Towards Better Understanding of Pea Seed Dormancy Using Laser Desorption/Ionization Mass Spectrometry

. 2017 Oct 21 ; 18 (10) : . [epub] 20171021

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29065445

Seed coats of six pea genotypes contrasting in dormancy were studied by laser desorption/ionization mass spectrometry (LDI-MS). Multivariate statistical analysis discriminated dormant and non-dormant seeds in mature dry state. Separation between dormant and non-dormant types was observed despite important markers of particular dormant genotypes differ from each other. Normalized signals of long-chain hydroxylated fatty acids (HLFA) in dormant JI64 genotype seed coats were significantly higher than in other genotypes. These compounds seem to be important markers likely influencing JI64 seed imbibition and germination. HLFA importance was supported by study of recombinant inbred lines (JI64xJI92) contrasting in dormancy but similar in other seed properties. Furthemore HLFA distribution in seed coat was studied by mass spectrometry imaging. HLFA contents in strophiole and hilum are significantly lower compared to other parts indicating their role in water uptake. Results from LDI-MS experiments are useful in understanding (physical) dormancy (first phases of germination) mechanism and properties related to food processing technologies (e.g., seed treatment by cooking).

Zobrazit více v PubMed

Rodríguez-Gacio M.C., Matilla-Vázquez M.A., Matilla A.J. Seed dormancy and ABA signaling. Plant Signal. Behav. 2009;11:1035–1048. doi: 10.4161/psb.4.11.9902. PubMed DOI PMC

Bentsink L., Koornneef M. Seed Dormancy and Germination. Arabidopsis Book. 2008;6:e0119. doi: 10.1199/tab.0119. PubMed DOI PMC

Finch-Savage W.E., Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006;171:501–523. doi: 10.1111/j.1469-8137.2006.01787.x. PubMed DOI

Smýkal P., Vernoud V., Blair M.W., Soukup A., Thompson R.D. The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant Sci. 2014;5:351. PubMed PMC

Hradilová I., Trněný O., Válková M., Cechová M., Janská A., Prokešová L., Aamir K., Krezdorn N., Rotter B., Winter P., et al. A combined comparative transcriptomic, metabolomic and anatomical analyses of two key domestication traits: Pod dehiscence and seed dormancy in pea (Pisum sp.) Front. Plant Sci. 2017;8:542. doi: 10.3389/fpls.2017.00542. PubMed DOI PMC

Shao S., Meyer C.J., Ma F., Peterson C.A., Bernards M.A. The outermost cuticle of soybean seeds: Chemical composition and function during imbibition. J. Exp. Bot. 2007;58:1071–1082. doi: 10.1093/jxb/erl268. PubMed DOI

Wada S., Kennedy J.A., Reed B.M. Seed-coat anatomy and proanthocyanidins contribute to the dormancy of Rubus seed. Sci. Hort. 2011;130:762–768. doi: 10.1016/j.scienta.2011.08.034. DOI

Vu D.T., Velusamy V., Park E. Structure and chemical composition of wild soybean seed coat related to its permeability. Pak. J. Bot. 2014;46:1847–1857.

Fernandez H., Doumas P., Bonnet-Masimbert M. Quantification of GA1, GA3, GA4, GA7, GA8, GA9, GA19 and GA20; and GA20 metabolism in dormant and non-dormant beechnuts. Plant Growth Regul. 1997;22:29–35. doi: 10.1023/A:1005814926549. DOI

Metzger J.D. Role of Endogenous Plant Growth Regulators in Seed Dormancy of Avena fatua: II. Gibberellins. Plant Physiol. 1983;73:791–795. doi: 10.1104/pp.73.3.791. PubMed DOI PMC

MacGregor D.R., Kendall S.L., Florance H., Fedi F., Moore K., Paszkiewicz K. Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism. New Phytol. 2015;205:642–652. doi: 10.1111/nph.13090. PubMed DOI

Kanya T.C.S., Rao L.J., Sastry M.C.S. Characterization of wax esters, free fatty alcohols and free fatty acids of crude wax from sunflower seed oil refineries. Food Chem. 2007;101:1552–1557. doi: 10.1016/j.foodchem.2006.04.008. DOI

Kim Y.J., Lee S., Lee H.M., Lee B.W., Ha T.J., Bae D.W., Son B., Kim Y.H., Beak S., Kim Y.C., et al. Comparative proteomics analysis of seed coat from two black colored soybean cultivars during seed development. Plant Omnics. 2013;6:456–463.

Van Malderen S.J.M., Laforce B., Van Acker T., Vincze L., Vanhaecke F. Imaging the 3D trace metal and metalloid distribution in mature wheat and rye grains via laser ablation-ICP-mass spectrometry and micro-X-ray fluorescence spectrometry. J. Anal. At. Spectrom. 2017;2:289–298. doi: 10.1039/C6JA00357E. DOI

Kumar P.M., Srimany A., Ravikanth G., Shaanker R.U., Pradeep T. Ambient ionization mass spectrometry imaging of rohitukine, a chromone anti-cancer alkaloid, during seed development in Dysoxylum binectariferum Hook.f (Meliaceae) Phytochemistry. 2015;116:104–110. doi: 10.1016/j.phytochem.2015.02.031. PubMed DOI

Jiang J., Shao Y., Li A., Zhang Y., Wei C., Wang Y. FT-IR and NMR study of seed coat dissected from different colored progenies of Brassica napus–Sinapis alba hybrids. J. Sci. Food Agric. 2013;93:1898–1902. doi: 10.1002/jsfa.5986. PubMed DOI

Yan H., Hua Z., Qian G., Wang M., Du G., Chen J. Analysis of the chemical composition of cotton seed coat by Fourier-transform infrared (FT-IR) microspectroscopy. Cellulose. 2009;16:1099–1107. doi: 10.1007/s10570-009-9349-2. DOI

Glidewell S. NMR imaging of developing barley grains. J. Cereal Sci. 2006;43:70–78. doi: 10.1016/j.jcs.2005.07.003. DOI

Horn P.J., Korte A.R., Neogi P.B., Love E., Fuchs J., Strupat K., Borisjuk L., Shulaev V., Lee Y., Chapman K.D. Spatial Mapping of Lipids at Cellular Resolution in Embryos of Cotton. Plant Cell. 2012;24:622–636. doi: 10.1105/tpc.111.094581. PubMed DOI PMC

Lesiak A.D., Cody R.B., Dane A.J., Musah R.A. Plant Seed Species Identification from Chemical Fingerprints: A High-Throughput Application of Direct Analysis in Real Time Mass Spectrometry. Anal. Chem. 2015;87:8748–8757. doi: 10.1021/acs.analchem.5b01611. PubMed DOI

Gallardo K., Signor C.L., Vandekerckhove J., Thompson R.D., Burstin J. Proteomics of Medicago truncatula Seed Development Establishes the Time Frame of Diverse Metabolic Processes Related to Reserve Accumulation. Plant Physiol. 2003;133:664–682. doi: 10.1104/pp.103.025254. PubMed DOI PMC

Dam S., Laursen B.S., Ørnfelt J.H., Jochimsen B., Stærfeldt H.H., Friis C., Nielsen K., Goffard N., Besenbacher S., Krusell L., et al. The Proteome of Seed Development in the Model Legume Lotus japonicus. Plant Physiol. 2009;149:1325–1340. doi: 10.1104/pp.108.133405. PubMed DOI PMC

Peukert M., Matros A., Lattanzio G., Kaspar S., Abadía J., Mock H.P. Spatially resolved analysis of small molecules by matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) New Phytol. 2012;193:806–815. doi: 10.1111/j.1469-8137.2011.03970.x. PubMed DOI

Bhandari D.R., Wang Q., Friedt W., Spengler B., Gottwald S., Römpp A. High resolution mass spectrometry imaging of plant tissues: Towards a plant metabolite atlas. Analyst. 2015;140:7696–7709. doi: 10.1039/C5AN01065A. PubMed DOI

Gorzolka K., Kölling J., Nattkemper T.W., Niehaus K. Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging. PLoS ONE. 2016;11:e0150208. doi: 10.1371/journal.pone.0150208. PubMed DOI PMC

Worley B., Powers R. Multivariate Analysis in Metabolomics. Curr. Metabolomics. 2013;1:92–107. PubMed PMC

Wiklund S., Johansson E., Sjöström L., Mellerowicz E.J., Edlund U., Shockcor J.P., Gottfries J., Moritz T., Trygg J. Visualization of GC/TOF-MS-Based Metabolomics Data for Identification of Biochemically Interesting Compounds Using OPLS Class Models. Anal. Chem. 2008;80:115–122. doi: 10.1021/ac0713510. PubMed DOI

Pirkl A., Meier M., Popkova Y., Letzel M., Schnapp A., Schiller J., Dreisewerd K. Analysis of Free Fatty Acids by Ultraviolet Laser Desorption Ionization Mass Spectrometry Using Insect Wings as Hydrophobic Sample Substrates. Anal. Chem. 2014;86:10763–10771. doi: 10.1021/ac5020047. PubMed DOI

Budimir N., Blais J.C., Fournier F., Tabet J.C. The use of desorption/ionization on porous silicon mass spectrometry for the detection of negative ions for fatty acids. Rapid Commun. Mass Spectrom. 2006;20:680–684. doi: 10.1002/rcm.2363. PubMed DOI

Shroff R., Muck A., Svatoš A. Analysis of low molecular weight acids by negative mode matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2007;21:3295–3300. doi: 10.1002/rcm.3216. PubMed DOI

Nilsson T., Martínez E., Manresa A., Oliw E.H. Liquid chromatography/tandem mass spectrometric analysis of 7,10-dihydroxyoctadecenoic acid, its isotopomers, and other 7,10-dihydroxy fatty acids formed by Pseudomonas aeruginosa 42A2. Rapid Commun. Mass Spectrom. 2010;24:777–783. doi: 10.1002/rcm.4446. PubMed DOI

Kerwin J.L., Torvik J.J. Identification of Monohydroxy Fatty Acids by Electrospray Mass Spectrometry and Tandem Mass Spectrometry. Anal. Biochem. 1996;237:56–64. doi: 10.1006/abio.1996.0200. PubMed DOI

Karaki T., Watanabe Y., Kondo T., Koike T. Strophiole of seeds of the black locust acts as a water gap. Plant Species Biol. 2012;27:226–232. doi: 10.1111/j.1442-1984.2011.00343.x. DOI

Bagheri H., El-Soda M., Kyong Kim H., Fritsche S., Jung C., Aarts M.G.M. Genetic Analysis of Health-Related Secondary Metabolites in a Brassica rapa Recombinant Inbred Line Population. Int. J. Mol. Sci. 2013;14:15561–15577. doi: 10.3390/ijms140815561. PubMed DOI PMC

Chai M., Zhou C., Molina I., Fu C., Nakashima J., Li G., Zhang W., Park J., Tang Y., Jiang Q., et al. A class II KNOX gene, KNOX4, controls seed physical dormancy. Proc. Natl. Acad. Sci. USA. 2016;113:6997–7002. doi: 10.1073/pnas.1601256113. PubMed DOI PMC

Bogdanova V.S., Galieva E.R., Yadrikhinskiy A.K., Kosterin O.E. Inheritance and genetic mapping of two nuclear genes involved in nuclear–cytoplasmic incompatibility in peas (Pisum sativum L.) Theor. Appl. Genet. 2012;124:1503–1512. doi: 10.1007/s00122-012-1804-z. PubMed DOI

Zablatzká L., Smýkal P. Estalishment of wild pea Pisum fulvum and Pisum elatius chromosome segment subtitution lines in cultivated P. sativum genetic backround; Proceedings of the 5th International Conference on Next Generation Genomics and Integrated Breeding for Crop Improvement; Telangana, India. 18–20 February 2015; pp. 66–67.

North H., Casey R., Domoney C. Inheritance and mapping of seed lipoxygenase polypeptides in Pisum. Theor. Appl. Genet. 1989;77:805–808. doi: 10.1007/BF00268330. PubMed DOI

Soukup A., Tylová E. Essential Methods of Plant Sample Preparation for Light Microscopy, Plant Cell Morphogenesis: Methods and Protocols. Methods Mol. Biol. 2014;1080:1–23. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...