Biochemical Analysis of Recombinant Pea Seed Coat-Specific Polyphenol Oxidase (PeaPPO) in Relation to Various Phenolic Substrates
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40838842
PubMed Central
PMC12412156
DOI
10.1021/acs.jafc.5c01839
Knihovny.cz E-zdroje
- Klíčová slova
- legumes, pea, phenolics, polyphenol oxidase, seeds, tyrosinase,
- MeSH
- fenoly * metabolismus chemie MeSH
- hrách setý * enzymologie genetika chemie MeSH
- katecholoxidasa * metabolismus genetika chemie MeSH
- kinetika MeSH
- rekombinantní proteiny metabolismus chemie genetika MeSH
- rostlinné proteiny * genetika chemie metabolismus MeSH
- semena rostlinná * enzymologie chemie genetika MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fenoly * MeSH
- katecholoxidasa * MeSH
- rekombinantní proteiny MeSH
- rostlinné proteiny * MeSH
The seed coat serves as the primary protective barrier, offering mechanical and chemical defense for the embryo. It contains various metabolites, including phenolic compounds, which can be oxidized by polyphenol oxidase (PPO) to form oligomers. In this study, we heterologously expressed a 515 amino acid protein derived from wild pea (Pisum elatius), omitting its N-terminal signal sequence, and analyzed its biochemical properties. The recombinant PeaPPO required sodium dodecyl sulfate (SDS) for activation and exhibited activity between pHs 5.2 and 7.0, peaking at pH 6.0 with 0.25 mM SDS. Tropolone and its isomer thujaplicin were the most effective inhibitors. PeaPPO catalyzed reactions with seed coat-derived substrates, displaying activity toward phenols, catechols, and pyrogallols, with the highest affinity for catechols. Principal component analysis of LC-MS/MS-derived phenolic profiles demonstrated that PPO+ and ppo- genotypes differ significantly in their accumulation of PPO substrates and inhibitors. These findings confirm that PeaPPO possesses both monophenolase and catechol oxidase activities, identifying it as a tyrosinase.
Czech Advanced Technology and Research Institute Palacký University Olomouc 77900 Czech Republic
Czech Agrifood Research Center Olomouc 77900 Czech Republic
Department of Botany Faculty of Sciences Palacký University Olomouc Olomouc 77900 Czech Republic
Fakultät für Chemie Institut für Biophysikalische Chemie Universität Wien Wien 1090 Austria
Zobrazit více v PubMed
Corso M., Perreau F., Mouille G., Lepiniec L.. Specialized Phenolic Compounds in Seeds: Structures, Functions, and Regulations. Plant Science. 2020;296:110471. doi: 10.1016/j.plantsci.2020.110471. PubMed DOI
Corso, M. ; Perreau, F. ; Rajjou, L. ; Ben Malek, R. ; Lepiniec, L. ; Mouille, G. . Chapter Two - Specialized Metabolites in Seeds. In Plant Metabolomics in full swing Advances in Botanical Research; Pétriacq, P. , Bouchereau, A. , Eds.; Academic Press, 2021; Vol. 98, pp 35–70. 10.1016/bs.abr.2020.11.001. DOI
Pang Y., Peel G. J., Sharma S. B., Tang Y., Dixon R. A.. A Transcript Profiling Approach Reveals an Epicatechin-Specific Glucosyltransferase Expressed in the Seed Coat of Medicago Truncatula. Proc. Natl. Acad. Sci. U S A. 2008;105(37):14210–14215. doi: 10.1073/pnas.0805954105. PubMed DOI PMC
Smýkal P., Vernoud V., Blair M. W., Soukup A., Thompson R. D.. The Role of the Testa during Development and in Establishment of Dormancy of the Legume Seed. Front. Plant Sci. 2014;5:5. doi: 10.3389/fpls.2014.00351. PubMed DOI PMC
Fu F., Zhang W., Li Y.-Y., Wang H. L.. Establishment of the Model System between Phytochemicals and Gene Expression Profiles in Macrosclereid Cells of Medicago Truncatula. Sci. Rep. 2017;7(1):2580. doi: 10.1038/s41598-017-02827-5. PubMed DOI PMC
Hradilová I., Trněný O., Válková M., Cechová M., Janská A., Prokešová L., Aamir K., Krezdorn N., Rotter B., Winter P., Varshney R. K., Soukup A., Bednář P., Hanáček P., Smýkal P.. A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum Sp.) Front. Plant Sci. 2017;8:8. doi: 10.3389/fpls.2017.00542. PubMed DOI PMC
Krejčí P., Cechová M. Z., Nádvorníková J., Barták P., Kobrlová L., Balarynová J., Smýkal P., Bednář P.. Combination of Electronically Driven Micromanipulation with Laser Desorption Ionization Mass Spectrometry – The Unique Tool for Analysis of Seed Coat Layers and Revealing the Mystery of Seed Dormancy. Talanta. 2022;242:123303. doi: 10.1016/j.talanta.2022.123303. PubMed DOI
Cechová M., Válková M., Hradilová I., Janská A., Soukup A., Smýkal P., Bednář P.. Towards Better Understanding of Pea Seed Dormancy Using Laser Desorption/Ionization Mass Spectrometry. Int. J. Mol. Sci. 2017;18(10):2196. doi: 10.3390/ijms18102196. PubMed DOI PMC
Cechová M., Hradilová I., Smýkal P., Barták P., Bednář P.. Utilization of Atmospheric Solids Analysis Probe Mass Spectrometry for Analysis of Fatty Acids on Seed Surface. Anal. Bioanal. Chem. 2019;411(6):1169–1180. doi: 10.1007/s00216-018-1551-3. PubMed DOI
Klčová B., Balarynová J., Trněný O., Krejčí P., Cechová M. Z., Leonova T., Gorbach D., Frolova N., Kysil E., Orlova A., Ihling C., Frolov A., Bednář P., Smýkal P.. Domestication Has Altered Gene Expression and Secondary Metabolites in Pea Seed Coat. Plant J. 2024;118(6):2269–2295. doi: 10.1111/tpj.16734. PubMed DOI
Quideau S., Deffieux D., Douat-Casassus C., Pouységu L.. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem., Int. Ed. 2011;50(3):586–621. doi: 10.1002/anie.201000044. PubMed DOI
Balarynová J., Klčová B., Sekaninová J., Kobrlová L., Cechová M. Z., Krejčí P., Leonova T., Gorbach D., Ihling C., Smržová L., Trněný O., Frolov A., Bednář P., Smýkal P.. The Loss of Polyphenol Oxidase Function Is Associated with Hilum Pigmentation and Has Been Selected during Pea Domestication. New Phytol. 2022;235(5):1807–1821. doi: 10.1111/nph.18256. PubMed DOI
Kaintz C., Mauracher S. G., Rompel A.. Type-3 Copper Proteins: Recent Advances on Polyphenol Oxidases. Adv. Protein Chem. Struct. Biol. 2014;97:1–35. doi: 10.1016/bs.apcsb.2014.07.001. PubMed DOI
Blaschek L., Pesquet E.. Phenoloxidases in PlantsHow Structural Diversity Enables Functional Specificity. Front. Plant Sci. 2021;12:12. doi: 10.3389/fpls.2021.754601. PubMed DOI PMC
Mayer A. M.. Polyphenol Oxidases in Plants and Fungi: Going Places? A Review. Phytochemistry. 2006;67(21):2318–2331. doi: 10.1016/j.phytochem.2006.08.006. PubMed DOI
Sullivan M. L.. Beyond Brown: Polyphenol Oxidases as Enzymes of Plant Specialized Metabolism. Front. Plant Sci. 2015;5:783. doi: 10.3389/fpls.2014.00783. PubMed DOI PMC
Meitil I. K. S., Silva C. D. O. G., Pedersen A. G., Agger J. W.. Classification of Polyphenol Oxidases Shows Ancient Gene Duplication Leading to Two Distinct Enzyme Types. iScience. 2025;28(2):111771. doi: 10.1016/j.isci.2025.111771. PubMed DOI PMC
Pourcel L., Routaboul J.-M., Kerhoas L., Caboche M., Lepiniec L., Debeaujon I.. TRANSPARENT TESTA10 Encodes a Laccase-Like Enzyme Involved in Oxidative Polymerization of Flavonoids in Arabidopsis Seed Coat. Plant Cell. 2005;17(11):2966–2980. doi: 10.1105/tpc.105.035154. PubMed DOI PMC
Cai X., Davis E. J., Ballif J., Liang M., Bushman E., Haroldsen V., Torabinejad J., Wu Y.. Mutant Identification and Characterization of the Laccase Gene Family in Arabidopsis. J. Exp. Botany. 2006;57(11):2563–2569. doi: 10.1093/jxb/erl022. PubMed DOI
Jayakodi M., Golicz A. A., Kreplak J., Fechete L. I., Angra D., Bednář P., Bornhofen E., Zhang H., Boussageon R., Kaur S., Cheung K., Čížková J., Gundlach H., Hallab A., Imbert B., Keeble-Gagnère G., Koblížková A., Kobrlová L., Krejčí P., Mouritzen T. W., Neumann P., Nadzieja M., Nielsen L. K., Novák P., Orabi J., Padmarasu S., Robertson-Shersby-Harvie T., Robledillo L. Á., Schiemann A., Tanskanen J., Törönen P., Warsame A. O., Wittenberg A. H. J., Himmelbach A., Aubert G., Courty P.-E., Doležel J., Holm L. U., Janss L. L., Khazaei H., Macas J., Mascher M., Smýkal P., Snowdon R. J., Stein N., Stoddard F. L., Stougaard J., Tayeh N., Torres A. M., Usadel B., Schubert I., O’Sullivan D. M., Schulman A. H., Andersen S. U.. The Giant Diploid Faba Genome Unlocks Variation in a Global Protein Crop. Nature. 2023;615(7953):652–659. doi: 10.1038/s41586-023-05791-5. PubMed DOI PMC
Tran L. T., Taylor J. S., Constabel C. P.. The Polyphenol Oxidase Gene Family in Land Plants: Lineage-Specific Duplication and Expansion. BMC Genomics. 2012;13(1):395. doi: 10.1186/1471-2164-13-395. PubMed DOI PMC
Geng Y., Liu X., Yu Y., Li W., Mou Y., Chen F., Hu X., Ji J., Ma L.. From Polyphenol to O-Quinone: Occurrence, Significance, and Intervention Strategies in Foods and Health Implications. Comp. Rev. Food Sci. Food Safety. 2023;22(4):3254–3291. doi: 10.1111/1541-4337.13182. PubMed DOI
Tilley A., McHenry M. P., McHenry J. A., Solah V., Bayliss K.. Enzymatic Browning: The Role of Substrates in Polyphenol Oxidase Mediated Browning. Curr. Res. Food Sci. 2023;7:100623. doi: 10.1016/j.crfs.2023.100623. PubMed DOI PMC
Fuerst E. P., Okubara P. A., Anderson J. V., Morris C. F.. Polyphenol Oxidase as a Biochemical Seed Defense Mechanism. Front. Plant Sci. 2014;5:5. doi: 10.3389/fpls.2014.00689. PubMed DOI PMC
Pollard A. T.. Seeds vs Fungi: An Enzymatic Battle in the Soil Seedbank. Seed Sci. Res. 2018;28(3):197–214. doi: 10.1017/S0960258518000181. DOI
Mnich E., Bjarnholt N., Eudes A., Harholt J., Holland C., Jo̷rgensen B., Larsen F. H., Liu M., Manat R., Meyer A. S., Mikkelsen J. D., Motawia M. S., Muschiol J., Mo̷ller B. L., Mo̷ller S. R., Perzon A., Petersen B. L., Ravn J. L., Ulvskov P.. Phenolic Cross-Links: Building and de-Constructing the Plant Cell Wall. Nat. Prod. Rep. 2020;37(7):919–961. doi: 10.1039/C9NP00028C. PubMed DOI
Boss P. K., Gardner R. C., Janssen B.-J., Ross G. S.. An Apple Polyphenol Oxidase cDNA Is Up-Regulated in Wounded Tissues. Plant Mol. Biol. 1995;27(2):429–433. doi: 10.1007/BF00020197. PubMed DOI
Thipyapong P., Steffens J. C.. Tomato Polyphenol Oxidase (Differential Response of the Polyphenol Oxidase F Promoter to Injuries and Wound Signals) Plant Physiol. 1997;115(2):409–418. doi: 10.1104/pp.115.2.409. PubMed DOI PMC
Inoue T., Yuo T., Ohta T., Hitomi E., Ichitani K., Kawase M., Taketa S., Fukunaga K.. Multiple Origins of the Phenol Reaction Negative Phenotype in Foxtail Millet, Setaria italica (L.) P. Beauv., Were Caused by Independent Loss-of-Function Mutations of the Polyphenol Oxidase (Si7PPO) Gene during Domestication. Mol. Genet. Genomics. 2015;290(4):1563–1574. doi: 10.1007/s00438-015-1022-x. PubMed DOI
Yu Y., Tang T., Qian Q., Wang Y., Yan M., Zeng D., Han B., Wu C.-I., Shi S., Li J.. Independent Losses of Function in a Polyphenol Oxidase in Rice: Differentiation in Grain Discoloration between Subspecies and the Role of Positive Selection under Domestication. Plant Cell. 2008;20(11):2946–2959. doi: 10.1105/tpc.108.060426. PubMed DOI PMC
Taketa S., Matsuki K., Amano S., Saisho D., Himi E., Shitsukawa N., Yuo T., Noda K., Takeda K.. Duplicate Polyphenol Oxidase Genes on Barley Chromosome 2H and Their Functional Differentiation in the Phenol Reaction of Spikes and Grains. J. Exp. Botany. 2010;61(14):3983–3993. doi: 10.1093/jxb/erq211. PubMed DOI PMC
Zhang S.. Recent Advances of Polyphenol Oxidases in Plants. Molecules. 2023;28(5):2158. doi: 10.3390/molecules28052158. PubMed DOI PMC
Glagoleva A. Y., Shoeva O. Y., Khlestkina E. K.. Melanin Pigment in Plants: Current Knowledge and Future Perspectives. Front. Plant Sci. 2020;11:11. doi: 10.3389/fpls.2020.00770. PubMed DOI PMC
Glagoleva A. Y., Kukoeva T. V., Khlestkina E. K., Shoeva O. Y.. Polyphenol Oxidase Genes in Barley (Hordeum vulgare L.): Functional Activity with Respect to Black Grain Pigmentation. Front. Plant Sci. 2024;14:14. doi: 10.3389/fpls.2023.1320770. PubMed DOI PMC
Deng Y., Lu S.. Biosynthesis and Regulation of Phenylpropanoids in Plants. Crit. Rev. Plant Sci. 2017;36(4):257–290. doi: 10.1080/07352689.2017.1402852. DOI
Yonekura-Sakakibara K., Yamamura M., Matsuda F.. et al. Seed-coat protective neolignans are produced by the dirigent protein AtDP1 and the laccase AtLAC5 in Arabidopsis. Plant Cell. 2020;33:129–152. doi: 10.1093/plcell/koaa014. PubMed DOI PMC
Boeckx T., Winters A., Webb K. J., Kingston-Smith A. H.. Detection of Potential Chloroplastic Substrates for Polyphenol Oxidase Suggests a Role in Undamaged Leaves. Front. Plant Sci. 2017;8:8. doi: 10.3389/fpls.2017.00237. PubMed DOI PMC
McLarin M.-A., Leung I. K. H.. Substrate Specificity of Polyphenol Oxidase. Crit. Rev. Biochem. Mol. Biol. 2020;55(3):274–308. doi: 10.1080/10409238.2020.1768209. PubMed DOI
Molitor C., Mauracher S. G., Rompel A.. Aurone Synthase Is a Catechol Oxidase with Hydroxylase Activity and Provides Insights into the Mechanism of Plant Polyphenol Oxidases. Proc. Natl. Acad. Sci. U S A. 2016;113(13):E1806–1815. doi: 10.1073/pnas.1523575113. PubMed DOI PMC
Constabel, C. P. ; Barbehenn, R. . Defensive Roles of Polyphenol Oxidase in Plants. In Induced Plant Resistance to Herbivory; Schaller, A. , Ed.; Springer Netherlands: Dordrecht, 2008; pp 253–270. 10.1007/978-1-4020-8182-8_12. DOI
Fuerst E. P., James M. S., Pollard A. T., Okubara P. A.. Defense Enzyme Responses in Dormant Wild Oat and Wheat Caryopses Challenged with a Seed Decay Pathogen. Front. Plant Sci. 2018;8:2259. doi: 10.3389/fpls.2017.02259. PubMed DOI PMC
Kreplak J., Madoui M.-A., Cápal P., Novák P., Labadie K., Aubert G., Bayer P. E., Gali K. K., Syme R. A., Main D., Klein A., Bérard A., Vrbová I., Fournier C., d’Agata L., Belser C., Berrabah W., Toegelová H., Milec Z., Vrána J., Lee H., Kougbeadjo A., Térézol M., Huneau C., Turo C. J., Mohellibi N., Neumann P., Falque M., Gallardo K., McGee R., Tar’an B., Bendahmane A., Aury J.-M., Batley J., Le Paslier M.-C., Ellis N., Warkentin T. D., Coyne C. J., Salse J., Edwards D., Lichtenzveig J., Macas J., Doležel J., Wincker P., Burstin J. A.. Reference Genome for Pea Provides Insight into Legume Genome Evolution. Nat. Genet. 2019;51(9):1411–1422. doi: 10.1038/s41588-019-0480-1. PubMed DOI
Yang T., Liu R., Luo Y., Hu S., Wang D., Wang C., Pandey M. K., Ge S., Xu Q., Li N., Li G., Huang Y., Saxena R. K., Ji Y., Li M., Yan X., He Y., Liu Y., Wang X., Xiang C., Varshney R. K., Ding H., Gao S., Zong X.. Improved Pea Reference Genome and Pan-Genome Highlight Genomic Features and Evolutionary Characteristics. Nat. Genet. 2022;54(10):1553–1563. doi: 10.1038/s41588-022-01172-2. PubMed DOI PMC
Feng C., Chen B., Hofer J., Shi Y., Jiang M., Song B., Cheng H., Lu L., Wang L., Howard A., Bendahmane A., Fouchal A., Moreau C., Sawada C., LeSignor C., Zhang C., Vikeli E., Tsanakas G., Zhao H., Cheema J., Barclay J. E., Hou J., Sayers L., Wingen L., Vigouroux M., Vickers M., Ambrose M., Dalmais M., Higuera-Poveda P., Li P., Yuan Q., Spanner R., Horler R., Wouters R., Chundakkad S., Wu T., Zhao X., Li X., Sun Y., Huang Z., Wu Z., Deng X. W., Steuernagel B., Domoney C., Ellis N., Chayut N., Cheng S.. Genomic and Genetic Insights into Mendel’s Pea Genes. Nature. 2025;642:980–989. doi: 10.1038/s41586-025-08891-6. PubMed DOI PMC
Crooks G. E., Hon G., Chandonia J.-M., Brenner S. E.. WebLogo: A Sequence Logo Generator. Genome Res. 2004;14(6):1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC
Jumper J., Evans R., Pritzel A.. et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. E.. The Phyre2 Web Portal for Protein Modeling. Prediction and Analysis. Nat. Protoc. 2015;10(6):845–858. doi: 10.1038/nprot.2015.053. PubMed DOI PMC
Biundo A., Braunschmid V., Pretzler M., Kampatsikas I., Darnhofer B., Birner-Gruenberger R., Rompel A., Ribitsch D., Guebitz G. M.. Polyphenol Oxidases Exhibit Promiscuous Proteolytic Activity. Commun. Chem. 2020;3(1):1–8. doi: 10.1038/s42004-020-0305-2. PubMed DOI PMC
Kampatsikas I., Bijelic A., Rompel A.. Biochemical and Structural Characterization of Tomato Polyphenol Oxidases Provide Novel Insights into Their Substrate Specificity. Sci. Rep. 2019;9:4022. doi: 10.1038/s41598-019-39687-0. PubMed DOI PMC
Pretzler M., Bijelic A., Rompel A.. Heterologous Expression and Characterization of Functional Mushroom Tyrosinase (AbPPO4) Sci. Rep. 2017;7:7. doi: 10.1038/s41598-017-01813-1. PubMed DOI PMC
Kang D. H., Gho Y. S., Suh M. K., Kang C. H.. Highly sensitive and fast protein detection with coomassie brilliant blue in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bull. Korean Chem. Soc. 2002;23(11):1511–1512. doi: 10.5012/bkcs.2002.23.11.1511. DOI
Masuda T., Tomita T., Ishihama Y.. Phase Transfer Surfactant-Aided Trypsin Digestion for Membrane Proteome Analysis. J. Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI
Leon I. R., Schwammle V., Jensen O. N., Sprenger R. R.. Quantitative Assessment of In-solution Digestion Efficiency Identifies Optimal Protocols for Unbiased Protein Analysis. Mol. Cell. Proteom. 2013;12:2992–3005. doi: 10.1074/mcp.M112.025585. PubMed DOI PMC
Rappsilber J., Mann M., Ishihama Y.. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2(8):1896–906. doi: 10.1038/nprot.2007.261. PubMed DOI
Vlčko T., Tarkowská D., Široká J., Pěnčík A., Simerský R., Chamrád I., Lenobel R., Novák O., Ohnoutková L.. Hormone profiling and the root proteome analysis of itpk1 mutant seedlings of barley (Hordeum vulgare) during the red-light induced photomorphogenesis. Environ. Exp. Botany. 2023;213:105428. doi: 10.1016/j.envexpbot.2023.105428. DOI
Yu F., Haynes S. E., Teo G. C., Avtonomov D. M., Polasky D. A., Nesvizhskii A. I.. Fast quantitative analysis of timsTOF PASEF data with MSFragger and IonQuant. Mol. Cel. Proteomics. 2020;19(9):1575–1585. doi: 10.1074/mcp.TIR120.002048. PubMed DOI PMC
Kong A. T., Leprevost F. V., Avtonomov D. M., Mellacheruvu D., Nesvizhskii A. I.. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat. Methods. 2017;14(5):513–520. doi: 10.1038/nmeth.4256. PubMed DOI PMC
Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T.. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995;4(11):2411–2423. doi: 10.1002/pro.5560041120. PubMed DOI PMC
Molitor C., Mauracher S. G., Pargan S., Mayer R. L., Halbwirth H., Rompel A.. Latent and Active Aurone Synthase from Petals of C. grandiflora: A Polyphenol Oxidase with Unique Characteristics. Planta. 2015;242(3):519–537. doi: 10.1007/s00425-015-2261-0. PubMed DOI PMC
Kampatsikas I., Pretzler M., Rompel A.. Identification of Amino Acid Residues Responsible for C–H Activation in Type-III Copper Enzymes by Generating Tyrosinase Activity in a Catechol Oxidase. Angew. Chem., Int. Ed. 2020;59(47):20940–20945. doi: 10.1002/anie.202008859. PubMed DOI PMC
Hanna P. M., Tamilarasan R., McMillin D. R.. Cu(I) Analysis of Blue Copper Proteins. Biochem. J. 1988;256(3):1001–1004. doi: 10.1042/bj2561001. PubMed DOI PMC
Pretzler M., Rompel A.. Tyrosinases: a family of copper-containing metalloenzymes. ChemTexts. 2024;10:12. doi: 10.1007/s40828-024-00195-y. PubMed DOI PMC
Muñoz J. L., García-Molina F., Varón R., Rodriguez-Lopez J. N., García-Cánovas F., Tudela J.. Calculating Molar Absorptivities for Quinones: Application to the Measurement of Tyrosinase Activity. Anal. Biochem. 2006;351(1):128–138. doi: 10.1016/j.ab.2006.01.011. PubMed DOI
Derardja A. E., Pretzler M., Kampatsikas I., Barkat M., Rompel A.. Purification and Characterization of Latent Polyphenol Oxidase from Apricot (Prunus armeniaca L.) J. Agric. Food Chem. 2017;65(37):8203–8212. doi: 10.1021/acs.jafc.7b03210. PubMed DOI PMC
Derardja A. E., Pretzler M., Kampatsikas I., Barkat M., Rompel A.. Inhibition of Apricot Polyphenol Oxidase by Combinations of Plant Proteases and Ascorbic Acid. Food Chem. X. 2019;4:100053. doi: 10.1016/j.fochx.2019.100053. PubMed DOI PMC
Sedláková V., Zeljković S. Ć., Štefelová N., Smýkal P., Hanáček P.. Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy. Plants. 2023;12(14):2687. doi: 10.3390/plants12142687. PubMed DOI PMC
Choi Y. J., Tomás-Barberán F. A., Mikal E., Saltveit M. E.. Wound-induced phenolic accumulation and browning in lettuce (Lactuca sativa L.) leaf tissue is reduced by exposure to n-alcohols. Postharvest Biol. Technol. 2005;37:47–55. doi: 10.1016/j.postharvbio.2005.03.002. DOI
Singh B., Singh J. P., Kaur A., Singh N.. Phenolic Composition and Antioxidant Potential of Grain Legume Seeds: A Review. Food Res. Int. 2017;101:1–16. doi: 10.1016/j.foodres.2017.09.026. PubMed DOI
Jha A. B., Purves R. W., Elessawy F. M., Zhang H., Vandenberg A., Warkentin T. D.. Polyphenolic Profile of Seed Components of White and Purple Flower Pea Lines. Crop Sci. 2019;59(6):2711–2719. doi: 10.2135/cropsci2019.04.0279. DOI
Elessawy F. M., Bazghaleh N., Vandenberg A., Purves R. W.. Polyphenol Profile Comparisons of Seed Coats of Five Pulse Crops Using a Semi-Quantitative Liquid Chromatography-Mass Spectrometric Method. Phytochem. Analysis. 2020;31(4):458–471. doi: 10.1002/pca.2909. PubMed DOI
Hradilová I., Duchoslav M., Brus J., Pechanec V., Hýbl M., Kopecký P., Smržová L., Štefelová N., Vaclávek T., Michael B., Machalová J., Hron K., Pirintsos S., Smýkal P.. 2019. Variation in wild pea (Pisum sativum subsp. elatius) seed dormancy and its relationship to the environment and seed coat traits. PeerJ. 2019;7:e6263. doi: 10.7717/peerj.6263. PubMed DOI PMC
Marles M. A. S., Vandenberg A., Bett K. E.. Polyphenol Oxidase Activity and Differential Accumulation of Polyphenolics in Seed Coats of Pinto Bean (Phaseolus vulgaris L.) Characterize Postharvest Color Changes. J. Agric. Food Chem. 2008;56(16):7049–7056. doi: 10.1021/jf8004367. PubMed DOI
Tajoddin M., Manohar S., Lalitha J.. Effect of Soaking and Germination on Polyphenol Content and Polyphenol Oxidase Activity of Mung Bean (Phaseolus aureus L.) Cultivars Differing in Seed Color. Int. J. Food Properties. 2014;17(4):782–790. doi: 10.1080/10942912.2012.654702. DOI
Sikora M., Świeca M., Franczyk M., Jakubczyk A., Bochnak J., Złotek U.. Biochemical Properties of Polyphenol Oxidases from Ready-to-Eat Lentil (Lens culinaris Medik.) Sprouts and Factors Affecting Their Activities: A Search for Potent Tools Limiting Enzymatic Browning. Foods. 2019;8(5):154. doi: 10.3390/foods8050154. PubMed DOI PMC
Liao J., Wei X., Tao K., Deng G., Shu J., Qiao Q., Chen G., Wei Z., Fan M., Saud S., Fahad S., Chen S.. Phenoloxidases: Catechol Oxidase – the Temporary Employer and Laccase – the Rising Star of Vascular Plants. Hortic. Res. 2023;10(7):uhad102. doi: 10.1093/hr/uhad102. PubMed DOI PMC
Panis F., Kampatsikas I., Bijelic A., Rompel A.. Conversion of Walnut Tyrosinase into a Catechol Oxidase by Site Directed Mutagenesis. Sci. Rep. 2020;10(1):1659. doi: 10.1038/s41598-020-57671-x. PubMed DOI PMC
Derardja A. E., Pretzler M., Barkat M., Rompel A.. Extraction, Purification, and Characterization of Olive (Olea europaea L., cv. Chemlal) Polyphenol Oxidase. J. Agric. Food Chem. 2024;72(6):3099–3112. doi: 10.1021/acs.jafc.3c07776. PubMed DOI PMC
Derardja A. E., Pretzler M., Kampatsikas I., Radovic M., Fabisikova A., Zehl M., Barkat M., Rompel A.. Polyphenol Oxidase and Enzymatic Browning in Apricot (Prunus armeniaca L.): Effect on Phenolic Composition and Deduction of Main Substrates. Curr. Res. Food Sci. 2022;5:196–206. doi: 10.1016/j.crfs.2021.12.015. PubMed DOI PMC
Tran B. Q., Hernandez C., Waridel P., Potts A., Barblan J., Lisacek F., Quadroni M.. Addressing Trypsin Bias in Large Scale (Phospho)Proteome Analysis by Size Exclusion Chromatography and Secondary Digestion of Large Post-Trypsin Peptides. J. Proteome Res. 2011;10(2):800–811. doi: 10.1021/pr100951t. PubMed DOI
Laskay Ü. A., Lobas A. A., Srzentić K., Gorshkov M. V., Tsybin Y. O.. Proteome Digestion Specificity Analysis for Rational Design of Extended Bottom-up and Middle-down Proteomics Experiments. J. Proteome Res. 2013;12(12):5558–5569. doi: 10.1021/pr400522h. PubMed DOI
Marusek C. M., Trobaugh N. M., Flurkey W. H., Inlow J. K.. Comparative Analysis of Polyphenol Oxidase from Plant and Fungal Species. J. Inorganic Biochem. 2006;100(1):108–123. doi: 10.1016/j.jinorgbio.2005.10.008. PubMed DOI
Sommer A., Ne’eman E., Steffens J. C., Mayer A. M., Harel E.. Import, Targeting, and Processing of a Plant Polyphenol Oxidase. Plant Physiol. 1994;105(4):1301–1311. doi: 10.1104/pp.105.4.1301. PubMed DOI PMC
Ono E., Fukuchi-Mizutani M., Nakamura N., Fukui Y., Yonekura-Sakakibara K., Yamaguchi M., Nakayama T., Tanaka T., Kusumi T., Tanaka Y.. Yellow Flowers Generated by Expression of the Aurone Biosynthetic Pathway. Proc. Natl. Acad. Sci. U S A. 2006;103(29):11075–11080. doi: 10.1073/pnas.0604246103. PubMed DOI PMC
Tran L. T., Constabel C. P.. The polyphenol oxidase gene family in poplar: phylogeny, differential expression and identification of a novel, vacuolar isoform. Planta. 2011;234(4):799–813. doi: 10.1007/s00425-011-1441-9. PubMed DOI
Olmedo P., Moreno A. A., Sanhueza D., Balic I., Silva-Sanzana C., Zepeda B., Verdonk J. C., Arriagada C., Meneses C., Campos-Vargas R.. A Catechol Oxidase AcPPO from Cherimoya (Annona cherimola Mill.) Is Localized to the Golgi Apparatus. Plant Sci. 2018;266:46–54. doi: 10.1016/j.plantsci.2017.10.012. PubMed DOI
Bijelic A., Pretzler M., Molitor C., Zekiri F., Rompel A.. The Structure of a Plant Tyrosinase from Walnut Leaves Reveals the Importance of “Substrate-Guiding Residues” for Enzymatic Specificity. Angewandte Chemie Int. Edition. 2015;54(49):14677–14680. doi: 10.1002/anie.201506994. PubMed DOI PMC
Virador V. M., Reyes Grajeda J. P., Blanco-Labra A., Mendiola-Olaya E., Smith G. M., Moreno A., Whitaker J. R.. Cloning, Sequencing, Purification, and Crystal Structure of Grenache (Vitis vinifera) Polyphenol Oxidase. J. Agric. Food Chem. 2010;58(2):1189–1201. doi: 10.1021/jf902939q. PubMed DOI
Fujieda N., Yabuta S., Ikeda T., Oyama T., Muraki N., Kurisu G., Itoh S.. Crystal Structures of Copper-Depleted and Copper-Bound Fungal pro-Tyrosinase: Insights into Endogenous Cysteine-Dependent Copper Incorporation. J. Biol. Chem. 2013;288(30):22128–22140. doi: 10.1074/jbc.M113.477612. PubMed DOI PMC
Pretzler M., Rompel A.. Mushroom Tyrosinase: Six Isoenzymes Catalyzing Distinct Reactions. Chem. Bio Chem. 2024;25(14):e202400050. doi: 10.1002/cbic.202400050. PubMed DOI
Kampatsikas I., Rompel A.. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes? Chem. Bio Chem. 2021;22(7):1161–1175. doi: 10.1002/cbic.202000647. PubMed DOI PMC
Moore B. M., Flurkey W. H.. Sodium Dodecyl Sulfate Activation of a Plant Polyphenoloxidase. Effect of Sodium Dodecyl Sulfate on Enzymatic and Physical Characteristics of Purified Broad Bean Polyphenoloxidase. J. Biol. Chem. 1990;265(9):4982–4988. doi: 10.1016/S0021-9258(19)34072-4. PubMed DOI
Gandía-Herrero F., Jiménez-Atiénzar M., Cabanes J., García-Carmona F., Escribano J.. Evidence for a Common Regulation in the Activation of a Polyphenol Oxidase by Trypsin and Sodium Dodecyl Sulfate. Biol. Chem. 2005;386(6):601–607. doi: 10.1515/BC.2005.070. PubMed DOI
Russell P., Schrock H. L., Gennis R. B.. Lipid Activation and Protease Activation of Pyruvate Oxidase. Evidence Suggesting a Common Site of Interaction on the Protein. J. Biol. Chem. 1977;252(21):7883–7887. doi: 10.1016/S0021-9258(17)41047-7. PubMed DOI
Guo L., Ma Y., Shi J., Xue S.. The Purification and Characterisation of Polyphenol Oxidase from Green Bean (Phaseolus Vulgaris L.) Food Chem. 2009;117(1):143–151. doi: 10.1016/j.foodchem.2009.03.088. DOI
Paul B., Gowda L. R.. Purification and Characterization of a Polyphenol Oxidase from the Seeds of Field Bean (Dolichos lablab) J. Agric. Food Chem. 2000;48(9):3839–3846. doi: 10.1021/jf000296s. PubMed DOI
Flurkey W. H.. In Vitro Biosynthesis of Vicia faba Polyphenoloxidase. Plant Physiol. 1985;79(2):564–567. doi: 10.1104/pp.79.2.564. PubMed DOI PMC
Isbilir S., Yediel A.. Partial Purification and Characterisation of Polyphenol Oxidase from Faba Bean (Vicia faba) Coat. Ukrainian J. Food Sci. 2021;9:167–180. doi: 10.24263/2310-1008-2021-9-2-5. DOI
Shin R., Froderman T., Flurkey W. H.. Isolation and Characterization of a Mung Bean Leaf Polyphenol Oxidase. Phytochemistry. 1997;45(1):15–21. doi: 10.1016/S0031-9422(96)00785-6. DOI
Takeuchi W., Takahashi H., Kojima M.. Purification and Characterization of the Main Isozyme of Polyphenol Oxidase in Mung Bean (Vigna mungo) Seedlings. Biosci. Biotechnol. Biochem. 1992;56(7):1134–1135. doi: 10.1271/bbb.56.1134. PubMed DOI
Nagai T., Suzuki N.. Polyphenol Oxidase from Bean Sprouts (Glycine max L.) J. Food Sci. 2003;68(1):16–20. doi: 10.1111/j.1365-2621.2003.tb14107.x. DOI
Pretzler M., Rompel A.. What Causes the Different Functionality in Type-III-Copper Enzymes? A State of the Art Perspective. Inorg. Chim. Acta. 2018;481:25–31. doi: 10.1016/j.ica.2017.04.041. DOI
Troszyńska A., Ciska E.. Phenolic Compounds of Seed Coats of White and Coloured Varieties of Pea (Pisum sativum L.) and Their Total Antioxidant Activity. Czech J. Food Sci. 2002;20(1):15–22. doi: 10.17221/3504-CJFS. DOI
Wright T. R.. The Genetics of Biogenic Amine Metabolism, Sclerotization, and Melanization in Drosophila melanogaster . Adv. Genet. 1987;24:127–222. doi: 10.1016/S0065-2660(08)60008-5. PubMed DOI
Henarejos-Escudero P., Hernández-García S., Martínez-Rodríguez P., García-Carmona F., Gandía-Herrero F.. Bioactive Potential and Spectroscopical Characterization of a Novel Family of Plant Pigments Betalains Derived from Dopamine. Food Res. Internat. 2022;162:111956. doi: 10.1016/j.foodres.2022.111956. PubMed DOI
Jena S., Sanyal R., Jawed D. Md., Sengupta K., Pradhan B., Sinha S. K., Sarkar B., Kumar S., Lenka S. K., Naskar S., Bhadana V. P., Bishi S. K.. Spatio-Temporal Expression of Polyphenol Oxidase Unveils the Dynamics of L-DOPA Accumulation in Faba Bean (Vicia faba L.) Physiol. Mol. Biol. Plants. 2024;30(5):839–850. doi: 10.1007/s12298-024-01449-2. PubMed DOI PMC
Arslan O., Temur A., Tozlu I.. Polyphenol oxidase from Malatya apricot. J. Agric. Food Chem. 1998;46:1239–1241. doi: 10.1021/jf970599v. DOI
Selinheimo E., NiEidhin D., Steffensen C., Nielsen J., Lomascolo A., Halaouli S., Record E., O’Beirne D., Buchert J., Kruus K.. Comparison of the characteristics of fungal and plant tyrosinases. J. Biotechnol. 2007;130:471–480. doi: 10.1016/j.jbiotec.2007.05.018. PubMed DOI
Li Y., McLarin M.-A., Middleditch M. J., Morrow S. J., Kilmartin P. A., Leung I. K. H.. An Approach to Recombinantly Produce Mature Grape Polyphenol Oxidase. Biochimie. 2019;165:40–47. doi: 10.1016/j.biochi.2019.07.002. PubMed DOI
Araji S., Grammer T. A., Gertzen R., Anderson S. D., Mikulic-Petkovsek M., Veberic R., Phu M. L., Solar A., Leslie C. A., Dandekar A. M., Escobar M. A.. Novel Roles for the Polyphenol Oxidase Enzyme in Secondary Metabolism and the Regulation of Cell Death in Walnut. Plant Physiol. 2014;164(3):1191–1203. doi: 10.1104/pp.113.228593. PubMed DOI PMC
Espín J. C., Morales M., Varon R., Tudela J., Garciacanovas F.. A Continuous Spectrophotometric Method for Determining the Monophenolase and Diphenolase Activities of Apple Polyphenol Oxidase. Anal. Biochem. 1995;231(1):237–246. doi: 10.1006/abio.1995.1526. PubMed DOI
Espín J. C., Morales M., Varón R., Tudela J., García-Cánovas F.. Monophenolase Activity of Polyphenol Oxidase from Blanquilla Pear. Phytochemistry. 1997;44(1):17–22. doi: 10.1016/S0031-9422(96)00488-8. DOI
Sui X., Meng Z., Dong T., Fan X., Wang Q.. Enzymatic Browning and Polyphenol Oxidase Control Strategies. Curr. Opinion Biotechnol. 2023;81:102921. doi: 10.1016/j.copbio.2023.102921. PubMed DOI
Espín J. C., Wichers H. J.. Slow-Binding Inhibition of Mushroom (Agaricus bisporus) Tyrosinase Isoforms by Tropolone. J. Agric. Food Chem. 1999;47(7):2638–2644. doi: 10.1021/jf981055b. PubMed DOI
Song W., Yang H., Liu S., Yu H., Li D., Li P., Xing R.. Melanin: Insights into Structure, Analysis, and Biological Activities for Future Development. J. Mater. Chem. B. 2023;11(32):7528–7543. doi: 10.1039/D3TB01132A. PubMed DOI