and Metabolic Biomarkers on COVID-19 Severity and Mortality. Open Forum Infect. Dis. 2020;9:ofac427. doi: 10.1093/ofid/ofac427. PubMed DOI PMC

Schiaffino M.T., Di Natale M., García-Martínez E., Navarro J., Muñoz-Blanco J.L., Demelo-Rodríguez P., Sánchez-Mateos P. Immunoserologic Detection and Diagnostic Relevance of Cross-Reactive Autoantibodies in Corona-virus Disease 2019 Patients. J. Infect. Dis. 2020;222:1439–1443. doi: 10.1093/infdis/jiaa485. PubMed DOI PMC

Tandel D., Sah V., Singh N.K., Potharaju P.S., Gupta D., Shrivastava S., Sowpati D.T., Harshan K.H. SARS-CoV-2 Variant Delta Potently Suppresses Innate Immune Response and Evades Interferon-Activated Antiviral Responses in Human Colon Epithelial Cells. Microbiol. Spectr. 2022;10:e0160422. doi: 10.1128/spectrum.01604-22. PubMed DOI PMC

Wang E.Y., Mao T., Klein J., Dai Y., Huck J.D., Jaycox J.R., Liu F., Zhou T., Israelow B., Wong P., et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021;595:283–288. doi: 10.1038/s41586-021-03631-y. PubMed DOI

Trahtemberg U., Rottapel R., Dos Santos C.C., Slutsky A.S., Baker A., Fritzler M.J. Anticardiolipin and other antiphospholipid antibodies in critically ill COVID-19 positive and negative patients. Ann. Rheum. Dis. 2021;80:1236–1240. doi: 10.1136/annrheumdis-2021-220206. PubMed DOI PMC

Pascolini S., Vannini A., Deleonardi G., Ciordinik M., Sensoli A., Carletti I., Veronesi L., Ricci C., Pronesti A., Mazzanti L., et al. COVID-19 and Immunological Dysregulation: Can Autoantibodies be Useful?) Clin. Transl. Sci. 2021;14:502–508. doi: 10.1111/cts.12908. PubMed DOI PMC

Lee L.E., Jeong W., Park Y.B., Jeong S.J., Lee S.W. Clinical Significance of Antineutrophil Cytoplasmic Antibody Positivity in Patients Infected with SARS-CoV-2. J. Clin. Med. 2022;11:4152. doi: 10.3390/jcm11144152. PubMed DOI PMC

Christodoulou M., Iatridi F., Chalkidis G., Lioulios G., Nikolaidou C., Badis K., Fylaktou A., Papagianni A., Stangou M. ANCA-Associated Vasculitis May Result as a Complication to Both SARS-CoV-2 Infection and Vaccination. Life. 2022;12:1072. doi: 10.3390/life12071072. PubMed DOI PMC

Zuo Y., Estes S.K., Ali R.A., Gandhi A.A., Yalavarthi S., Shi H., Sule G., Gockman K., Madison J.A., Zuo M., et al. Prothrombotic autoantibodies in serum from patients hospitalised with COVID-19. Sci. Transl. Med. 2020;12:eabd3876. doi: 10.1126/scitranslmed.abd3876. PubMed DOI PMC

Pascolini S., Granito A., Muratori L., Lenzi M., Muratori P. Coronavirus disease associated immune thrombocytopenia: Causation or correlation? J. Microbiol. Immunol. Infect. 2021;54:531–533. doi: 10.1016/j.jmii.2020.08.006. PubMed DOI PMC

de Laat B., Stragier H., de Laat-Kremers R., Ninivaggi M., Mesotten D., Thiessen S., Van Pelt K., Roest M., Penders J., Vanelderen P., et al. Population-wide persistent hemostatic changes after vaccination with ChAdOx1-S. Front. Cardiovasc. Med. 2022;9:966028. doi: 10.3389/fcvm.2022.966028. PubMed DOI PMC

Feng Y., Quan Y., Cassady K., Zou Z., Gao Y., Zhang X. Clinical characteristics in immune thrombocytopenia patients after COVID-19 vaccination. Hum. Vaccines Immunother. 2022;18:2119043. doi: 10.1080/21645515.2022.2119043. PubMed DOI PMC

See I., Su J.R., Lale A., Woo E.J., Guh A.Y., Shimabukuro T.T., Streiff M.B., Rao A.K., Wheeler A.P., Beavers S.F., et al. US Case Reports of Cerebral Venous Sinus Thrombosis With Thrombocytopenia After Ad26.COV2.S Vaccination, March 2 to April 21, 2021. JAMA. 2021;325:2448–2456. doi: 10.1001/jama.2021.7517. PubMed DOI PMC

Rodríguez Y., Rojas M., Beltrán S., Polo F., Camacho-Domínguez L., Morales S.D., Gershwin M.E., Anaya J.M. Autoimmune and autoinflammatory conditions after COVID-19 vaccination. New case reports and updated literature review. J. Autoimmun. 2022;132:102898. doi: 10.1016/j.jaut.2022.102898. PubMed DOI PMC

Seeßle J., Waterboer T., Hippchen T., Simon J., Kirchner M., Lim A., Müller B., Merle U. Persistent Symptoms in Adult Patients 1 Year After Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study. Clin. Infect. Dis. 2022;74:1191–1198. doi: 10.1093/cid/ciab611. PubMed DOI PMC

Bastard P., Gervais A., Le Voyer T., Rosain J., Philippot Q., Manry J. Autoantibodies neutralising type I IFNs are present in ~ 4% of uninfected individuals over 70 years old and account for ~ 20% of COVID-19 deaths. Science. 2020;370:eabd4585. doi: 10.1126/science.abd4585. PubMed DOI PMC

Bastard P., Rosen L.B., Zhang Q., Michailidis E., Hoffmann H.H., Zhang Y., Dorgham K., Philippot Q., Rosain J., Béziat V., et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370:eabd4585. doi: 10.1126/science.abd4585. PubMed DOI PMC

Bastard P., Orlova E., Sozaeva L., Lévy R., James A., Schmitt M.M., Ochoa S., Kareva M., Rodina Y., Gervais A., et al. Preexisting autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients with APS-1. J. Exp. Med. 2021;218:e20210554. doi: 10.1084/jem.20210554. PubMed DOI PMC

Bastard P., Vazquez S., Liu J., Laurie M.T., Wang C.Y., Gervais A., Le Voyer T., Bizien L., Zamecnik C., Philippot Q., et al. Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralising type I IFNs. Sci. Immunol. 2022;14:eabp8966. doi: 10.1126/sciimmunol.abp8966. PubMed DOI PMC

Lopez J., Mommert M., Mouton W., Pizzorno A., Brengel-Pesce K., Mezidi M., Villard M., Lina B., Richard J.C., Fassier J.B., et al. Early nasal type I IFN immunity against SARS-CoV-2 is compromised in patients with autoantibodies against type I IFNs. J. Exp. Med. 2021;218:e20211211. doi: 10.1084/jem.20211211. PubMed DOI PMC

Chen L.F., Yang C.D., Cheng X.B. Anti-Interferon Autoantibodies in Adult-Onset Immunodeficiency Syndrome and Severe COVID-19 Infection. Front. Immunol. 2021;12:788368. doi: 10.3389/fimmu.2021.788368. PubMed DOI PMC

Zhang Q., Bastard P., Bolze A., Jouanguy E., Zhang S.Y., COVID Human Genetic Effort. Cobat A., Notarangelo L.D., Su H.C., Casanova J.-L., et al. Life-Threatening COVID-19: Defective Interferons Unleash Excessive Inflammation. Medicine. 2020;1:14–20. doi: 10.1016/j.medj.2020.12.001. PubMed DOI PMC

Zhang Q., Bastard P., Liu Z., Le Pen J., Moncada-Velez M., Chen J., Ogishi M., Sabli I.K.D., Hodeib S., Korol C., et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370:eabd4570. doi: 10.1126/science.abd4570. PubMed DOI PMC

Zhang Q., Matuozzo D., Le Pen J., Lee D., Moens L., Asano T., Bohlen J., Liu Z., Moncada-Velez M., Kendir-Demirkol Y., et al. Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. J. Exp. Med. 2022;219:e20220131. doi: 10.1084/jem.20220131. PubMed DOI PMC

Steels S., Van Elslande J., Leuven COVID-Study Group. De Munter P., Bossuyt X. Transient Increase of Pre-existing Anti-IFN-α2 Antibodies Induced by SARS-CoV-2 Infection. J. Clin. Immunol. 2022;42:742–745. doi: 10.1007/s10875-022-01235-3. PubMed DOI PMC

Kreye J., Reincke S.M., Prüss H. Do cross-reactive antibodies cause neuropathology in COVID-19? Nat. Rev. Immunol. 2020;20:645–646. doi: 10.1038/s41577-020-00458-y. PubMed DOI PMC

Franke C., Ferse C., Kreye J., Reincke S.M., Sanchez-Sendin E., Rocco A., Steinbrenner M., Angermair S., Treskatsch S., Zickler D., et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain. Behav. Immun. 2021;93:415–419. doi: 10.1016/j.bbi.2020.12.022. PubMed DOI PMC

Wang W., Shen M., Tao Y., Fairley C.K., Zhong Q., Li Z., Chen H., Ong J.J., Zhang D., Zhang K., et al. Elevated glucose level leads to rapid COVID-19 progression and high fatality. BMC Pulm. Med. 2021;21:64. doi: 10.1186/s12890-021-01413-w. PubMed DOI PMC

Marchand L., Pecquet M., Luyton C. Type 1 diabetes onset triggered by COVID-19. Acta Diabetol. 2020;57:1265–1266. doi: 10.1007/s00592-020-01570-0. PubMed DOI PMC

Sheikh A.B., Javed N., Sheikh A.A.E., Upadhyay S., Shekhar R. Diabetes insipidus and concomitant myocarditis: A late sequelae of COVID-19 infection. J. Investig. Med. High Impact Case Rep. 2021;9:2324709621999954. doi: 10.1177/2324709621999954. PubMed DOI PMC

Sheikh A.B., Javaid M.A., Sheikh A.A.E., Shekhar R. Central adrenal insufficiency and diabetes insipidus as potential endocrine manifestations of COVID-19 infection: A case report. Pan. Afr. Med. J. 2021;38:222. PubMed PMC

Wheatland R. Molecular mimicry of ACTH in SARS—Implications for corticosteroid treatment and prophylaxis. Med. Hypotheses. 2004;63:855–862. doi: 10.1016/j.mehy.2004.04.009. PubMed DOI PMC

Mirza S.A., Sheikh A.A.E., Barbera M., Ijaz Z., Javaid M.A., Shekhar R., Pal S., Sheikh A.B. COVID-19 and the Endocrine System: A Review of the Current Information and Misinformation. Infect. Dis. Rep. 2022;14:184–197. doi: 10.3390/idr14020023. PubMed DOI PMC

Pérez-Torres D., Díaz-Rodríguez C., Armentia-Medina A. Anti-ACTH antibodies in critically ill COVID-19 patients: A potential immune evasion mechanism of SARS-CoV-2. Med. Intensiv. 2022;46:472–474. doi: 10.1016/j.medin.2021.09.002. PubMed DOI PMC

Jensterle M., Herman R., Janež A., Mahmeed W.A., Al-Rasadi K., Al-Alawi K., Banach M., Banerjee Y., Ceriello A., Cesur M., et al. The Relationship between COVID-19 and Hypothalamic-Pituitary-Adrenal Axis: A Large Spectrum from Glucocorticoid Insufficiency to Excess-The CAPISCO International Expert Panel. Int. J. Mol. Sci. 2022;23:7326. doi: 10.3390/ijms23137326. PubMed DOI PMC

Vakhshoori M., Heidarpour M., Bondariyan N., Sadeghpour N., Mousavi Z. Adrenal Insufficiency in Coronavirus Disease 2019 (COVID-19)-Infected Patients without Preexisting Adrenal Diseases: A Systematic Literature Review. Int. J. Endocrinol. 2021;2021:2271514. doi: 10.1155/2021/2271514. PubMed DOI PMC

Davies T.F. Infection and autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 2008;93:674–676. doi: 10.1210/jc.2008-0095. PubMed DOI

Mateu-Salat M., Urgell E., Chico A. SARS-COV-2 as a trigger for autoimmune disease: Report of two cases of Graves’ disease after COVID-19. J. Endocrinol. Investig. 2020;43:1527–1528. doi: 10.1007/s40618-020-01366-7. PubMed DOI PMC

Tee L.Y., Harjanto S., Rosario B.H. COVID-19 complicated by Hashimoto’s thyroiditis. Singap. Med. J. 2021;62:265. doi: 10.11622/smedj.2020106. PubMed DOI PMC

Woodruff M.C., Ramonell R.P., Haddad N.S., Anam F.A., Rudolph M.E., Walker T.A., Truong A.D., Dixit A.N., Han J.E., Cabrera-Mora M., et al. Dysregulated naïve B cells and de novo autoreactivity in severe COVID-19. Nature. 2022;611:139–147. doi: 10.1038/s41586-022-05273-0. PubMed DOI PMC

Castleman M.J., Stumpf M.M., Therrien N.R., Smith M.J., Lesteberg K.E., Palmer B.E., Maloney J.P., Janssen W.J., Mould K.J., Beckham J.D., et al. Autoantibodies elicited with SARS-CoV-2 infection are linked to alterations in double negative B cells. Front. Immunol. 2022;13:988125. doi: 10.3389/fimmu.2022.988125. PubMed DOI PMC

Bomhof G., Mutsaers P.G.N.J., Leebeek F.W.G., Te Boekhorst P.A.W., Hofland J., Croles F.N., Jansen A.J.G. COVID-19-associated immune thrombocytopenia. Br. J. Haematol. 2020;190:e61–e64. doi: 10.1111/bjh.16850. PubMed DOI PMC

Bonometti R., Sacchi M.C., Stobbione P., Lauritano E.C., Tamiazzo S., Marchegiani A., Novara E., Molinaro E., Benedetti I., Massone L., et al. The first case of systemic lupus erythematosus (SLE) triggered by COVID-19 infection. Eur. Rev. Med. Pharm. Sci. 2020;24:9695–9697. PubMed

Satheesh N.J., Salloum-Asfar S., Abdulla S.A. The Potential Role of COVID-19 in the Pathogenesis of Multiple Sclerosis-A Preliminary Report. Viruses. 2021;13:2091. doi: 10.3390/v13102091. PubMed DOI PMC

Palao M., Fernández-Díaz E., Gracia-Gil J., Romero-Sánchez C.M., Díaz-Maroto I., Segura T. Multiple sclerosis fol-lowing SARS-CoV-2 infection. Mult. Scler. Relat. Disord. 2020;45:102377. doi: 10.1016/j.msard.2020.102377. PubMed DOI PMC

de Ruijter N.S., Kramer G., Gons R.A.R., Hengstman G.J.D. Neuromyelitis optica spectrum disorder after presumed coronavirus (COVID-19) infection: A case report. Mult. Scler. Relat. Disord. 2020;46:102474. doi: 10.1016/j.msard.2020.102474. PubMed DOI PMC

Toscano G., Palmerini F., Ravaglia S., Ruiz L., Invernizzi P., Cuzzoni M.G., Franciotta D., Baldanti F., Daturi R., Postorino P., et al. Guillain-Barré Syndrome Associated with SARS-CoV-2. N. Engl. J. Med. 2020;382:2574–2576. doi: 10.1056/NEJMc2009191. PubMed DOI PMC

Sriwastava S., Tandon M., Kataria S., Daimee M., Sultan S. New onset of ocular myasthenia gravis in a patient with COVID-19: A novel case report and literature review. J. Neurol. 2021;268:2690–2696. doi: 10.1007/s00415-020-10263-1. PubMed DOI PMC

Root-Bernstein R. COVID-19 coagulopathies: Human blood proteins mimic SARS-CoV-2 virus, vaccine proteins and bacterial coinfections inducing autoimmunity: Combinations of bacteria and SARS-CoV-2 synergise to induce autoantibodies targeting cardiolipin, cardiolipin-binding proteins, platelet factor 4, prothrombin, and coagulation factors. Bioessays. 2021;43:e2100158. PubMed PMC

Schwarz M., Mzoughi S., Lozano-Ojalvo D., Tan A.T., Bertoletti A., Guccione E. T cell immunity is key to the pan-demic endgame: How to measure and monitor it. Curr. Res. Immunol. 2022;3:215–221. doi: 10.1016/j.crimmu.2022.08.004. PubMed DOI PMC

Lam K.P., Chiñas M., Julé A.M., Taylor M., Ohashi M., Benamar M., Crestani E., Son M.B.F., Chou J., Gebhart C., et al. SARS-CoV-2-specific T cell responses in patients with multisystem inflammatory syndrome in children. Clin. Immunol. 2022;243:109106. doi: 10.1016/j.clim.2022.109106. PubMed DOI PMC

Tappe B., Lauruschkat C.D., Strobel L., Pantaleón García J., Kurzai O., Rebhan S., Kraus S., Pfeuffer-Jovic E., Bussemer L., Possler L., et al. COVID-19 patients share common, corticosteroid-independent features of impaired host immunity to pathogenic molds. Front. Immunol. 2022;13:954985. doi: 10.3389/fimmu.2022.954985. PubMed DOI PMC

Gray P.E., Bartlett A.W., Tangye S.G. Severe COVID-19 represents an undiagnosed primary immunodeficiency in a high proportion of infected individuals. Clin. Transl. Immunol. 2022;11:e1365. doi: 10.1002/cti2.1365. PubMed DOI PMC

Tarhini H., Recoing A., Bridier-Nahmias A., Rahi M., Lambert C., Martres P., Lucet J.C., Rioux C., Bouzid D., Lebourgeois S., et al. Long-Term Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infectiousness Among Three Immunocompromised Patients: From Prolonged Viral Shedding to SARS-CoV-2 Superinfection. J. Infect. Dis. 2021;223:1522–1527. doi: 10.1093/infdis/jiab075. PubMed DOI PMC

Nakajima Y., Ogai A., Furukawa K., Arai R., Anan R., Nakano Y., Kurihara Y., Shimizu H., Misaki T., Okabe N., et al. Prolonged viral shedding of SARS-CoV-2 in an immunocompromised patient. J. Infect. Chemother. 2021;27:387–389. doi: 10.1016/j.jiac.2020.12.001. PubMed DOI PMC

Delavari S., Abolhassani H., Abolnezhadian F., Babaha F., Iranparast S., Ahanchian H., Moazzen N., Nabavi M., Arshi S., Fallahpour M., et al. Impact of SARS-CoV-2 Pandemic on Patients with Primary Immunodeficiency. J. Clin. Immunol. 2021;41:345–355. doi: 10.1007/s10875-020-00928-x. PubMed DOI PMC

Babaha F., Rezaei N. Primary Immunodeficiency Diseases in COVID-19 Pandemic: A Predisposing or Protective Factor? Am. J. Med. Sci. 2020;360:740–741. doi: 10.1016/j.amjms.2020.07.027. PubMed DOI PMC

Jacobsen E.M., Fabricius D., Class M., Topfstedt F., Lorenzetti R., Janowska I., Schmidt F., Staniek J., Zernickel M., Stamminger T., et al. High antibody levels and reduced cellular response in children up to one year after SARS-CoV-2 infection. Nat. Commun. 2022;13:7315. doi: 10.1038/s41467-022-35055-1. PubMed DOI PMC

Gathmann B., Mahlaoui N., Ceredih G.L., Oksenhendler E., Warnatz K., Schulze I., Kindle G., Kuijpers T.W., Dutch W.I.D., van Beem R.T., et al. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J. Allergy Clin. Immunol. 2014;134:116–126. doi: 10.1016/j.jaci.2013.12.1077. PubMed DOI

Quinti I., Lougaris V., Milito C., Cinetto F., Pecoraro A., Mezzaroma I., Mastroianni C.M., Turriziani O., Bondioni M.P., Filippini M., et al. A possible role for B cells in COVID-19? Lesson from patients with agammaglobulinemia. J. Allergy Clin. Immunol. 2020;146:211–213. doi: 10.1016/j.jaci.2020.04.013. PubMed DOI PMC

Pulvirenti F., Mortari E.P., Putotto C., Terreri S., Fernandez Salinas A., Cinicola B.L., Cimini E., Di Napoli G., Sculco E., Milito C., et al. COVID-19 Severity, Cardiological Outcome, and Immunogenicity of mRNA Vaccine on Adult Patients With 22q11.2 DS. J. Allergy Clin. Immunol. Pract. 2022:S2213-2198(22)01052-2. doi: 10.1016/j.jaip.2022.10.010. PubMed DOI PMC

Melo K.M., Alves L.M., Valente C.F.C., Tavares F.S. One-year intravenous immunoglobulin replacement therapy: Efficacy in reducing hospital admissions in pediatric patients with Inborn Errors of Immunity. J. Pediatr. 2022;98:190–195. doi: 10.1016/j.jped.2021.05.011. PubMed DOI PMC

Funk T., Innocenti F., Gomes Dias J., Nerlander L., Melillo T., Gauci C., Melillo J.M., Lenz P., Sebestova H., Slezak P., et al. Age-specific associations between underlying health conditions and hospitalisation, death and in-hospital death among confirmed COVID-19 cases: A multi-country study based on surveillance data, June to December 2020. Euro Surveill. 2022;27:2100883. doi: 10.2807/1560-7917.ES.2022.27.35.2100883. PubMed DOI PMC

Hensley M.K., Bain W.G., Jacobs J., Nambulli S., Parikh U., Cillo A., Staines B., Heaps A., Sobolewski M.D., Rennick L.J., et al. Intractable Coronavirus Disease 2019 (COVID-19) and Prolonged Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Replication in a Chimeric Antigen Receptor-Modified T-Cell Therapy Recipient: A Case Study. Clin. Infect. Dis. 2021;73:e815–e821. doi: 10.1093/cid/ciab072. PubMed DOI PMC

van der Made C.I., Netea M.G., van der Veerdonk F.L., Hoischen A. Clinical implications of host genetic variation and susceptibility to severe or critical COVID-19. Genome Med. 2022;14:96. doi: 10.1186/s13073-022-01100-3. PubMed DOI PMC

Elhabyan A., Elyaacoub S., Sanad E., Abukhadra A., Elhabyan A., Dinu V. The role of host genetics in susceptibility to severe viral infections in humans and insights into host genetics of severe COVID-19: A systematic review. Virus Res. 2020;289:198163. doi: 10.1016/j.virusres.2020.198163. PubMed DOI PMC

Asano T., Boisson B., Onodi F., Matuozzo D., Moncada-Velez M., Maglorius Renkilaraj M.R.L., Zhang P., Meertens L., Bolze A., Materna M., et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci. Immunol. 2021;6:eabl4348. doi: 10.1126/sciimmunol.abl4348. PubMed DOI PMC

Knight J.S., Caricchio R., Casanova J.L., Combes A.J., Diamond B., Fox S.E., Hanauer D.A., James J.A., Kanthi Y., Ladd V., et al. The intersection of COVID-19 and autoimmunity. J. Clin. Investig. 2021;131:e154886. doi: 10.1172/JCI154886. PubMed DOI PMC

Milota T., Sobotkova M., Smetanova J., Bloomfield M., Vydlakova J., Chovancova Z., Litzman J., Hakl R., Novak J., Malkusova I., et al. Risk Factors for Severe COVID-19 and Hospital Admission in Patients With Inborn Errors of Immunity—Results From a Multicenter Nationwide Study. Front. Immunol. 2022;13:835770. doi: 10.3389/fimmu.2022.835770. PubMed DOI PMC

Shields A.M., Tadros S., Al-Hakim A., Neil J.M., Lin M.M.N., Chan M., Goddard S., Dempster J., Dziadzio M., Patel S.Y., et al. Impact of vaccination on hospitalisation and mortality from COVID-19 in patients with primary and secondary immunodeficiency: The United Kingdom experience. Front. Immunol. 2022;13:984376. doi: 10.3389/fimmu.2022.984376. PubMed DOI PMC

OPons S., Uhel F., Frapy E., Sérémé Y., Zafrani L., Aschard H., Skurnik D. How Protective are Antibodies to SARS-CoV-2, the Main Weapon of the B-Cell Response? Stem Cell Rev. Rep. 2022:1–16. doi: 10.1007/s12015-022-10477-y. PubMed DOI PMC

Lliaro P., Torreele E., Vaillant M. COVID-19 vaccine efficacy and effectiveness-the elephant (not) in the room. Lancet Microbe. 2021;2:e279–e280. PubMed PMC

de Lemos Rieper C., Galle P., Hansen M.B. Characterization and potential clinical applications of autoantibodies against cytokines. Cytokine Growth Factor Rev. 2009;20:61–75. doi: 10.1016/j.cytogfr.2009.01.003. PubMed DOI

Knight V. Immunodeficiency and Autoantibodies to Cytokines. J. Appl. Lab. Med. 2022;7:151–164. doi: 10.1093/jalm/jfab139. PubMed DOI

Puel A., Bastard P., Bustamante J., Casanova J.L. Human autoantibodies underlying infectious diseases. J. Exp. Med. 2022;219:e20211387. doi: 10.1084/jem.20211387. PubMed DOI PMC

Chen Z.M., Yang X.Y., Li Z.T., Guan W.J., Qiu Y., Li S.Q., Zhan Y.Q., Lei Z.Y., Liu J., Zhang J.Q., et al. Anti-Interferon-γ Autoantibodies Impair T-Lymphocyte Responses in Patients with Talaromyces marneffei Infections. Infect. Drug Resist. 2022;15:3381–3393. doi: 10.2147/IDR.S364388. PubMed DOI PMC

Van der Wijst M.G.P., Vazquez S.E., Hartoularos G.C., Bastard P., Grant T., Bueno R., Lee D.S., Greenland J.R., Sun Y., Perez R., et al. Type I interferon autoantibodies are associated with systemic immune alterations in patients with COVID-19. Sci. Transl. Med. 2021;13:eabh2624. doi: 10.1126/scitranslmed.abh2624. PubMed DOI PMC

Casanova J.L., Abel L. From rare disorders of immunity to common determinants of infection: Following the mechanistic thread. Cell. 2022;185:3086–3103. doi: 10.1016/j.cell.2022.07.004. PubMed DOI PMC

Kastritis E., Kitas G.D., Vassilopoulos D., Giannopoulos G., Dimopoulos M.A., Sfikakis P.P. Systemic autoimmune diseases, anti-rheumatic therapies, COVID-19 infection risk and patient outcomes. Rheumatol. Int. 2020;40:1353–1360. doi: 10.1007/s00296-020-04629-x. PubMed DOI PMC

Ong K.Y., Tiew P.Y., Koh M.S. Managing adult asthma during the COVID-19 pandemic: A 2022 review and current recommendations. Ann. Acad. Med. Singap. 2022;51:637–647. doi: 10.47102/annals-acadmedsg.202285. PubMed DOI

Ventura-López C., Cervantes-Luevano K., Aguirre-Sánchez J.S., Flores-Caballero J.C., Alvarez-Delgado C., Bernaldez-Sarabia J., Sánchez-Campos N., Lugo-Sánchez L.A., Rodríguez-Vázquez I.C., Sander-Padilla J.G., et al. Treatment with metformin glycinate reduces SARS-CoV-2 viral load: An in vitro model and randomised, double-blind, Phase IIb clinical trial. Biomed. Pharmacother. 2022;152:113223. doi: 10.1016/j.biopha.2022.113223. PubMed DOI PMC

Takayama K., Obata Y., Maruo Y., Yamaguchi H., Kosugi M., Irie Y., Hazama Y., Yasuda T. Metformin-associated Lactic Acidosis with Hypoglycemia during the COVID-19 Pandemic. Intern. Med. 2022;61:2333–2337. doi: 10.2169/internalmedicine.9179-21. PubMed DOI PMC

Liu J., Dong J., Yu Y., Yang X., Shu J., Bao H. Corticosteroids showed more efficacy in treating hospitalised patients with COVID-19 than standard care but the effect is minimal: A systematic review and meta-analysis. Front. Public Health. 2022;10:847695. doi: 10.3389/fpubh.2022.847695. PubMed DOI PMC

Takeshita Y., Terada J., Hirasawa Y., Kinoshita T., Tajima H., Koshikawa K., Kinouchi T., Isaka Y., Shionoya Y., Fujikawa A., et al. Development of a novel score model to predict hyperinflammation in COVID-19 as a forecast of optimal steroid administration timing. Front. Med. 2022;9:935255. doi: 10.3389/fmed.2022.935255. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace