Towards Better Understanding of Pea Seed Dormancy Using Laser Desorption/Ionization Mass Spectrometry
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29065445
PubMed Central
PMC5666877
DOI
10.3390/ijms18102196
PII: ijms18102196
Knihovny.cz E-zdroje
- Klíčová slova
- fatty acid, imaging mass spectrometry, laser desorption-ionization mass spectrometry, multivariate statistics, pea, seed coat, seed dormancy, seed hardness,
- MeSH
- hmotnostní spektrometrie MeSH
- hrách setý metabolismus fyziologie MeSH
- mastné kyseliny analýza MeSH
- semena rostlinná metabolismus fyziologie MeSH
- vegetační klid * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mastné kyseliny MeSH
Seed coats of six pea genotypes contrasting in dormancy were studied by laser desorption/ionization mass spectrometry (LDI-MS). Multivariate statistical analysis discriminated dormant and non-dormant seeds in mature dry state. Separation between dormant and non-dormant types was observed despite important markers of particular dormant genotypes differ from each other. Normalized signals of long-chain hydroxylated fatty acids (HLFA) in dormant JI64 genotype seed coats were significantly higher than in other genotypes. These compounds seem to be important markers likely influencing JI64 seed imbibition and germination. HLFA importance was supported by study of recombinant inbred lines (JI64xJI92) contrasting in dormancy but similar in other seed properties. Furthemore HLFA distribution in seed coat was studied by mass spectrometry imaging. HLFA contents in strophiole and hilum are significantly lower compared to other parts indicating their role in water uptake. Results from LDI-MS experiments are useful in understanding (physical) dormancy (first phases of germination) mechanism and properties related to food processing technologies (e.g., seed treatment by cooking).
Zobrazit více v PubMed
Rodríguez-Gacio M.C., Matilla-Vázquez M.A., Matilla A.J. Seed dormancy and ABA signaling. Plant Signal. Behav. 2009;11:1035–1048. doi: 10.4161/psb.4.11.9902. PubMed DOI PMC
Bentsink L., Koornneef M. Seed Dormancy and Germination. Arabidopsis Book. 2008;6:e0119. doi: 10.1199/tab.0119. PubMed DOI PMC
Finch-Savage W.E., Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006;171:501–523. doi: 10.1111/j.1469-8137.2006.01787.x. PubMed DOI
Smýkal P., Vernoud V., Blair M.W., Soukup A., Thompson R.D. The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant Sci. 2014;5:351. PubMed PMC
Hradilová I., Trněný O., Válková M., Cechová M., Janská A., Prokešová L., Aamir K., Krezdorn N., Rotter B., Winter P., et al. A combined comparative transcriptomic, metabolomic and anatomical analyses of two key domestication traits: Pod dehiscence and seed dormancy in pea (Pisum sp.) Front. Plant Sci. 2017;8:542. doi: 10.3389/fpls.2017.00542. PubMed DOI PMC
Shao S., Meyer C.J., Ma F., Peterson C.A., Bernards M.A. The outermost cuticle of soybean seeds: Chemical composition and function during imbibition. J. Exp. Bot. 2007;58:1071–1082. doi: 10.1093/jxb/erl268. PubMed DOI
Wada S., Kennedy J.A., Reed B.M. Seed-coat anatomy and proanthocyanidins contribute to the dormancy of Rubus seed. Sci. Hort. 2011;130:762–768. doi: 10.1016/j.scienta.2011.08.034. DOI
Vu D.T., Velusamy V., Park E. Structure and chemical composition of wild soybean seed coat related to its permeability. Pak. J. Bot. 2014;46:1847–1857.
Fernandez H., Doumas P., Bonnet-Masimbert M. Quantification of GA1, GA3, GA4, GA7, GA8, GA9, GA19 and GA20; and GA20 metabolism in dormant and non-dormant beechnuts. Plant Growth Regul. 1997;22:29–35. doi: 10.1023/A:1005814926549. DOI
Metzger J.D. Role of Endogenous Plant Growth Regulators in Seed Dormancy of Avena fatua: II. Gibberellins. Plant Physiol. 1983;73:791–795. doi: 10.1104/pp.73.3.791. PubMed DOI PMC
MacGregor D.R., Kendall S.L., Florance H., Fedi F., Moore K., Paszkiewicz K. Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism. New Phytol. 2015;205:642–652. doi: 10.1111/nph.13090. PubMed DOI
Kanya T.C.S., Rao L.J., Sastry M.C.S. Characterization of wax esters, free fatty alcohols and free fatty acids of crude wax from sunflower seed oil refineries. Food Chem. 2007;101:1552–1557. doi: 10.1016/j.foodchem.2006.04.008. DOI
Kim Y.J., Lee S., Lee H.M., Lee B.W., Ha T.J., Bae D.W., Son B., Kim Y.H., Beak S., Kim Y.C., et al. Comparative proteomics analysis of seed coat from two black colored soybean cultivars during seed development. Plant Omnics. 2013;6:456–463.
Van Malderen S.J.M., Laforce B., Van Acker T., Vincze L., Vanhaecke F. Imaging the 3D trace metal and metalloid distribution in mature wheat and rye grains via laser ablation-ICP-mass spectrometry and micro-X-ray fluorescence spectrometry. J. Anal. At. Spectrom. 2017;2:289–298. doi: 10.1039/C6JA00357E. DOI
Kumar P.M., Srimany A., Ravikanth G., Shaanker R.U., Pradeep T. Ambient ionization mass spectrometry imaging of rohitukine, a chromone anti-cancer alkaloid, during seed development in Dysoxylum binectariferum Hook.f (Meliaceae) Phytochemistry. 2015;116:104–110. doi: 10.1016/j.phytochem.2015.02.031. PubMed DOI
Jiang J., Shao Y., Li A., Zhang Y., Wei C., Wang Y. FT-IR and NMR study of seed coat dissected from different colored progenies of Brassica napus–Sinapis alba hybrids. J. Sci. Food Agric. 2013;93:1898–1902. doi: 10.1002/jsfa.5986. PubMed DOI
Yan H., Hua Z., Qian G., Wang M., Du G., Chen J. Analysis of the chemical composition of cotton seed coat by Fourier-transform infrared (FT-IR) microspectroscopy. Cellulose. 2009;16:1099–1107. doi: 10.1007/s10570-009-9349-2. DOI
Glidewell S. NMR imaging of developing barley grains. J. Cereal Sci. 2006;43:70–78. doi: 10.1016/j.jcs.2005.07.003. DOI
Horn P.J., Korte A.R., Neogi P.B., Love E., Fuchs J., Strupat K., Borisjuk L., Shulaev V., Lee Y., Chapman K.D. Spatial Mapping of Lipids at Cellular Resolution in Embryos of Cotton. Plant Cell. 2012;24:622–636. doi: 10.1105/tpc.111.094581. PubMed DOI PMC
Lesiak A.D., Cody R.B., Dane A.J., Musah R.A. Plant Seed Species Identification from Chemical Fingerprints: A High-Throughput Application of Direct Analysis in Real Time Mass Spectrometry. Anal. Chem. 2015;87:8748–8757. doi: 10.1021/acs.analchem.5b01611. PubMed DOI
Gallardo K., Signor C.L., Vandekerckhove J., Thompson R.D., Burstin J. Proteomics of Medicago truncatula Seed Development Establishes the Time Frame of Diverse Metabolic Processes Related to Reserve Accumulation. Plant Physiol. 2003;133:664–682. doi: 10.1104/pp.103.025254. PubMed DOI PMC
Dam S., Laursen B.S., Ørnfelt J.H., Jochimsen B., Stærfeldt H.H., Friis C., Nielsen K., Goffard N., Besenbacher S., Krusell L., et al. The Proteome of Seed Development in the Model Legume Lotus japonicus. Plant Physiol. 2009;149:1325–1340. doi: 10.1104/pp.108.133405. PubMed DOI PMC
Peukert M., Matros A., Lattanzio G., Kaspar S., Abadía J., Mock H.P. Spatially resolved analysis of small molecules by matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) New Phytol. 2012;193:806–815. doi: 10.1111/j.1469-8137.2011.03970.x. PubMed DOI
Bhandari D.R., Wang Q., Friedt W., Spengler B., Gottwald S., Römpp A. High resolution mass spectrometry imaging of plant tissues: Towards a plant metabolite atlas. Analyst. 2015;140:7696–7709. doi: 10.1039/C5AN01065A. PubMed DOI
Gorzolka K., Kölling J., Nattkemper T.W., Niehaus K. Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging. PLoS ONE. 2016;11:e0150208. doi: 10.1371/journal.pone.0150208. PubMed DOI PMC
Worley B., Powers R. Multivariate Analysis in Metabolomics. Curr. Metabolomics. 2013;1:92–107. PubMed PMC
Wiklund S., Johansson E., Sjöström L., Mellerowicz E.J., Edlund U., Shockcor J.P., Gottfries J., Moritz T., Trygg J. Visualization of GC/TOF-MS-Based Metabolomics Data for Identification of Biochemically Interesting Compounds Using OPLS Class Models. Anal. Chem. 2008;80:115–122. doi: 10.1021/ac0713510. PubMed DOI
Pirkl A., Meier M., Popkova Y., Letzel M., Schnapp A., Schiller J., Dreisewerd K. Analysis of Free Fatty Acids by Ultraviolet Laser Desorption Ionization Mass Spectrometry Using Insect Wings as Hydrophobic Sample Substrates. Anal. Chem. 2014;86:10763–10771. doi: 10.1021/ac5020047. PubMed DOI
Budimir N., Blais J.C., Fournier F., Tabet J.C. The use of desorption/ionization on porous silicon mass spectrometry for the detection of negative ions for fatty acids. Rapid Commun. Mass Spectrom. 2006;20:680–684. doi: 10.1002/rcm.2363. PubMed DOI
Shroff R., Muck A., Svatoš A. Analysis of low molecular weight acids by negative mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2007;21:3295–3300. doi: 10.1002/rcm.3216. PubMed DOI
Nilsson T., Martínez E., Manresa A., Oliw E.H. Liquid chromatography/tandem mass spectrometric analysis of 7,10-dihydroxyoctadecenoic acid, its isotopomers, and other 7,10-dihydroxy fatty acids formed by Pseudomonas aeruginosa 42A2. Rapid Commun. Mass Spectrom. 2010;24:777–783. doi: 10.1002/rcm.4446. PubMed DOI
Kerwin J.L., Torvik J.J. Identification of Monohydroxy Fatty Acids by Electrospray Mass Spectrometry and Tandem Mass Spectrometry. Anal. Biochem. 1996;237:56–64. doi: 10.1006/abio.1996.0200. PubMed DOI
Karaki T., Watanabe Y., Kondo T., Koike T. Strophiole of seeds of the black locust acts as a water gap. Plant Species Biol. 2012;27:226–232. doi: 10.1111/j.1442-1984.2011.00343.x. DOI
Bagheri H., El-Soda M., Kyong Kim H., Fritsche S., Jung C., Aarts M.G.M. Genetic Analysis of Health-Related Secondary Metabolites in a Brassica rapa Recombinant Inbred Line Population. Int. J. Mol. Sci. 2013;14:15561–15577. doi: 10.3390/ijms140815561. PubMed DOI PMC
Chai M., Zhou C., Molina I., Fu C., Nakashima J., Li G., Zhang W., Park J., Tang Y., Jiang Q., et al. A class II KNOX gene, KNOX4, controls seed physical dormancy. Proc. Natl. Acad. Sci. USA. 2016;113:6997–7002. doi: 10.1073/pnas.1601256113. PubMed DOI PMC
Bogdanova V.S., Galieva E.R., Yadrikhinskiy A.K., Kosterin O.E. Inheritance and genetic mapping of two nuclear genes involved in nuclear–cytoplasmic incompatibility in peas (Pisum sativum L.) Theor. Appl. Genet. 2012;124:1503–1512. doi: 10.1007/s00122-012-1804-z. PubMed DOI
Zablatzká L., Smýkal P. Estalishment of wild pea Pisum fulvum and Pisum elatius chromosome segment subtitution lines in cultivated P. sativum genetic backround; Proceedings of the 5th International Conference on Next Generation Genomics and Integrated Breeding for Crop Improvement; Telangana, India. 18–20 February 2015; pp. 66–67.
North H., Casey R., Domoney C. Inheritance and mapping of seed lipoxygenase polypeptides in Pisum. Theor. Appl. Genet. 1989;77:805–808. doi: 10.1007/BF00268330. PubMed DOI
Soukup A., Tylová E. Essential Methods of Plant Sample Preparation for Light Microscopy, Plant Cell Morphogenesis: Methods and Protocols. Methods Mol. Biol. 2014;1080:1–23. PubMed
Domestication has altered the ABA and gibberellin profiles in developing pea seeds
The role of the testa during the establishment of physical dormancy in the pea seed