Variation in wild pea (Pisum sativum subsp. elatius) seed dormancy and its relationship to the environment and seed coat traits
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30656074
PubMed Central
PMC6336014
DOI
10.7717/peerj.6263
PII: 6263
Knihovny.cz E-zdroje
- Klíčová slova
- Dormancy, Germination, Legumes, Niche-modelling, Pea, Proanthocyanidins, Seed coat, Temperature oscillations, Testa,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Seed germination is one of the earliest key events in the plant life cycle. The timing of transition from seed to seedling is an important developmental stage determining the survival of individuals that influences the status of populations and species. Because of wide geographical distribution and occurrence in diverse habitats, wild pea (Pisum sativum subsp. elatius) offers an excellent model to study physical type of seed dormancy in an ecological context. This study addresses the gap in knowledge of association between the seed dormancy, seed properties and environmental factors, experimentally testing oscillating temperature as dormancy release clue. METHODS: Seeds of 97 pea accessions were subjected to two germination treatments (oscillating temperatures of 25/15 °C and 35/15 °C) over 28 days. Germination pattern was described using B-spline coefficients that aggregate both final germination and germination speed. Relationships between germination pattern and environmental conditions at the site of origin (soil and bioclimatic variables extracted from WorldClim 2.0 and SoilGrids databases) were studied using principal component analysis, redundancy analysis and ecological niche modelling. Seeds were analyzed for the seed coat thickness, seed morphology, weight and content of proanthocyanidins (PA). RESULTS: Seed total germination ranged from 0% to 100%. Cluster analysis of germination patterns of seeds under two temperature treatments differentiated the accessions into three groups: (1) non-dormant (28 accessions, mean germination of 92%), (2) dormant at both treatments (29 acc., 15%) and (3) responsive to increasing temperature range (41 acc., with germination change from 15 to 80%). Seed coat thickness differed between groups with dormant and responsive accessions having thicker testa (median 138 and 140 µm) than non-dormant ones (median 84 mm). The total PA content showed to be higher in the seed coat of dormant (mean 2.18 mg g-1) than those of non-dormant (mean 1.77 mg g-1) and responsive accessions (mean 1.87 mg g-1). Each soil and bioclimatic variable and also germination responsivity (representing synthetic variable characterizing germination pattern of seeds) was spatially clustered. However, only one environmental variable (BIO7, i.e., annual temperature range) was significantly related to germination responsivity. Non-dormant and responsive accessions covered almost whole range of BIO7 while dormant accessions are found in the environment with higher annual temperature, smaller temperature variation, seasonality and milder winter. Ecological niche modelling showed a more localized potential distribution of dormant group. Seed dormancy in the wild pea might be part of a bet-hedging mechanism for areas of the Mediterranean basin with more unpredictable water availability in an otherwise seasonal environment. This study provides the framework for analysis of environmental aspects of physical seed dormancy.
Department of Biology and Botanical Garden University of Crete Heraklion Greece
Department of Botany Palacký University Olomouc Olomouc Czech Republic
Department of Geoinformatics Palacký University Olomouc Olomouc Czech Republic
Zobrazit více v PubMed
Ader F. On reducing the proportion of hard seeds in legume seed lots. International Seed Testing Association Proceedings. 1965;30:911–921.
Afzal SF, Ni J, Chen J, Wang Q, Liu W, Chen X, Tang C, Fu S, Wu L. Proanthocyanidins in seed coat tegmen and endospermic cap inhibit seed germination in Sapium sebiferum. PeerJ. 2017;6:e4690. doi: 10.7717/peerj.4690. PubMed DOI PMC
Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control. 1974;19:716–723. doi: 10.1109/TAC.1974.1100705. DOI
Appelhagen I, Thiedig K, Nordholt N, Schmidt N, Huep G, Sagasser M, Weisshaar B. Update on transparent testa mutants from Arabidopsis thaliana: characterisation of new alleles from an isogenic collection. Planta. 2014;240:955–970. doi: 10.1007/s00425-014-2088-0. PubMed DOI
Baskin CC, Baskin JM. Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic Press; San Diego: 2014.
Baskin JM, Baskin CC. A classification system for seed dormancy. Seed Science Research. 2004;14:1–16. doi: 10.1079/SSR2003150. DOI
Batlla D, Benech-Arnold RL. A framework for the interpretation of temperature effects on dormancy and germination in seed populations showing dormancy. Seed Science Research. 2015;25:147–158. doi: 10.1017/S0960258514000452. DOI
Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B. 1995;57:289–300.
Berger JD, Shrestha D, Ludwig C. Reproductive strategies in Mediterranean Legumes: trade-offs between phenology, seed size and vigor within and between wild and domesticated Lupinus species collected along aridity gradients. Frontiers in Plant Sciences. 2017;8 Article 548. PubMed PMC
Bewley JD, Bradford K, Hilhorst H, Nonogaki H, editors. Seeds: physiology of development, germination and dormancy. 3rd edition New York: Springer; 2013.
Borcard D, Legendre P. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling. 2002;153:51–68. doi: 10.1016/S0304-3800(01)00501-4. DOI
Bradford KJ. Applications of hydrothermal time to quantifying and modelling seed germination and dormancy. Weed Science. 2002;50:248–260. doi: 10.1614/0043-1745(2002)050[0248:AOHTTQ]2.0.CO;2. DOI
Burden RL, Faires JD. Numerical analysis. 9th edition PWS Publishing Company; Boston: 2011.
Burghardt LT, Brianne R, Edwards BR, Donohue K. Multiple paths to similar germination behavior in Arabidopsis thaliana. New Phytologist. 2015;209:1301–1312. doi: 10.1111/nph.13685. PubMed DOI
Cechová M, Válková M, Hradilová I, Soukup A, Janská A, Smýkal P, Bednář P. Towards better understanding of pea seed dormancy using laser desorption/ionization mass spectrometry. International Journal of Molecular Sciences. 2017;18 doi: 10.3390/ijms18102196. Article 2196. PubMed DOI PMC
Chen M, MacGregor DR, Dave A, Florance H, Moore K, Paszkiewicz K, Smirnoff N, Graham IA, Penfield S. Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year. Proceedings of the National Academy of Sciences of the United States of America. 2014;111:18787–18792. doi: 10.1073/pnas.1412274111. PubMed DOI PMC
Clauss MJ, Venable DL. Seed germination in desert annuals: an empirical test of adaptive bet hedging. American Naturalist. 2000;155:168–186. doi: 10.1086/303314. PubMed DOI
De Boor C. A practical guide to splines. Springer; New York: 1978.
Degreef J, Rocha OJ, Vanderborght T, Baudoin JP. Soil seed bank and seed dormancy in wild populations of lima bean (Fabaceae): considerations for in situ and ex situ conservation. American Journal of Botany. 2002;89:1644–1650. doi: 10.3732/ajb.89.10.1644. PubMed DOI
Diederichsen A, Jones-Flory LL. Accelerated aging tests with seeds of 11 flax (Linum usitatissimum) cultivars. Seed Science and Technology. 2005;33:419–429. doi: 10.15258/sst.2005.33.2.14. DOI
Donohue K, Rubio de Casas R, Burghardt L, Kovach K, Willis CG. Germination, post-germination adaptation, and species ecological ranges. Annual Review of Ecology, Evolution, and Systematics. 2010;41:293–319. doi: 10.1146/annurev-ecolsys-102209-144715. DOI
Dutilleul P, Clifford P, Richardson S, Hemon D. Modifying the t test for assessing the correlation between two spatial processes. Biometrics. 1993;49:305–314. doi: 10.2307/2532625. PubMed DOI
Edwards B, Burghardt LT, Kovach KE, Donohue K. Canalization of seasonal phenology in the presence of developmental variation: seed dormancy cycling in an annual weed. Integrative and Comparative Biology. 2017;57:1021–1039. doi: 10.1093/icb/icx065. PubMed DOI
Eliášová A, Münzbergová Z. Higher seed size and germination rate may favour autotetraploids of Vicia cracca L. (Fabaceae) Biological Journal of the Linnean Society. 2014;113:57–73. doi: 10.1111/bij.12318. DOI
Elith J, Graham CH, Anderson RP, Dudık M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMcC, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x. DOI
Exposito-Alonso M, Brennan AC, Alonso-Blanco C, Picó FX. Spatio-temporal variation in fitness responses to contrasting environments in Arabidopsis thaliana. Evolution. 2018;72(8):1570–1586. doi: 10.1111/evo.13508. PubMed DOI
Fenner M, Thompson K. The ecology of seeds. Cambridge University Press; Cambridge: 2005. p. 250.
Ferreras AE, Zeballos SR, Funes G. Inter- and intra-population variability in physical dormancy along a precipitation gradient. Acta Botanica Brasilica. 2017;31:141–146. doi: 10.1590/0102-33062016abb0406. DOI
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI
Fitzpatrick MC, Keller SR. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecology Letters. 2015;18:1–16. doi: 10.1111/ele.12376. PubMed DOI
Frachon L, Bartoli C, Carrère S, Bouchez O, Chaubet A, Gautier M, Roby D, Roux F. A genomic map of climate adaptation in Arabidopsis thaliana at a micro-geographic scale. Frontiers in Plant Sciences. 2018;9 doi: 10.3389/fpls.2018.00967. Article 967. PubMed DOI PMC
Gamma-Arachchige NS, Baskin J, Geneve RL, Baskin CC. Quantitative analysis of the thermal requirements for step-wise physical dormancy break in seeds of the winter annual Geranium carolinianum (Geraniaceae) Annals of Botany. 2013;111:849–858. doi: 10.1093/aob/mct046. PubMed DOI PMC
Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica. 2001;4 Article 1.
Hengl T, De Jesus JM, Heuvelink GB, Gonzalez MR, Kilibarda M, Blagotić A, Guevara MA. SoilGrids250m: global gridded soil information based on machine learning. PLOS ONE. 2017;12:e0169748. doi: 10.1371/journal.pone.0169748. PubMed DOI PMC
Hernandez PA, Graham CH, Master LL, Albert DL. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography. 2006;29:773–785. doi: 10.1111/j.0906-7590.2006.04700.x. DOI
Hijmans RJ. raster: geographic data analysis and modeling. R package version 2.6-7https://cran.r-project.org/web/packages/raster/index.html 2017
Hijmans RJ, Phillips S, Leathwick L, Elith J. dismo: species distribution modeling. R package version 1.1-4https://cran.r-project.org/web/packages/dismo/index.html 2017
Holst N, Rasmussen IA, Bastiaans L. Field weed population dynamics: a review of model approaches and applications. Weed Research. 2007;47:1–14. doi: 10.1111/j.1365-3180.2007.00534.x. DOI
Hradilová I, Trněný O, Válková M, Cechová M, Janská A, Prokešová L, Aamir K, Krezdorn N, Rotter B, Winter P, Varshney RK, Soukup A, Bednář P, Hanáček P, Smýkal P. A combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits: Pod dehiscence and seed dormancy in pea (Pisum sp.) Frontiers in Plant Science. 2017;8:542e. doi: 10.3389/fpls.2017.00542. PubMed DOI PMC
Janská A, Pecková E, Sczepaniak B, Smýkal P, Soukup A. The role of the testa during the establishment of physical dormancy in the pea seed. Annals of Botany. 2018 doi: 10.1093/aob/mcy213. Epub ahead of print Dec 8 2018. PubMed DOI PMC
Jayasuriya KMGG, Baskin JM, Geneve RL, Baskin CC. A proposed mechanism for physical dormancy break in seeds of Ipomoea lacunosa (Convolvulaceae) Annals of Botany. 2009;103:433–445. doi: 10.1093/aob/mcn240. PubMed DOI PMC
Kader MA. A comparison of seed germination calculation formulae and the associated interpretation of resulting data. Journal & Proceedings of the Royal Society of New South Wales. 2005;138:65–75.
Kantar F, Pilbeam CJ, Hebblethwaite PD. Effect of tannin content of faba bean (Vicia faba) seed on seed vigour, germination and field emergence. Annals of Applied Biology. 1996;128:85–93. doi: 10.1111/j.1744-7348.1996.tb07092.x. DOI
Kerdaffrec E, Nordborg M. The maternal environment interacts with genetic variation in regulating seed dormancy in Swedish Arabidopsis thaliana. PLOS ONE. 2017;12:e0190242. doi: 10.1371/journal.pone.0190242. PubMed DOI PMC
Khan MA, Ungar IA. The role of hormones in regulating the germination of polymorphic and early seedling growth of Atriplex triangularis under saline conditions. Physiologia Plantarum. 1985;63:109–113. doi: 10.1111/j.1399-3054.1985.tb02827.x. DOI
Kleinbaum DG, Klein M. Logistic regression. 3rd edition Springer; Heidelberg: 2010.
Legendre P, Legendre L. Numerical ecology. Elsevier; Amsterdam: 2012. p. 990.
Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology. 2006;57:405–430. doi: 10.1146/annurev.arplant.57.032905.105252. PubMed DOI
Long RL, Gorecki MJ, Renton M, Scott JK, Colville L, Goggin DE, Commander LE, Westcott DA, Cherry H, Finch-Savage WE. The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biological Reviews. 2015;90:31–59. doi: 10.1111/brv.12095. PubMed DOI
Machalová J. Optimal interpolating and optimal smoothing spline. Journal of Electrical Engineering. 2002;5312:79–82.
Mandák B. Seed heteromorphism and the life cycle of plants: a literature review. Preslia. 1997;69:129–159.
Marbach I, Mayer AM. Permeability of seed coats to water as related to drying conditions and metabolism of phenolics. Plant Physiology. 1974;54:817–820. doi: 10.1104/pp.54.6.817. PubMed DOI PMC
Meyer C, Weigelt P, Kreft H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecology Letters. 2016;19:992–1006. doi: 10.1111/ele.12624. PubMed DOI
Michel BE, Kaufmann MR. The osmotic potential of polyethylene glycol 6000. Plant Physiology. 1973;51:914–916. doi: 10.1104/pp.51.5.914. PubMed DOI PMC
Moïse JA, Han S, Gudynaite-Savitch L, Johnson DA, Miki BLA. Seed coats: structure, development, composition, and biotechnology. In Vitro Cellular & Developmental Biology—Plant. 2005;41:620–644. doi: 10.1079/IVP2005686. DOI
Murphey PC, Guralnick RP, Glaubitz R, Neufeld D, Ryan JA. Georeferencing of museum collections: a review of problems and automated tools, and the methodology developed by the Mountain and Plains Spatio-temporal database-informatics initiative (Mapstedi) Phyloinformatics. 2004;1:1–29. doi: 10.5281/zenodo.59792. DOI
Norman HC, Cocks PC, Galwey NW. Hardseededness in annual clovers: variation between populations from wet and dry environments. Australian Journal of Agricultural Science. 2002;53:821–829. doi: 10.1071/AR01115. DOI
Oksanen J, Blanchet FG, Friedly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. Vegan: community ecology package. R package version 2.5-3http://CRAN.R-project.org/package=vegan. [1 September 2018];2018
Osmond CB, Björkman O, Anderson DJ. Physiological processes in plant ecology—towards a synthesis with Atriplex. Springer; Berlin: 1980.
Pang Y, Peel GJ, Sharma SB, Tang Y, Dixon RA. A transcript profiling approach reveals an epicatechin-specific glucosyltransferase expressed in the seed coat of Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:14210–14215. doi: 10.1073/pnas.0805954105. PubMed DOI PMC
Pebesma EJ, Bivand RS. Classes and methods for spatial data in R. R News. 2005;5(2):9–13.
Penfield S, MacGregor DR. Effects of environmental variation during seed production on seed dormancy and germination. Journal of Experimental Botany. 2017;68:819–825. doi: 10.1093/jxb/erw436. PubMed DOI
Peres-Neto P, Legendre P, Dray S, Borcard D. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology. 2006;87:2614–2625. doi: 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2. PubMed DOI
Philippi T, Seger J. Hedging one’s evolutionary bets, revisited. Trends in Ecology and Evolution. 1989;4:41–44. doi: 10.1016/0169-5347(89)90138-9. PubMed DOI
Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 2006;190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026. DOI
Phillips SJ, Dudík M, Schapire RE. Maxent software for modeling species niches and distributions. Version 3.4.1http://biodiversityinformatics.amnh.org/open_source/maxent/ [17 July 2018];2017
Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I. Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Sciences. 2007;12:29–36. doi: 10.1016/j.tplants.2006.11.006. PubMed DOI
Probert R. The role of temperature in the regulation of seed dormancy and germination. In: Fenner M, editor. Seeds: the ecology of regeneration in plant communities. CAB International; Wallingford: 2000. pp. 261–292. DOI
Quinlivan BJ. The effect of constant and fluctuating temperatures on the permeability of the hard seeds of some legume species. Australian Journal of Agricultural Research. 1961;12:1009–1022. doi: 10.1071/AR9611009. DOI
Quinlivan BJ. The relationship between temperature fluctuations and the softening of hard seeds of some legume species. Australian Journal of Agricultural Research. 1966;17:625–631. doi: 10.1071/AR9660625. DOI
Quinlivan BJ. Environmental variation in the long term pattern of germination from hard seeds of Lupinus varius. Australian Journal of Experimental Agriculture and Animal Husbandry. 1967;7:263–265. doi: 10.1071/EA9670263. DOI
Quinlivan BJ. The softening of hard seeds of san-plain lupin (Lupinus varius) Australian Journal of Agricultural Research. 1968;19:507–515. doi: 10.1071/AR9680507. DOI
Quinlivan BJ, Millington AJ. The effect of a Mediterranean summer environment on the permeability of hard seeds of subterranean clover. Australian Journal of Agricultural Research. 1962;13:377–387. doi: 10.1071/AR9620377. DOI
R Development Core Team . R Foundation for Statistical Computing; Vienna: 2018.
Ramsay J, Silverman B. Functional data analysis. 2nd edition Springer; New York: 2005.
Ranal MA, Santana DG. How and why to measure the germination process? Brazilian Journal of Botany. 2006;29:1–11. doi: 10.1590/S0100-84042006000100002. DOI
Raviv B, Aghajanyan L, Granot G, Makover V, Frenkel O, Gutterman Y, Grafi G. The dead seed coat functions as a long-term storage for active hydrolytic enzymes. PLOS ONE. 2017;12(7):e0181102. doi: 10.1371/journal.pone.0181102. PubMed DOI PMC
Rees M. Evolutionary ecology of seed dormancy and seed size. Philosophical Transactions of the Royal Society of London, Series B Biological Sciences. 1996;351:1299–1308. doi: 10.1098/rstb.1996.0113. DOI
Renzi JP, Chantre GR, Cantamutto MA. Vicia villosa ssp. villosa Roth field emergence model in semiarid agroecosystem. Grass and Forage Science. 2018;73:146–158. doi: 10.1111/gfs.12295. DOI
Rosbakh S, Poschlod P. Initial temperature of seed germination as related to species occurrence along a temperature gradient. Functional Ecology. 2015;29:5–14. doi: 10.1111/1365-2435.12304. DOI
Rosenberg MS, Anderson CD. PASSaGE: pattern analysis, spatial statistics, and geographic exegesis. Version 2. Methods in Ecology and Evolution. 2011;2:229–232. doi: 10.1111/j.2041-210X.2010.00081.x. DOI
Rubio de Casas R, Willis CG, Pearse WD, Baskin CC, Baskin JM, Cavender-Bares J. Global biogeography of seed dormancy is determined by seasonality and seed size: a case study in the legumes. New Phytologist. 2017;214:1527–1536. doi: 10.1111/nph.14498. PubMed DOI
Secretariat of the Convention on Biological Diversity United Nations Environmental Programme . Nagoya protocol on access to genetic resources and the fair and equitable sharing of benefits arising from their utilization to the convention on biological diversity. Secretariat of the Convention on Biological Diversity; Montreal: 2011.
Schoener TW. Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology. 1968;49:704–726. doi: 10.2307/1935534. DOI
Smýkal P, Hradilová I, Trněný O, Brus J, Rathore A, Bariotakis M, Das RR, Bhattacharyya D, Richards C, Coyne CJ, Pirintsos S. Genomic diversity and macroecology of the crop wild relatives of domesticated pea. Scientific Reports. 2017;7:17384. doi: 10.1038/s41598-017-17623-4. PubMed DOI PMC
Smýkal P, Nelson MN, Berger JD, Von Wettberg EJB. The impact of genetic changes during crop domestication. MDPI Agronomy. 2018b;8 doi: 10.3390/agronomy8070119. Article 119. DOI
Smýkal P, Trněný O, Brus J, Hanáček P, Rathore A, Roma RD, Pechanec V, Duchoslav M, Bhattacharyya D, Bariotakis M, Pirintsos S, Berger J, Toker C. Genetic structure of wild pea (Pisum sativum subsp. elatius) populations in the northern part of the Fertile Crescent reflects moderate cross-pollination and strong effect of geographic but not environmental distance. PLOS ONE. 2018a;13:e0194056. doi: 10.1371/journal.pone.0194056. PubMed DOI PMC
Smýkal P, Vernoud V, Blair MW, Soukup A, Thompson RD. The role of the testa during development and in establishment of dormancy of the legume seed. Frontiers in Plant Sciences. 2014;5 Article 351. PubMed PMC
Soltani E, Ghaderi-Far F, Baskin CC, Baskin JM. Problems with using mean germination time to calculate rate of seed germination. Australian Journal of Botany. 2015;63:1–6.
Šmilauer P, Lepš J. Multivariate analysis of ecological data using CANOCO 5. Second edition Cambridge University Press; Cambridge: 2014.
Sperber K, Steinbrecher T, Graeber K, Scherer G, Clausing S, Wiegand N, James EH, Rainer K, Leubner-Metzger G, Mummenhoff K. Fruit fracture biomechanics and the release of Lepidium didymum pericarp-imposed mechanical dormancy by fungi. Nature Communications. 2017;8 doi: 10.1038/s41467-017-02051-9. Article 1868. PubMed DOI PMC
Springthorpe V, Penfield S. Flowering time and seed dormancy control use external coincidence to generate life history strategy. eLife. 2015;4 doi: 10.7554/eLife.05557. Article 05557. PubMed DOI PMC
Stine PA, Hunsaker CT. Spatial uncertainty in ecology. Springer; New York: 2001. An introduction to uncertainty issues for spatial data used in ecological applications; pp. 91–107. DOI
Tabas-Madrid D, Méndez-Vigo B, Arteaga N, Marcer A, Pascual-Montano A, Weigel D, Xavier Picó F, Alonso-Blanco C. Genome-wide signatures of flowering adaptation to climate temperature: regional analyses in a highly diverse native range of Arabidopsis thaliana. Plant, Cell and Environment. 2018;41(8):1806–1820. doi: 10.1111/pce.13189. PubMed DOI
Tanabata T, Shibaya T, Hori K, Ebana K, Yano M. SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiology. 2012;160:1871–1880. doi: 10.1104/pp.112.205120. PubMed DOI PMC
Taylor GB. Effect of constant temperature treatments followed by fluctuating temperatures on the softening of hard seeds of Trifolium subterraneum L. Australian Journal of Plant Physiology. 1981;8:547–558.
Taylor GB. Incidence and measurement of autumn seed softening within Medicago polymorpha L. Australian Journal of Agricultural Research. 1996;47:575–586. doi: 10.1071/AR9960575. DOI
Taylor GB. Hardseededness in Mediterranean annual pasture legumes in Australia: a review. Australian Journal of Agricultural Research. 2005;56:645–661.
Ter Braak CJF, Šmilauer P. Microcomputer Power; Ithaca: 2012. p. 496 pp.
Thompson JD. Plant evolution in the Mediterranean. Oxford University Press; Oxford: 2005.
Thompson P. Changes in germination responses of Silene secundiflora in relation to the climate of its habitat. Physiologia Plantarum. 1970;23:739–746. doi: 10.1111/j.1399-3054.1970.tb06468.x. DOI
Trněný O, Brus J, Hradilová I, Rathore A, Das RR, Kopecký P, Coyne CJ, Reeves P, Richards C, Smýkal P. Molecular evidence for two domestication events in the pea crop. Gene. 2018;9 doi: 10.3390/genes9110535. Article 535. PubMed DOI PMC
Troszynska A, Ciska E. Phenolic compounds of seed coats of white and coloured varieties of pea (Pisum sativum L.) and their total antioxidant activity. Czech Journal of Food Sciences. 2002;20:15–22.
Van Assche JA, Debucquoy KLA, Rommens WAF. Seasonal cycles in the germination capacity of buried seeds of some Leguminosae (Fabaceae) New Phytologist. 2003;158:315–323. doi: 10.1046/j.1469-8137.2003.00744.x. DOI
Van den Boogaart K, Egozcue J, Pawlowsky-Glahn V. Bayes Hilbert spaces. Australian & New Zealand Journal of Statistics. 2014;54:171–194.
Venable DL. Bet hedging in a guild of desert annuals. Ecology. 2007;88:1086–1090. doi: 10.1890/06-1495. PubMed DOI
Venable DL, Brown JS. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. American Naturalist. 1988;131:360–384. doi: 10.1086/284795. DOI
Venables WN, Ripley BD. Modern applied statistics with S. Fourth edition. Springer; New York: 2002.
Vidigal DS, Marques ACSS, Willems LAJ, Buijs G, Mendez-Vigo B, Hilhorst HWM, Bentsink L, Picó FX, Alonso-Blanco C. Altitudinal and climatic associations of seed dormancy and flowering traits evidence adaptation of annual life cycle timing in Arabidopsis thaliana. Plant Cell and Environment. 2016;39:1737–1748. doi: 10.1111/pce.12734. PubMed DOI
Vleeshouwers LM, Kropff MJ. Modelling field emergence patterns in arable weeds. New Phytologist. 2000;148:445–457. PubMed
Volis S, Bohrer G. Joint evolution of seed traits along an aridity gradient: seed size and dormancy are not two substitutable evolutionary traits in temporally heterogeneous environment. New Phytologist. 2013;197:655–667. doi: 10.1111/nph.12024. PubMed DOI
Von Wettberg EB, Chang PL, Başdemir F, Carrasquila-Garcia N, Korbu LB, Moenga SM, Bedada G, Greenlon A, Moriuchi KS, Singh V, Cordeiro MA, Noujdina NV, Dinegde KN, Shah Sani SGA, Getahun T, Vance L, Bergmann E, Lindsay D, Mamo BE, Warschefsky EJ, Dacosta-Calheiros E, Marques E, Yilmaz MA, Cakmak A, Rose J, Migneault A, Krieg CP, Saylak S, Temel H, Friesen ML, Siler E, Akhmetov Z, Ozcelik H, Kholova J, Can C, Gaur P, Yildirim M, Sharma H, Vadez V, Tesfaye K, Woldemedhin AF, Tar’an B, Aydogan A, Bukun B, Penmetsa RV, Berger J, Kahraman A, Nuzhdin SV, Cook DR. Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nature Communications. 2018;9 doi: 10.1038/s41467-018-02867-z. Article 649. PubMed DOI PMC
Wada S, Kennedy JA, Reed BM. Seed-coat anatomy and proanthocyanidins contribute to the dormancy of Rubus seed. Scientia Horticulturae. 2011;130:762–768. doi: 10.1016/j.scienta.2011.08.034. DOI
Wagmann K, Hautekèete NC, Piquot Y, Meunier C, Schmitt SE, Van Dijk H. Seed dormancy distribution: explanatory ecological factors. Annals of Botany. 2012;110:1205–1219. doi: 10.1093/aob/mcs194. PubMed DOI PMC
Warren DL, Glor RE, Turelli M. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution. 2008;62:2868–2883. doi: 10.1111/j.1558-5646.2008.00482.x. PubMed DOI
Warren DL, Glor RE, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography. 2010;33:607–611.
Weitbrecht K, Müller K, Leubner-Metzger G. First off the mark: early seed germination. Journal of Experimental Botany. 2011;62:3289–3309. doi: 10.1093/jxb/err030. PubMed DOI
Werker E, Marbach I, Mayer AM. Relation between the anatomy of the testa, water permeability and the presence of phenolics in the genus Pisum. Annals of Botany. 1979;43:765–771. doi: 10.1093/oxfordjournals.aob.a085691. DOI
Willis CG, Baskin CC, Baskin JM, Auld JR, Venable DL, Cavender-Bares J, Donohue K, Rubio de Casas R, NESCent Germination Working Group The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytologist. 2014;203:300–309. doi: 10.1111/nph.12782. PubMed DOI
Wilson TB, Witkowski ETF. Water requirements for germination and early seedling establishment in four African savanna woody plant species. Journal of Arid Environments. 1998;38:541–550. doi: 10.1006/jare.1998.0362. DOI
Wyatt JE. Seed coat and water absorption properties of seed of near-isogenic snap bean lines differing in seed coat color. Journal American Society for Horticultural Science. 1977;102:478–480.
Yoder JB, Stanton-Geddes J, Zhou P, Briskine R, Young ND, Tiffin P. Genomic signature of adaptation to climate in Medicago truncatula. Genetics. 2014;196:1263–1275. doi: 10.1534/genetics.113.159319. PubMed DOI PMC
Zhang XK, Yang GT, Chen L, Yin JM, Tang ZL, Li JN. Physiological differences between yellow-seeded and black-seeded rapeseed (Brassica napus L.) with different testa characteristics during artificial ageing. Seed Science and Technology. 2006;34:373–381. doi: 10.15258/sst.2006.34.2.13. DOI
Zhou S, Sekizuka H, Yang Z, Sawa S, Pan J. Phenolics in the seed coat of wild soybean (Glycine soja) and their significance for seed hardness and seed germination. Journal of Agricultural and Food Chemistry. 2010;58:10972–10978. doi: 10.1021/jf102694k. PubMed DOI
Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy
A comparison of seed germination coefficients using functional regression
Physical Dormancy Release in Medicago truncatula Seeds Is Related to Environmental Variations