Biochemical Analysis of Recombinant Pea Seed Coat-Specific Polyphenol Oxidase (PeaPPO) in Relation to Various Phenolic Substrates

. 2025 Sep 03 ; 73 (35) : 21754-21768. [epub] 20250821

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40838842

The seed coat serves as the primary protective barrier, offering mechanical and chemical defense for the embryo. It contains various metabolites, including phenolic compounds, which can be oxidized by polyphenol oxidase (PPO) to form oligomers. In this study, we heterologously expressed a 515 amino acid protein derived from wild pea (Pisum elatius), omitting its N-terminal signal sequence, and analyzed its biochemical properties. The recombinant PeaPPO required sodium dodecyl sulfate (SDS) for activation and exhibited activity between pHs 5.2 and 7.0, peaking at pH 6.0 with 0.25 mM SDS. Tropolone and its isomer thujaplicin were the most effective inhibitors. PeaPPO catalyzed reactions with seed coat-derived substrates, displaying activity toward phenols, catechols, and pyrogallols, with the highest affinity for catechols. Principal component analysis of LC-MS/MS-derived phenolic profiles demonstrated that PPO+ and ppo- genotypes differ significantly in their accumulation of PPO substrates and inhibitors. These findings confirm that PeaPPO possesses both monophenolase and catechol oxidase activities, identifying it as a tyrosinase.

Zobrazit více v PubMed

Corso M., Perreau F., Mouille G., Lepiniec L.. Specialized Phenolic Compounds in Seeds: Structures, Functions, and Regulations. Plant Science. 2020;296:110471. doi: 10.1016/j.plantsci.2020.110471. PubMed DOI

Corso, M. ; Perreau, F. ; Rajjou, L. ; Ben Malek, R. ; Lepiniec, L. ; Mouille, G. . Chapter Two - Specialized Metabolites in Seeds. In Plant Metabolomics in full swing Advances in Botanical Research; Pétriacq, P. , Bouchereau, A. , Eds.; Academic Press, 2021; Vol. 98, pp 35–70. 10.1016/bs.abr.2020.11.001. DOI

Pang Y., Peel G. J., Sharma S. B., Tang Y., Dixon R. A.. A Transcript Profiling Approach Reveals an Epicatechin-Specific Glucosyltransferase Expressed in the Seed Coat of Medicago Truncatula. Proc. Natl. Acad. Sci. U S A. 2008;105(37):14210–14215. doi: 10.1073/pnas.0805954105. PubMed DOI PMC

Smýkal P., Vernoud V., Blair M. W., Soukup A., Thompson R. D.. The Role of the Testa during Development and in Establishment of Dormancy of the Legume Seed. Front. Plant Sci. 2014;5:5. doi: 10.3389/fpls.2014.00351. PubMed DOI PMC

Fu F., Zhang W., Li Y.-Y., Wang H. L.. Establishment of the Model System between Phytochemicals and Gene Expression Profiles in Macrosclereid Cells of Medicago Truncatula. Sci. Rep. 2017;7(1):2580. doi: 10.1038/s41598-017-02827-5. PubMed DOI PMC

Hradilová I., Trněný O., Válková M., Cechová M., Janská A., Prokešová L., Aamir K., Krezdorn N., Rotter B., Winter P., Varshney R. K., Soukup A., Bednář P., Hanáček P., Smýkal P.. A Combined Comparative Transcriptomic, Metabolomic, and Anatomical Analyses of Two Key Domestication Traits: Pod Dehiscence and Seed Dormancy in Pea (Pisum Sp.) Front. Plant Sci. 2017;8:8. doi: 10.3389/fpls.2017.00542. PubMed DOI PMC

Krejčí P., Cechová M. Z., Nádvorníková J., Barták P., Kobrlová L., Balarynová J., Smýkal P., Bednář P.. Combination of Electronically Driven Micromanipulation with Laser Desorption Ionization Mass Spectrometry – The Unique Tool for Analysis of Seed Coat Layers and Revealing the Mystery of Seed Dormancy. Talanta. 2022;242:123303. doi: 10.1016/j.talanta.2022.123303. PubMed DOI

Cechová M., Válková M., Hradilová I., Janská A., Soukup A., Smýkal P., Bednář P.. Towards Better Understanding of Pea Seed Dormancy Using Laser Desorption/Ionization Mass Spectrometry. Int. J. Mol. Sci. 2017;18(10):2196. doi: 10.3390/ijms18102196. PubMed DOI PMC

Cechová M., Hradilová I., Smýkal P., Barták P., Bednář P.. Utilization of Atmospheric Solids Analysis Probe Mass Spectrometry for Analysis of Fatty Acids on Seed Surface. Anal. Bioanal. Chem. 2019;411(6):1169–1180. doi: 10.1007/s00216-018-1551-3. PubMed DOI

Klčová B., Balarynová J., Trněný O., Krejčí P., Cechová M. Z., Leonova T., Gorbach D., Frolova N., Kysil E., Orlova A., Ihling C., Frolov A., Bednář P., Smýkal P.. Domestication Has Altered Gene Expression and Secondary Metabolites in Pea Seed Coat. Plant J. 2024;118(6):2269–2295. doi: 10.1111/tpj.16734. PubMed DOI

Quideau S., Deffieux D., Douat-Casassus C., Pouységu L.. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem., Int. Ed. 2011;50(3):586–621. doi: 10.1002/anie.201000044. PubMed DOI

Balarynová J., Klčová B., Sekaninová J., Kobrlová L., Cechová M. Z., Krejčí P., Leonova T., Gorbach D., Ihling C., Smržová L., Trněný O., Frolov A., Bednář P., Smýkal P.. The Loss of Polyphenol Oxidase Function Is Associated with Hilum Pigmentation and Has Been Selected during Pea Domestication. New Phytol. 2022;235(5):1807–1821. doi: 10.1111/nph.18256. PubMed DOI

Kaintz C., Mauracher S. G., Rompel A.. Type-3 Copper Proteins: Recent Advances on Polyphenol Oxidases. Adv. Protein Chem. Struct. Biol. 2014;97:1–35. doi: 10.1016/bs.apcsb.2014.07.001. PubMed DOI

Blaschek L., Pesquet E.. Phenoloxidases in PlantsHow Structural Diversity Enables Functional Specificity. Front. Plant Sci. 2021;12:12. doi: 10.3389/fpls.2021.754601. PubMed DOI PMC

Mayer A. M.. Polyphenol Oxidases in Plants and Fungi: Going Places? A Review. Phytochemistry. 2006;67(21):2318–2331. doi: 10.1016/j.phytochem.2006.08.006. PubMed DOI

Sullivan M. L.. Beyond Brown: Polyphenol Oxidases as Enzymes of Plant Specialized Metabolism. Front. Plant Sci. 2015;5:783. doi: 10.3389/fpls.2014.00783. PubMed DOI PMC

Meitil I. K. S., Silva C. D. O. G., Pedersen A. G., Agger J. W.. Classification of Polyphenol Oxidases Shows Ancient Gene Duplication Leading to Two Distinct Enzyme Types. iScience. 2025;28(2):111771. doi: 10.1016/j.isci.2025.111771. PubMed DOI PMC

Pourcel L., Routaboul J.-M., Kerhoas L., Caboche M., Lepiniec L., Debeaujon I.. TRANSPARENT TESTA10 Encodes a Laccase-Like Enzyme Involved in Oxidative Polymerization of Flavonoids in Arabidopsis Seed Coat. Plant Cell. 2005;17(11):2966–2980. doi: 10.1105/tpc.105.035154. PubMed DOI PMC

Cai X., Davis E. J., Ballif J., Liang M., Bushman E., Haroldsen V., Torabinejad J., Wu Y.. Mutant Identification and Characterization of the Laccase Gene Family in Arabidopsis. J. Exp. Botany. 2006;57(11):2563–2569. doi: 10.1093/jxb/erl022. PubMed DOI

Jayakodi M., Golicz A. A., Kreplak J., Fechete L. I., Angra D., Bednář P., Bornhofen E., Zhang H., Boussageon R., Kaur S., Cheung K., Čížková J., Gundlach H., Hallab A., Imbert B., Keeble-Gagnère G., Koblížková A., Kobrlová L., Krejčí P., Mouritzen T. W., Neumann P., Nadzieja M., Nielsen L. K., Novák P., Orabi J., Padmarasu S., Robertson-Shersby-Harvie T., Robledillo L. Á., Schiemann A., Tanskanen J., Törönen P., Warsame A. O., Wittenberg A. H. J., Himmelbach A., Aubert G., Courty P.-E., Doležel J., Holm L. U., Janss L. L., Khazaei H., Macas J., Mascher M., Smýkal P., Snowdon R. J., Stein N., Stoddard F. L., Stougaard J., Tayeh N., Torres A. M., Usadel B., Schubert I., O’Sullivan D. M., Schulman A. H., Andersen S. U.. The Giant Diploid Faba Genome Unlocks Variation in a Global Protein Crop. Nature. 2023;615(7953):652–659. doi: 10.1038/s41586-023-05791-5. PubMed DOI PMC

Tran L. T., Taylor J. S., Constabel C. P.. The Polyphenol Oxidase Gene Family in Land Plants: Lineage-Specific Duplication and Expansion. BMC Genomics. 2012;13(1):395. doi: 10.1186/1471-2164-13-395. PubMed DOI PMC

Geng Y., Liu X., Yu Y., Li W., Mou Y., Chen F., Hu X., Ji J., Ma L.. From Polyphenol to O-Quinone: Occurrence, Significance, and Intervention Strategies in Foods and Health Implications. Comp. Rev. Food Sci. Food Safety. 2023;22(4):3254–3291. doi: 10.1111/1541-4337.13182. PubMed DOI

Tilley A., McHenry M. P., McHenry J. A., Solah V., Bayliss K.. Enzymatic Browning: The Role of Substrates in Polyphenol Oxidase Mediated Browning. Curr. Res. Food Sci. 2023;7:100623. doi: 10.1016/j.crfs.2023.100623. PubMed DOI PMC

Fuerst E. P., Okubara P. A., Anderson J. V., Morris C. F.. Polyphenol Oxidase as a Biochemical Seed Defense Mechanism. Front. Plant Sci. 2014;5:5. doi: 10.3389/fpls.2014.00689. PubMed DOI PMC

Pollard A. T.. Seeds vs Fungi: An Enzymatic Battle in the Soil Seedbank. Seed Sci. Res. 2018;28(3):197–214. doi: 10.1017/S0960258518000181. DOI

Mnich E., Bjarnholt N., Eudes A., Harholt J., Holland C., Jo̷rgensen B., Larsen F. H., Liu M., Manat R., Meyer A. S., Mikkelsen J. D., Motawia M. S., Muschiol J., Mo̷ller B. L., Mo̷ller S. R., Perzon A., Petersen B. L., Ravn J. L., Ulvskov P.. Phenolic Cross-Links: Building and de-Constructing the Plant Cell Wall. Nat. Prod. Rep. 2020;37(7):919–961. doi: 10.1039/C9NP00028C. PubMed DOI

Boss P. K., Gardner R. C., Janssen B.-J., Ross G. S.. An Apple Polyphenol Oxidase cDNA Is Up-Regulated in Wounded Tissues. Plant Mol. Biol. 1995;27(2):429–433. doi: 10.1007/BF00020197. PubMed DOI

Thipyapong P., Steffens J. C.. Tomato Polyphenol Oxidase (Differential Response of the Polyphenol Oxidase F Promoter to Injuries and Wound Signals) Plant Physiol. 1997;115(2):409–418. doi: 10.1104/pp.115.2.409. PubMed DOI PMC

Inoue T., Yuo T., Ohta T., Hitomi E., Ichitani K., Kawase M., Taketa S., Fukunaga K.. Multiple Origins of the Phenol Reaction Negative Phenotype in Foxtail Millet, Setaria italica (L.) P. Beauv., Were Caused by Independent Loss-of-Function Mutations of the Polyphenol Oxidase (Si7PPO) Gene during Domestication. Mol. Genet. Genomics. 2015;290(4):1563–1574. doi: 10.1007/s00438-015-1022-x. PubMed DOI

Yu Y., Tang T., Qian Q., Wang Y., Yan M., Zeng D., Han B., Wu C.-I., Shi S., Li J.. Independent Losses of Function in a Polyphenol Oxidase in Rice: Differentiation in Grain Discoloration between Subspecies and the Role of Positive Selection under Domestication. Plant Cell. 2008;20(11):2946–2959. doi: 10.1105/tpc.108.060426. PubMed DOI PMC

Taketa S., Matsuki K., Amano S., Saisho D., Himi E., Shitsukawa N., Yuo T., Noda K., Takeda K.. Duplicate Polyphenol Oxidase Genes on Barley Chromosome 2H and Their Functional Differentiation in the Phenol Reaction of Spikes and Grains. J. Exp. Botany. 2010;61(14):3983–3993. doi: 10.1093/jxb/erq211. PubMed DOI PMC

Zhang S.. Recent Advances of Polyphenol Oxidases in Plants. Molecules. 2023;28(5):2158. doi: 10.3390/molecules28052158. PubMed DOI PMC

Glagoleva A. Y., Shoeva O. Y., Khlestkina E. K.. Melanin Pigment in Plants: Current Knowledge and Future Perspectives. Front. Plant Sci. 2020;11:11. doi: 10.3389/fpls.2020.00770. PubMed DOI PMC

Glagoleva A. Y., Kukoeva T. V., Khlestkina E. K., Shoeva O. Y.. Polyphenol Oxidase Genes in Barley (Hordeum vulgare L.): Functional Activity with Respect to Black Grain Pigmentation. Front. Plant Sci. 2024;14:14. doi: 10.3389/fpls.2023.1320770. PubMed DOI PMC

Deng Y., Lu S.. Biosynthesis and Regulation of Phenylpropanoids in Plants. Crit. Rev. Plant Sci. 2017;36(4):257–290. doi: 10.1080/07352689.2017.1402852. DOI

Yonekura-Sakakibara K., Yamamura M., Matsuda F.. et al. Seed-coat protective neolignans are produced by the dirigent protein AtDP1 and the laccase AtLAC5 in Arabidopsis. Plant Cell. 2020;33:129–152. doi: 10.1093/plcell/koaa014. PubMed DOI PMC

Boeckx T., Winters A., Webb K. J., Kingston-Smith A. H.. Detection of Potential Chloroplastic Substrates for Polyphenol Oxidase Suggests a Role in Undamaged Leaves. Front. Plant Sci. 2017;8:8. doi: 10.3389/fpls.2017.00237. PubMed DOI PMC

McLarin M.-A., Leung I. K. H.. Substrate Specificity of Polyphenol Oxidase. Crit. Rev. Biochem. Mol. Biol. 2020;55(3):274–308. doi: 10.1080/10409238.2020.1768209. PubMed DOI

Molitor C., Mauracher S. G., Rompel A.. Aurone Synthase Is a Catechol Oxidase with Hydroxylase Activity and Provides Insights into the Mechanism of Plant Polyphenol Oxidases. Proc. Natl. Acad. Sci. U S A. 2016;113(13):E1806–1815. doi: 10.1073/pnas.1523575113. PubMed DOI PMC

Constabel, C. P. ; Barbehenn, R. . Defensive Roles of Polyphenol Oxidase in Plants. In Induced Plant Resistance to Herbivory; Schaller, A. , Ed.; Springer Netherlands: Dordrecht, 2008; pp 253–270. 10.1007/978-1-4020-8182-8_12. DOI

Fuerst E. P., James M. S., Pollard A. T., Okubara P. A.. Defense Enzyme Responses in Dormant Wild Oat and Wheat Caryopses Challenged with a Seed Decay Pathogen. Front. Plant Sci. 2018;8:2259. doi: 10.3389/fpls.2017.02259. PubMed DOI PMC

Kreplak J., Madoui M.-A., Cápal P., Novák P., Labadie K., Aubert G., Bayer P. E., Gali K. K., Syme R. A., Main D., Klein A., Bérard A., Vrbová I., Fournier C., d’Agata L., Belser C., Berrabah W., Toegelová H., Milec Z., Vrána J., Lee H., Kougbeadjo A., Térézol M., Huneau C., Turo C. J., Mohellibi N., Neumann P., Falque M., Gallardo K., McGee R., Tar’an B., Bendahmane A., Aury J.-M., Batley J., Le Paslier M.-C., Ellis N., Warkentin T. D., Coyne C. J., Salse J., Edwards D., Lichtenzveig J., Macas J., Doležel J., Wincker P., Burstin J. A.. Reference Genome for Pea Provides Insight into Legume Genome Evolution. Nat. Genet. 2019;51(9):1411–1422. doi: 10.1038/s41588-019-0480-1. PubMed DOI

Yang T., Liu R., Luo Y., Hu S., Wang D., Wang C., Pandey M. K., Ge S., Xu Q., Li N., Li G., Huang Y., Saxena R. K., Ji Y., Li M., Yan X., He Y., Liu Y., Wang X., Xiang C., Varshney R. K., Ding H., Gao S., Zong X.. Improved Pea Reference Genome and Pan-Genome Highlight Genomic Features and Evolutionary Characteristics. Nat. Genet. 2022;54(10):1553–1563. doi: 10.1038/s41588-022-01172-2. PubMed DOI PMC

Feng C., Chen B., Hofer J., Shi Y., Jiang M., Song B., Cheng H., Lu L., Wang L., Howard A., Bendahmane A., Fouchal A., Moreau C., Sawada C., LeSignor C., Zhang C., Vikeli E., Tsanakas G., Zhao H., Cheema J., Barclay J. E., Hou J., Sayers L., Wingen L., Vigouroux M., Vickers M., Ambrose M., Dalmais M., Higuera-Poveda P., Li P., Yuan Q., Spanner R., Horler R., Wouters R., Chundakkad S., Wu T., Zhao X., Li X., Sun Y., Huang Z., Wu Z., Deng X. W., Steuernagel B., Domoney C., Ellis N., Chayut N., Cheng S.. Genomic and Genetic Insights into Mendel’s Pea Genes. Nature. 2025;642:980–989. doi: 10.1038/s41586-025-08891-6. PubMed DOI PMC

Crooks G. E., Hon G., Chandonia J.-M., Brenner S. E.. WebLogo: A Sequence Logo Generator. Genome Res. 2004;14(6):1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC

Jumper J., Evans R., Pritzel A.. et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC

Kelley L. A., Mezulis S., Yates C. M., Wass M. N., Sternberg M. J. E.. The Phyre2 Web Portal for Protein Modeling. Prediction and Analysis. Nat. Protoc. 2015;10(6):845–858. doi: 10.1038/nprot.2015.053. PubMed DOI PMC

Biundo A., Braunschmid V., Pretzler M., Kampatsikas I., Darnhofer B., Birner-Gruenberger R., Rompel A., Ribitsch D., Guebitz G. M.. Polyphenol Oxidases Exhibit Promiscuous Proteolytic Activity. Commun. Chem. 2020;3(1):1–8. doi: 10.1038/s42004-020-0305-2. PubMed DOI PMC

Kampatsikas I., Bijelic A., Rompel A.. Biochemical and Structural Characterization of Tomato Polyphenol Oxidases Provide Novel Insights into Their Substrate Specificity. Sci. Rep. 2019;9:4022. doi: 10.1038/s41598-019-39687-0. PubMed DOI PMC

Pretzler M., Bijelic A., Rompel A.. Heterologous Expression and Characterization of Functional Mushroom Tyrosinase (AbPPO4) Sci. Rep. 2017;7:7. doi: 10.1038/s41598-017-01813-1. PubMed DOI PMC

Kang D. H., Gho Y. S., Suh M. K., Kang C. H.. Highly sensitive and fast protein detection with coomassie brilliant blue in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bull. Korean Chem. Soc. 2002;23(11):1511–1512. doi: 10.5012/bkcs.2002.23.11.1511. DOI

Masuda T., Tomita T., Ishihama Y.. Phase Transfer Surfactant-Aided Trypsin Digestion for Membrane Proteome Analysis. J. Proteome Res. 2008;7:731–740. doi: 10.1021/pr700658q. PubMed DOI

Leon I. R., Schwammle V., Jensen O. N., Sprenger R. R.. Quantitative Assessment of In-solution Digestion Efficiency Identifies Optimal Protocols for Unbiased Protein Analysis. Mol. Cell. Proteom. 2013;12:2992–3005. doi: 10.1074/mcp.M112.025585. PubMed DOI PMC

Rappsilber J., Mann M., Ishihama Y.. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2007;2(8):1896–906. doi: 10.1038/nprot.2007.261. PubMed DOI

Vlčko T., Tarkowská D., Široká J., Pěnčík A., Simerský R., Chamrád I., Lenobel R., Novák O., Ohnoutková L.. Hormone profiling and the root proteome analysis of itpk1 mutant seedlings of barley (Hordeum vulgare) during the red-light induced photomorphogenesis. Environ. Exp. Botany. 2023;213:105428. doi: 10.1016/j.envexpbot.2023.105428. DOI

Yu F., Haynes S. E., Teo G. C., Avtonomov D. M., Polasky D. A., Nesvizhskii A. I.. Fast quantitative analysis of timsTOF PASEF data with MSFragger and IonQuant. Mol. Cel. Proteomics. 2020;19(9):1575–1585. doi: 10.1074/mcp.TIR120.002048. PubMed DOI PMC

Kong A. T., Leprevost F. V., Avtonomov D. M., Mellacheruvu D., Nesvizhskii A. I.. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat. Methods. 2017;14(5):513–520. doi: 10.1038/nmeth.4256. PubMed DOI PMC

Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T.. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995;4(11):2411–2423. doi: 10.1002/pro.5560041120. PubMed DOI PMC

Molitor C., Mauracher S. G., Pargan S., Mayer R. L., Halbwirth H., Rompel A.. Latent and Active Aurone Synthase from Petals of C. grandiflora: A Polyphenol Oxidase with Unique Characteristics. Planta. 2015;242(3):519–537. doi: 10.1007/s00425-015-2261-0. PubMed DOI PMC

Kampatsikas I., Pretzler M., Rompel A.. Identification of Amino Acid Residues Responsible for C–H Activation in Type-III Copper Enzymes by Generating Tyrosinase Activity in a Catechol Oxidase. Angew. Chem., Int. Ed. 2020;59(47):20940–20945. doi: 10.1002/anie.202008859. PubMed DOI PMC

Hanna P. M., Tamilarasan R., McMillin D. R.. Cu­(I) Analysis of Blue Copper Proteins. Biochem. J. 1988;256(3):1001–1004. doi: 10.1042/bj2561001. PubMed DOI PMC

Pretzler M., Rompel A.. Tyrosinases: a family of copper-containing metalloenzymes. ChemTexts. 2024;10:12. doi: 10.1007/s40828-024-00195-y. PubMed DOI PMC

Muñoz J. L., García-Molina F., Varón R., Rodriguez-Lopez J. N., García-Cánovas F., Tudela J.. Calculating Molar Absorptivities for Quinones: Application to the Measurement of Tyrosinase Activity. Anal. Biochem. 2006;351(1):128–138. doi: 10.1016/j.ab.2006.01.011. PubMed DOI

Derardja A. E., Pretzler M., Kampatsikas I., Barkat M., Rompel A.. Purification and Characterization of Latent Polyphenol Oxidase from Apricot (Prunus armeniaca L.) J. Agric. Food Chem. 2017;65(37):8203–8212. doi: 10.1021/acs.jafc.7b03210. PubMed DOI PMC

Derardja A. E., Pretzler M., Kampatsikas I., Barkat M., Rompel A.. Inhibition of Apricot Polyphenol Oxidase by Combinations of Plant Proteases and Ascorbic Acid. Food Chem. X. 2019;4:100053. doi: 10.1016/j.fochx.2019.100053. PubMed DOI PMC

Sedláková V., Zeljković S. Ć., Štefelová N., Smýkal P., Hanáček P.. Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy. Plants. 2023;12(14):2687. doi: 10.3390/plants12142687. PubMed DOI PMC

Choi Y. J., Tomás-Barberán F. A., Mikal E., Saltveit M. E.. Wound-induced phenolic accumulation and browning in lettuce (Lactuca sativa L.) leaf tissue is reduced by exposure to n-alcohols. Postharvest Biol. Technol. 2005;37:47–55. doi: 10.1016/j.postharvbio.2005.03.002. DOI

Singh B., Singh J. P., Kaur A., Singh N.. Phenolic Composition and Antioxidant Potential of Grain Legume Seeds: A Review. Food Res. Int. 2017;101:1–16. doi: 10.1016/j.foodres.2017.09.026. PubMed DOI

Jha A. B., Purves R. W., Elessawy F. M., Zhang H., Vandenberg A., Warkentin T. D.. Polyphenolic Profile of Seed Components of White and Purple Flower Pea Lines. Crop Sci. 2019;59(6):2711–2719. doi: 10.2135/cropsci2019.04.0279. DOI

Elessawy F. M., Bazghaleh N., Vandenberg A., Purves R. W.. Polyphenol Profile Comparisons of Seed Coats of Five Pulse Crops Using a Semi-Quantitative Liquid Chromatography-Mass Spectrometric Method. Phytochem. Analysis. 2020;31(4):458–471. doi: 10.1002/pca.2909. PubMed DOI

Hradilová I., Duchoslav M., Brus J., Pechanec V., Hýbl M., Kopecký P., Smržová L., Štefelová N., Vaclávek T., Michael B., Machalová J., Hron K., Pirintsos S., Smýkal P.. 2019. Variation in wild pea (Pisum sativum subsp. elatius) seed dormancy and its relationship to the environment and seed coat traits. PeerJ. 2019;7:e6263. doi: 10.7717/peerj.6263. PubMed DOI PMC

Marles M. A. S., Vandenberg A., Bett K. E.. Polyphenol Oxidase Activity and Differential Accumulation of Polyphenolics in Seed Coats of Pinto Bean (Phaseolus vulgaris L.) Characterize Postharvest Color Changes. J. Agric. Food Chem. 2008;56(16):7049–7056. doi: 10.1021/jf8004367. PubMed DOI

Tajoddin M., Manohar S., Lalitha J.. Effect of Soaking and Germination on Polyphenol Content and Polyphenol Oxidase Activity of Mung Bean (Phaseolus aureus L.) Cultivars Differing in Seed Color. Int. J. Food Properties. 2014;17(4):782–790. doi: 10.1080/10942912.2012.654702. DOI

Sikora M., Świeca M., Franczyk M., Jakubczyk A., Bochnak J., Złotek U.. Biochemical Properties of Polyphenol Oxidases from Ready-to-Eat Lentil (Lens culinaris Medik.) Sprouts and Factors Affecting Their Activities: A Search for Potent Tools Limiting Enzymatic Browning. Foods. 2019;8(5):154. doi: 10.3390/foods8050154. PubMed DOI PMC

Liao J., Wei X., Tao K., Deng G., Shu J., Qiao Q., Chen G., Wei Z., Fan M., Saud S., Fahad S., Chen S.. Phenoloxidases: Catechol Oxidase – the Temporary Employer and Laccase – the Rising Star of Vascular Plants. Hortic. Res. 2023;10(7):uhad102. doi: 10.1093/hr/uhad102. PubMed DOI PMC

Panis F., Kampatsikas I., Bijelic A., Rompel A.. Conversion of Walnut Tyrosinase into a Catechol Oxidase by Site Directed Mutagenesis. Sci. Rep. 2020;10(1):1659. doi: 10.1038/s41598-020-57671-x. PubMed DOI PMC

Derardja A. E., Pretzler M., Barkat M., Rompel A.. Extraction, Purification, and Characterization of Olive (Olea europaea L., cv. Chemlal) Polyphenol Oxidase. J. Agric. Food Chem. 2024;72(6):3099–3112. doi: 10.1021/acs.jafc.3c07776. PubMed DOI PMC

Derardja A. E., Pretzler M., Kampatsikas I., Radovic M., Fabisikova A., Zehl M., Barkat M., Rompel A.. Polyphenol Oxidase and Enzymatic Browning in Apricot (Prunus armeniaca L.): Effect on Phenolic Composition and Deduction of Main Substrates. Curr. Res. Food Sci. 2022;5:196–206. doi: 10.1016/j.crfs.2021.12.015. PubMed DOI PMC

Tran B. Q., Hernandez C., Waridel P., Potts A., Barblan J., Lisacek F., Quadroni M.. Addressing Trypsin Bias in Large Scale (Phospho)­Proteome Analysis by Size Exclusion Chromatography and Secondary Digestion of Large Post-Trypsin Peptides. J. Proteome Res. 2011;10(2):800–811. doi: 10.1021/pr100951t. PubMed DOI

Laskay Ü. A., Lobas A. A., Srzentić K., Gorshkov M. V., Tsybin Y. O.. Proteome Digestion Specificity Analysis for Rational Design of Extended Bottom-up and Middle-down Proteomics Experiments. J. Proteome Res. 2013;12(12):5558–5569. doi: 10.1021/pr400522h. PubMed DOI

Marusek C. M., Trobaugh N. M., Flurkey W. H., Inlow J. K.. Comparative Analysis of Polyphenol Oxidase from Plant and Fungal Species. J. Inorganic Biochem. 2006;100(1):108–123. doi: 10.1016/j.jinorgbio.2005.10.008. PubMed DOI

Sommer A., Ne’eman E., Steffens J. C., Mayer A. M., Harel E.. Import, Targeting, and Processing of a Plant Polyphenol Oxidase. Plant Physiol. 1994;105(4):1301–1311. doi: 10.1104/pp.105.4.1301. PubMed DOI PMC

Ono E., Fukuchi-Mizutani M., Nakamura N., Fukui Y., Yonekura-Sakakibara K., Yamaguchi M., Nakayama T., Tanaka T., Kusumi T., Tanaka Y.. Yellow Flowers Generated by Expression of the Aurone Biosynthetic Pathway. Proc. Natl. Acad. Sci. U S A. 2006;103(29):11075–11080. doi: 10.1073/pnas.0604246103. PubMed DOI PMC

Tran L. T., Constabel C. P.. The polyphenol oxidase gene family in poplar: phylogeny, differential expression and identification of a novel, vacuolar isoform. Planta. 2011;234(4):799–813. doi: 10.1007/s00425-011-1441-9. PubMed DOI

Olmedo P., Moreno A. A., Sanhueza D., Balic I., Silva-Sanzana C., Zepeda B., Verdonk J. C., Arriagada C., Meneses C., Campos-Vargas R.. A Catechol Oxidase AcPPO from Cherimoya (Annona cherimola Mill.) Is Localized to the Golgi Apparatus. Plant Sci. 2018;266:46–54. doi: 10.1016/j.plantsci.2017.10.012. PubMed DOI

Bijelic A., Pretzler M., Molitor C., Zekiri F., Rompel A.. The Structure of a Plant Tyrosinase from Walnut Leaves Reveals the Importance of “Substrate-Guiding Residues” for Enzymatic Specificity. Angewandte Chemie Int. Edition. 2015;54(49):14677–14680. doi: 10.1002/anie.201506994. PubMed DOI PMC

Virador V. M., Reyes Grajeda J. P., Blanco-Labra A., Mendiola-Olaya E., Smith G. M., Moreno A., Whitaker J. R.. Cloning, Sequencing, Purification, and Crystal Structure of Grenache (Vitis vinifera) Polyphenol Oxidase. J. Agric. Food Chem. 2010;58(2):1189–1201. doi: 10.1021/jf902939q. PubMed DOI

Fujieda N., Yabuta S., Ikeda T., Oyama T., Muraki N., Kurisu G., Itoh S.. Crystal Structures of Copper-Depleted and Copper-Bound Fungal pro-Tyrosinase: Insights into Endogenous Cysteine-Dependent Copper Incorporation. J. Biol. Chem. 2013;288(30):22128–22140. doi: 10.1074/jbc.M113.477612. PubMed DOI PMC

Pretzler M., Rompel A.. Mushroom Tyrosinase: Six Isoenzymes Catalyzing Distinct Reactions. Chem. Bio Chem. 2024;25(14):e202400050. doi: 10.1002/cbic.202400050. PubMed DOI

Kampatsikas I., Rompel A.. Similar but Still Different: Which Amino Acid Residues Are Responsible for Varying Activities in Type-III Copper Enzymes? Chem. Bio Chem. 2021;22(7):1161–1175. doi: 10.1002/cbic.202000647. PubMed DOI PMC

Moore B. M., Flurkey W. H.. Sodium Dodecyl Sulfate Activation of a Plant Polyphenoloxidase. Effect of Sodium Dodecyl Sulfate on Enzymatic and Physical Characteristics of Purified Broad Bean Polyphenoloxidase. J. Biol. Chem. 1990;265(9):4982–4988. doi: 10.1016/S0021-9258(19)34072-4. PubMed DOI

Gandía-Herrero F., Jiménez-Atiénzar M., Cabanes J., García-Carmona F., Escribano J.. Evidence for a Common Regulation in the Activation of a Polyphenol Oxidase by Trypsin and Sodium Dodecyl Sulfate. Biol. Chem. 2005;386(6):601–607. doi: 10.1515/BC.2005.070. PubMed DOI

Russell P., Schrock H. L., Gennis R. B.. Lipid Activation and Protease Activation of Pyruvate Oxidase. Evidence Suggesting a Common Site of Interaction on the Protein. J. Biol. Chem. 1977;252(21):7883–7887. doi: 10.1016/S0021-9258(17)41047-7. PubMed DOI

Guo L., Ma Y., Shi J., Xue S.. The Purification and Characterisation of Polyphenol Oxidase from Green Bean (Phaseolus Vulgaris L.) Food Chem. 2009;117(1):143–151. doi: 10.1016/j.foodchem.2009.03.088. DOI

Paul B., Gowda L. R.. Purification and Characterization of a Polyphenol Oxidase from the Seeds of Field Bean (Dolichos lablab) J. Agric. Food Chem. 2000;48(9):3839–3846. doi: 10.1021/jf000296s. PubMed DOI

Flurkey W. H.. In Vitro Biosynthesis of Vicia faba Polyphenoloxidase. Plant Physiol. 1985;79(2):564–567. doi: 10.1104/pp.79.2.564. PubMed DOI PMC

Isbilir S., Yediel A.. Partial Purification and Characterisation of Polyphenol Oxidase from Faba Bean (Vicia faba) Coat. Ukrainian J. Food Sci. 2021;9:167–180. doi: 10.24263/2310-1008-2021-9-2-5. DOI

Shin R., Froderman T., Flurkey W. H.. Isolation and Characterization of a Mung Bean Leaf Polyphenol Oxidase. Phytochemistry. 1997;45(1):15–21. doi: 10.1016/S0031-9422(96)00785-6. DOI

Takeuchi W., Takahashi H., Kojima M.. Purification and Characterization of the Main Isozyme of Polyphenol Oxidase in Mung Bean (Vigna mungo) Seedlings. Biosci. Biotechnol. Biochem. 1992;56(7):1134–1135. doi: 10.1271/bbb.56.1134. PubMed DOI

Nagai T., Suzuki N.. Polyphenol Oxidase from Bean Sprouts (Glycine max L.) J. Food Sci. 2003;68(1):16–20. doi: 10.1111/j.1365-2621.2003.tb14107.x. DOI

Pretzler M., Rompel A.. What Causes the Different Functionality in Type-III-Copper Enzymes? A State of the Art Perspective. Inorg. Chim. Acta. 2018;481:25–31. doi: 10.1016/j.ica.2017.04.041. DOI

Troszyńska A., Ciska E.. Phenolic Compounds of Seed Coats of White and Coloured Varieties of Pea (Pisum sativum L.) and Their Total Antioxidant Activity. Czech J. Food Sci. 2002;20(1):15–22. doi: 10.17221/3504-CJFS. DOI

Wright T. R.. The Genetics of Biogenic Amine Metabolism, Sclerotization, and Melanization in Drosophila melanogaster . Adv. Genet. 1987;24:127–222. doi: 10.1016/S0065-2660(08)60008-5. PubMed DOI

Henarejos-Escudero P., Hernández-García S., Martínez-Rodríguez P., García-Carmona F., Gandía-Herrero F.. Bioactive Potential and Spectroscopical Characterization of a Novel Family of Plant Pigments Betalains Derived from Dopamine. Food Res. Internat. 2022;162:111956. doi: 10.1016/j.foodres.2022.111956. PubMed DOI

Jena S., Sanyal R., Jawed D. Md., Sengupta K., Pradhan B., Sinha S. K., Sarkar B., Kumar S., Lenka S. K., Naskar S., Bhadana V. P., Bishi S. K.. Spatio-Temporal Expression of Polyphenol Oxidase Unveils the Dynamics of L-DOPA Accumulation in Faba Bean (Vicia faba L.) Physiol. Mol. Biol. Plants. 2024;30(5):839–850. doi: 10.1007/s12298-024-01449-2. PubMed DOI PMC

Arslan O., Temur A., Tozlu I.. Polyphenol oxidase from Malatya apricot. J. Agric. Food Chem. 1998;46:1239–1241. doi: 10.1021/jf970599v. DOI

Selinheimo E., NiEidhin D., Steffensen C., Nielsen J., Lomascolo A., Halaouli S., Record E., O’Beirne D., Buchert J., Kruus K.. Comparison of the characteristics of fungal and plant tyrosinases. J. Biotechnol. 2007;130:471–480. doi: 10.1016/j.jbiotec.2007.05.018. PubMed DOI

Li Y., McLarin M.-A., Middleditch M. J., Morrow S. J., Kilmartin P. A., Leung I. K. H.. An Approach to Recombinantly Produce Mature Grape Polyphenol Oxidase. Biochimie. 2019;165:40–47. doi: 10.1016/j.biochi.2019.07.002. PubMed DOI

Araji S., Grammer T. A., Gertzen R., Anderson S. D., Mikulic-Petkovsek M., Veberic R., Phu M. L., Solar A., Leslie C. A., Dandekar A. M., Escobar M. A.. Novel Roles for the Polyphenol Oxidase Enzyme in Secondary Metabolism and the Regulation of Cell Death in Walnut. Plant Physiol. 2014;164(3):1191–1203. doi: 10.1104/pp.113.228593. PubMed DOI PMC

Espín J. C., Morales M., Varon R., Tudela J., Garciacanovas F.. A Continuous Spectrophotometric Method for Determining the Monophenolase and Diphenolase Activities of Apple Polyphenol Oxidase. Anal. Biochem. 1995;231(1):237–246. doi: 10.1006/abio.1995.1526. PubMed DOI

Espín J. C., Morales M., Varón R., Tudela J., García-Cánovas F.. Monophenolase Activity of Polyphenol Oxidase from Blanquilla Pear. Phytochemistry. 1997;44(1):17–22. doi: 10.1016/S0031-9422(96)00488-8. DOI

Sui X., Meng Z., Dong T., Fan X., Wang Q.. Enzymatic Browning and Polyphenol Oxidase Control Strategies. Curr. Opinion Biotechnol. 2023;81:102921. doi: 10.1016/j.copbio.2023.102921. PubMed DOI

Espín J. C., Wichers H. J.. Slow-Binding Inhibition of Mushroom (Agaricus bisporus) Tyrosinase Isoforms by Tropolone. J. Agric. Food Chem. 1999;47(7):2638–2644. doi: 10.1021/jf981055b. PubMed DOI

Song W., Yang H., Liu S., Yu H., Li D., Li P., Xing R.. Melanin: Insights into Structure, Analysis, and Biological Activities for Future Development. J. Mater. Chem. B. 2023;11(32):7528–7543. doi: 10.1039/D3TB01132A. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...