The Key to the Future Lies in the Past: Insights from Grain Legume Domestication and Improvement Should Inform Future Breeding Strategies

. 2022 Nov 22 ; 63 (11) : 1554-1572.

Jazyk angličtina Země Japonsko Médium print

Typ dokumentu přehledy, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35713290

Grantová podpora
Food Future Institute, Murdoch University

Crop domestication is a co-evolutionary process that has rendered plants and animals significantly dependent on human interventions for survival and propagation. Grain legumes have played an important role in the development of Neolithic agriculture some 12,000 years ago. Despite being early companions of cereals in the origin and evolution of agriculture, the understanding of grain legume domestication has lagged behind that of cereals. Adapting plants for human use has resulted in distinct morpho-physiological changes between the wild ancestors and domesticates, and this distinction has been the focus of several studies aimed at understanding the domestication process and the genetic diversity bottlenecks created. Growing evidence from research on archeological remains, combined with genetic analysis and the geographical distribution of wild forms, has improved the resolution of the process of domestication, diversification and crop improvement. In this review, we summarize the significance of legume wild relatives as reservoirs of novel genetic variation for crop breeding programs. We describe key legume features, which evolved in response to anthropogenic activities. Here, we highlight how whole genome sequencing and incorporation of omics-level data have expanded our capacity to monitor the genetic changes accompanying these processes. Finally, we present our perspective on alternative routes centered on de novo domestication and re-domestication to impart significant agronomic advances of novel crops over existing commodities. A finely resolved domestication history of grain legumes will uncover future breeding targets to develop modern cultivars enriched with alleles that improve yield, quality and stress tolerance.

Zobrazit více v PubMed

Abbo S., Berger J. and Turner N.C. (2003) Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. PubMed

Abbo S., Lev-Yadun S. and Gopher A. (2012) Plant domestication and crop evolution in the near east: on events and processes.

Abbo S., Pinhasi Van-oss R., Gopher A., Saranga Y., Ofner I. and Peleg Z. (2014) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. PubMed

Abbo S., Saranga Y., Peleg Z., Kerem Z., Lev-Yadun S. and Gopher A. (2009) Reconsidering domestication of legumes versus cereals in the ancient Near East. PubMed

Abbo S., Zezak I., Zehavi Y., Schwartz E., Lev-Yadun S. and Gopher A. (2013) Six seasons of wild pea harvest in Israel: bearing on Near Eastern plant domestication.

Alonge M., Wang X., Benoit M., Soyk S., Pereira L., Zhang L., et al. (2020) Major impacts of widespread structural variation on gene expression and crop improvement in tomato. PubMed PMC

Alseekh S., Scossa F. and Fernie A.R. (2020) Mobile transposable elements shape plant genome diversity. PubMed

Alseekh S., Scossa F., Wen W., Luo J., Yan J., Beleggia R., et al. (2021) Domestication of crop metabolomes: desired and unintended consequences. PubMed

Aryamanesh N., Byrne O., Hardie D.C., Khan T., Siddique K.H.M. and Yan G. (2012) Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (

Aryamanesh N., Zeng Y., Byrne O., Hardie D.C., Al-Subhi A.M., Khan T., et al. (2014) Identification of genome regions controlling cotyledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping. PubMed

Avni R., Nave M., Barad O., Baruch K., Twardziok S.O., Gundlach H., et al. (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. PubMed

Beji S., Fontaine V., Devaux R., Thomas M., Negro S.S., Bharman N., et al. (2020) Genome-wide association study identifies favorable SNP alleles and candidate genes for frost tolerance in pea. PubMed PMC

Belachew K.Y., Nagel K.A., Fiorani F. and Stoddard F.L. (2018) Diversity in root growth responses to moisture deficit in young faba bean ( PubMed PMC

Bellucci E., Bitocchi E., Ferrarini A., Benazzo A., Biagetti E., Klie S., et al. (2014) Decreased nucleotide and expression diversity and modified coexpression patterns characterize domestication in the common bean. PubMed PMC

Berger J.D., Adhikari K.N., Wilkinson D., Buirchell B.J. and Sweetingham M.W. (2008) Ecogeography of the Old World lupins. 1. Ecotypic variation in yellow lupin (

Berger J.D., Milroy S.P., Turner N.C., Siddique K.H.M., Imtiaz M. and Malhotra R. (2011) Chickpea evolution has selected for contrasting phenological mechanisms among different habitats.

Berger J.D., Shrestha D. and Ludwig C. (2017) Reproductive strategies in Mediterranean legumes: trade-offs between phenology, seed size and vigor within and between wild and domesticated PubMed PMC

Bitocchi E., Rau D., Bellucci E., Rodriguez M., Murgia M.L., Gioia T., et al. (2017) Beans ( PubMed PMC

Blair M.W., Iriarte G. and Beebe S. (2006) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean ( PubMed

Blair M.W. and Izquierdo P. (2012) Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. PubMed

Blair M.W., Soler A. and Cortés A.J. (2012) Diversification and population structure in common beans ( PubMed PMC

Blixt S. (1972) Mutation genetics in

Bohra A., Kilian B., Sivasankar S., Caccamo M., Mba C., McCouch S.R., et al. (2022) Reap the crop wild relatives for breeding future crops. PubMed

Boyer J.S. (1982) Plant productivity and environment. PubMed

Byrne O.M., Hardie D.C., Khan T.N., Speijers J. and Yan G. (2008) Genetic analysis of pod and seed resistance to pea weevil in a

Caracuta V., Barzilai O., Khalaily H., Milevski I., Paz Y., Vardi J., et al. (2015) The onset of faba bean farming in the Southern Levant. PubMed PMC

Caracuta V., Weinstein-Evron M., Kaufman D., Yeshurun R., Silvent J. and Boaretto E. (2016) 14,000-year-old seeds indicate the Levantine origin of the lost progenitor of faba bean. PubMed PMC

Chen W., Chen L., Zhang X., Yang N., Guo J., Wang M., et al. (2022) Convergent selection of a WD40 protein that enhances grain yield in maize and rice. PubMed

Chen X., Li H., Pandey M.K., Yang Q., Wang X., Garg V., et al. (2016) Draft genome of the peanut A-genome progenitor ( PubMed PMC

Cook D.E., Lee T.G., Guo X., Melito S., Wang K., Bayless A.M., et al. (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. PubMed

Coyne C.J., Kumar S., von Wettberg E.J., Marques E., Berger J.D., Redden R.J., et al. (2020) Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement.

De Candolle A. (1883) Origine des plantes cultivées. Germer Baillière, Paris, VIII-379 p.

Delfini J., Moda-Cirino V., Dos Santos Neto J., Zeffa D.M., Nogueira A.F., Ribeiro L.A.B., et al. (2021) Genome-wide association study identifies genomic regions for important morpho-agronomic traits in Mesoamerican common bean. PubMed PMC

Di Vittori V., Bitocchi E., Rodriguez M., Alseekh S., Bellucci E., Nanni L., et al. (2021) Pod indehiscence in common bean is associated with the fine regulation of PvMYB26. PubMed PMC

Doebley J.F., Gaut B.S. and Smith B.D. (2006) The molecular genetics of crop domestication. PubMed

Domínguez M., Dugas E., Benchouaia M., Leduque B., Jiménez-Gómez J.M., Colot V., et al. (2020) The impact of transposable elements on tomato diversity. PubMed PMC

Dong Y., Yang X., Liu J., Wang B.H., Liu B.L. and Wang Y.Z. (2014) Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. PubMed

Fernie A., Alseekh S., Liu J. and Yan J. (2021) Using precision phenotyping to inform de novo domestication. PubMed PMC

Fernie A.R., Tadmor Y. and Zamir D. (2006) Natural genetic variation for improving crop quality. PubMed

Fernie A.R. and Yan J. (2019) De novo domestication: an alternative route toward new crops for the future. PubMed

Fonceka D., Tossim H.A., Rivallan R., Vignes H., Lacut E., de Bellis F., et al. (2012) Construction of chromosome segment substitution lines in peanut ( PubMed PMC

Fuller D.Q. (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. PubMed PMC

Fuller D.Q. and Allaby R. (2018) Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation.

Fuller D.Q., Denham T., Arroyo-Kalin M., Lucas L., Stevens C.J., Qin L., et al. (2014) Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. PubMed PMC

Funatsuki H., Suzuki M., Hirose A., Inaba H., Yamada T., Hajika M., et al. (2014) Molecular basis of a shattering resistance boosting global dissemination of soybean. PubMed PMC

García-Fernández C., Campa A., Garzón A.S., Miklas P. and Ferreira J.J. (2021) GWAS of pod morphological and color characters in common bean. PubMed PMC

Gioia T., Logozzo G., Kami J., Spagnoletti Zeuli. P. and Gepts P. (2013) Identification and characterization of a homologue to the Arabidopsis PubMed

Gorim L.Y. and Vandenberg A. (2017) Evaluation of wild lentil species as genetic resources to improve drought tolerance in cultivated lentil. PubMed PMC

Gutierrez N., Avila C.M. and Torres A.M. (2020) The bHLH transcription factor VfTT8 underlies zt2, the locus determining zero tannin content in faba bean ( PubMed PMC

Gutierrez N. and Torres A.M. (2019) Characterization and diagnostic marker for TTG1 regulating tannin and anthocyanin biosynthesis in faba bean. PubMed PMC

Hansen J. and Renfrew J.M. (1978) Paleolithic-neolithic seed remains at Franchthi cave, Greece.

Harlan J.R. (1971) Agricultural origins: centers and non centers. PubMed

Haupt M. and Schmid K. (2020) Combining focused identification of germplasm and core collection strategies to identify genebank accessions for central European soybean breeding. PubMed

He Q.Y., Yang H.Y., Xiang S.H., Tian D., Wang W.B., Zhao T.J., et al. (2015) Fine mapping of the genetic locus

Hecht V., Knowles C.L., Vander Schoor J.K., Liew L.C., Jones S.E., Lambert M.J., et al. (2007) Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. PubMed PMC

Helbaek H. (1969) Plant collecting, dry-farming and irrigation agriculture in prehistoric Deh Luran.

Hellens R.P., Moreau C., Lin-Wang K., Schwinn K.E., Thomson S.J., Fiers M.W., et al. (2010) Identification of Mendel’s white flower character. PubMed PMC

Hellwig T., Abbo S. and Ophir R. (2022) Phylogeny and disparate selection signatures suggest two genetically independent domestication events in pea (Pisum L.). PubMed PMC

Hopf M. (1983) Jericho plant remains.

Hradilová I., Duchoslav M., Brus J., Pechanec V., Hýbl M., Kopecký P., et al. (2019) Variation in wild pea ( PubMed PMC

Hradilová I., Trněný O., Válková M., Cechová M., Janská A., Prokešová L., et al. (2017) A combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits: pod dehiscence and seed dormancy in pea ( PubMed PMC

Idrissi O., Houasli C., Udupa S.M., De Keyser E., Van Damme P. and Udupa S.M. (2015) Genetic variability for root and shoot traits in a lentil (

Isemura T., Kato A., Tabata S., Somta P., Srinives P., et al. (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean ( PubMed PMC

Jain H.K., Mehra K.L. (1980) Evolution, Adaptation, Relationships, and Uses of the Species of Vigna cultivated in India. In: Advances in Legume Science (Summerfield RJ, Bunting AH eds), Kew Royal Botanic Gardens. pp. 459–468.

Jang S.J., Sato M., Sato K., Jitsuyama Y., Fujino K., Mori H., et al. (2015) A single-nucleotide polymorphism in an endo-1, 4-β-glucanase gene controls seed coat permeability in soybean. PubMed PMC

Kaliamoorthy S., Marques E., Kalungwana N., Carrasquilla-Garcia N., Chang P.L., Bergmann E.M., et al. (2019) Functional dissection of the chickpea ( PubMed PMC

Khan A.W., Garg V., Roorkiwal M., Golicz A.A., Eswards D. and Varshney R.K. (2020) Super pangenome by integrating the wild side of a species for accelerated crop improvement. PubMed PMC

Khan H.R., Link W., Hocking T.J.H. and Stoddard F.L. (2007) Evaluation of physiological traits for improving drought tolerance in faba bean (

Khazaei H., Street K., Bari A., Mackay M. and Stoddard F.L. (2013b) The FIGS (focused identification of germplasm strategy) approach identifies traits related to drought adaptation in PubMed PMC

Khazaei H., Street K., Santanen A., Bari A. and Stoddard F.L. (2013a) Do faba bean (

Khera P., Pandey M.K., Mallikarjuna N., Sriswathi M., Roorkiwal M., Janila P., et al. (2019) Genetic imprints of domestication for disease resistance, oil quality, and yield component traits in groundnut ( PubMed

Khoury C.K., Casta.eda-alvarez N.P., Achicanoy H.A., Sosa C.C., Bernau V., Kassa M.T., et al. (2015) Crop wild relatives of pigeonpea [

Kim M.S., Lozano R., Kim J.H., Bae N.D., Kim S.T., Park J.H., et al. (2021) The patterns of deleterious mutations during the domestication of soybean. PubMed PMC

Kissing Kucek L., Riday H., Rufener B.P., Burke A.N., Eagen S.S., Ehlke N., et al. (2020) Pod dehiscence in hairy vetch ( PubMed PMC

Kongjaimun A., Kaga A., Tomooka N., Somta P., Vaughan D. and Srinives P. (2012) The genetics of domestication of yardlong bean, PubMed PMC

Kreplak J., Madoui M.A., Cápal P., Novák P., Labadie K., Aubert G., et al. (2019) A reference genome for pea provides insight into legume genome evolution. PubMed

Ku Y.S., Contador C.A., Ng M.-S., Yu J., Chung G. and Lam H.M. (2020) The effects of domestication on secondary metabolite composition in legumes. PubMed PMC

Kwak M., Toro O., Debouck D.G. and Gepts P. (2012) Multiple origins of the determinate growth habit in domesticated common bean ( PubMed PMC

Kwon C.T., Heo J., Lemmon Z.H., Capua Y., Hutton S.F., Van Eck J., et al. (2020) Rapid customization of Solanaceae fruit crops for urban agriculture. PubMed

Ladizinsky G. (1979) The origin of lentil and its wild genepool.

Ladizinsky G. (1993) Lentil domestication: on the quality of evidence and arguments.

Lam H.M., Xu. X., Liu. X., Chen. W., Yang. G., Wong F.L., et al. (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. PubMed

Langewisch T., Zhang H., Vincent R., Joshi T., Xu D. and Bilyeu K. (2014) Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes. PubMed PMC

Leamy L.J., Zhang H., Li C., Chen C.Y. and Song B.H. (2017) A genome-wide association study of seed composition traits in wild soybean ( PubMed PMC

Lee G.A., Crawford G.W., Liu L., Sasaki Y. and Chen X. (2011) Archaeological Soybean ( PubMed PMC

Lemmon Z.H., Reem N.T., Dalrymple J., Soyk S., Swartwood K.E., Rodriguez-Leal D., et al. (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. PubMed

Li T., Yang X., Yu Y., Si X., Zhai X., Zhang H., et al. (2018) Domestication of wild tomato is accelerated by genome editing. PubMed

Li Y.H., Zhao S.C., Ma J.X., Li D., Yan L., Li J., et al. (2013) Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. PubMed PMC

Li Y.H., Zhou G., Ma J., Jiang W., Jin L.G., Zhang Z., et al. (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. PubMed

Li Z., Zhang X., Zhao K., Zhao K., Qu C., Gao G., et al. (2021) Comprehensive transcriptome analyses reveal candidate genes for variation in seed size/weight during peanut ( PubMed PMC

Lin Z., Li X., Shannon L.M., Yeh C.T., Wang M.L., Bai G., et al. (2012) Parallel domestication of the Shattering1 genes in cereals. PubMed PMC

Liu B., Fujita T., Yan Z.H., Sakamoto S., Xu D. and Abe J. (2007) QTL mapping of domestication-related traits in soybean ( PubMed PMC

Liu B., Watanabe S., Uchiyama T., Kong F., Kanazawa A., Xia Z., et al. (2010) The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. PubMed PMC

Liu C., Chen X., Wang W., Hu X., Han W., He Q., et al. (2021) Identifying wild versus cultivated gene-alleles conferring seed coat color and days to flowering in soybean. PubMed PMC

Liu Y., Du H., Li P., Shen Y., Peng H., Liu S., et al. (2020) Pan-genome of wild and cultivated soybeans. PubMed

Liu Y., Shao L., Zhou J., Li R., Pandey M.K., Han Y., et al. (2022) Genomic insights into the genetic signatures of selection and seed trait loci in cultivated peanut. PubMed DOI PMC

Lu S., Dong L., Fang C., Liu S., Kong L., Cheng Q., et al. (2020) Stepwise selection on homeologous PubMed

Lv S., Wu W., Wang M., Meyer R.S., Ndjiondjop M.N. and Tan L. (2018) Genetic control of seed shattering during African rice domestication. PubMed

Lye Z.N. and Purugganan M.D. (2019) Copy number variation in domestication. PubMed

Makasheva R.K. (1979) Gorokh (Pea) In Kulturnaya Flora SSR.

McClean P.E., Bett K.E., Stonehouse R., Lee R., Pflieger S., Moghaddam S.M., et al. (2018) White seed color in common bean ( PubMed

McCouch S., Baute G.J., Bradeen J., Bramel P., Bretting P.K., Buckler E., et al. (2013) Agriculture: Feeding the future. PubMed

Meyer R.S., DuVal A.E. and Jensen H.R. (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. PubMed

Meyer R.S. and Purugganan M.D. (2013) Evolution of crop species: genetics of domestication and diversification. PubMed

Mir R.R., Kudapa H., Srikanth S., Saxena R.K., Sharma A., Azam S., et al. (2014) Candidate gene analysis for determinacy in pigeonpea (Cajanus spp. PubMed PMC

Mirali M., Purves R.W., Stonehouse R., Song R., Bett K. and Vandenberg A. (2016) Genetics and biochemistry of zero-tannin lentils. PubMed PMC

Mota A.P.Z., Brasileiro A.C.M., Vidigal B., Oliveira T.N., da Cunha Q.M.A., Saraiva M.A.P., et al. (2021) Defining the combined stress response in wild. PubMed PMC

Nelson M.N., Książkiewicz M., Rychel S., Besharat N., Taylor C.M., Wyrwa K., et al. (2017) The loss of vernalization requirement in narrow‐leafed lupin is associated with a deletion in the promoter and de‐repressed expression of a Flowering Locus T (FT) homologue. PubMed

Ogutcen E., Ramsay L., von Wettberg E.B. and Bett K.E. (2018) Capturing variation in Lens (Fabaceae): development and utility of an exome capture array for lentil. PubMed PMC

Ortega R., Hecht V.F.G., Freeman J.S., Rubio J., Carrasquilla-Garcia N., Mir R.R., et al. (2019) Altered expression of an FT cluster underlies a major locus controlling domestication-related changes to chickpea phenology and growth habit. PubMed PMC

Paauw M., Koes R. and Quattrocchio F.M. (2019) Alteration of flavonoid pigmentation patterns during domestication of food crops. PubMed

Palmer J.P., Pajak A., Robson B., Zhang B., Joshi J., Diapari M., et al. (2021) Pectin acetylesterase 8 influences pectin acetylation in the seed coat, seed imbibition, and dormancy in common bean ( DOI

Pandey M.K., Upadhyaya H.D., Rathore A., Vadez V., Sheshshayee M.S., Sriswathi M., et al. (2014) Genome wide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PubMed PMC

Parker T.A., Berny Mier Y Teran J.C., Palkovic A., Jernstedt J. and Gepts P. (2020) Pod indehiscence is a domestication and aridity resilience trait in common bean. PubMed

Parker T.A., Lo S. and Gepts P. (2021) Pod shattering in grain legumes: emerging genetic and environment-related patterns. PubMed PMC

Pimentel D., Cerasale D., Stanley R.C., Perlman R., Newman E.M., Brent L.C., et al. (2012) Annual vs. perennial grain production.

Ping J., Liu Y., Sun L., Zhao M., Li Y., She M., et al. (2014) PubMed PMC

Porter S.S. (2013) Adaptive divergence in seed color camouflage in contrasting soil environments. PubMed

Qi X., Li M.W., Xie M., Liu X., Ni M., Shao G., et al. (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. PubMed PMC

Qi Z., Wu Q., Han X., Sun Y., Du X., Liu C., et al. (2011) Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes.

Raggi L., Caproni L., Carboni A. and Negri V. (2019) Genome-wide association study reveals candidate genes for flowering time variation in common bean PubMed PMC

Rau D., Murgia M.L., Rodriguez M., Bitocchi E., Bellucci E., Fois D., et al. (2019) Genomic dissection of pod shattering in common bean: mutations at nonorthologous loci at the basis of convergent phenotypic evolution under domestication of leguminous species. PubMed

Repinski S.L., Kwak M. and Gepts P. (2012) The common bean growth habit gene PubMed

Ridge S., Deokar A., Lee R., Daba K., Macknight R.C., Weller J.L., et al. (2017) The chickpea PubMed PMC

Riehl S., Zeidi M. and Conard N.J. (2013) Emergence of agriculture in the foot hills of the Zagros Mountains of Iran. PubMed

Rodriguez-Leal D., Lemmon Z.H., Man J., Bartlett M.E. and Lippman Z.B. (2017) Engineering quantitative trait variation for crop improvement by genome editing. PubMed

Sari H., Sari D., Eker T. and Toker C. (2021) De novo super-early progeny in interspecific crosses PubMed PMC

Saxena R.K., Kale S., Mir R.R., Mallikarjuna N., Yadav P., Das R.R., et al. (2019) Genotyping-by-sequencing and multilocation evaluation of two interspecific backcross populations identify QTLs for yield-related traits in pigeonpea. PubMed

Schlautman B., Barriball S., Ciotir C., Herron S.A. and Miller A.J. (2018) Perennial grain legume domestication phase I: criteria for candidate species selection.

Schmutz J., McClean P.E., Mamidi S., Wu G.A., Cannon S.B., Grimwood J., et al. (2014) A reference genome for common bean and genome-wide analysis of dual domestications. PubMed PMC

Sedláková V., Hanáček P., Grulichová M., Zablatzká L. and Smýkal P. (2021) Evaluation of seed dormancy, one of the key domestication traits in chickpea.

Shi Z., Liu S., Noe J., Arelli P., Meksem K. and Li Z. (2015) SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. PubMed PMC

Singh D., Dikshit H.K. and Singh R. (2013) A new phenotyping technique for screening for drought tolerance in lentil (

Singh K.B. and Ocampo B. (1997) Exploitation of wild Cicer species for yield improvement in chickpea.

Smýkal P., Hradilová I., Trněný O., Brus J., Rathore A., Bariotakis M., et al. (2017) Genomic diversity and macroecology of the crop wild relatives of domesticated pea. PubMed PMC

Smýkal P., Jovanović Ž., Stanisavljević N., Zlatković B., Ćupina B., Đorđević V., et al. (2014b) A comparative study of ancient DNA isolated from charred pea (

Smýkal P., Nelson M.N., Berger J.D. and Von Wettberg E.J. (2018) The impact of genetic changes during crop domestication.

Smýkal P., Vernoud V., Blair M.W., Soukup A. and Thompson R.D. (2014a) The role of the testa during development and in establishment of dormancy of the legume seed. PubMed PMC

Soltani A., Walter K.A., Wiersma A.T., Santiago J.P., Quiqley M., Chitwood D., et al. (2021) The genetics and physiology of seed dormancy, a crucial trait in common bean domestication. PubMed PMC

Sonnante G., Hammer K. and Pignone D. (2009) From the cradle of agriculture a handful of lentils: history of domestication.

Souter J.R., Gurusamy V., Porch T.G. and Bett K.E. (2017) Successful introgression of abiotic stress tolerance from wild Tepary bean to common bean.

Srivastava R., Upadhyaya H.D., Kumar R., Daware A., Basu U., Shimray P.W., et al. (2017) A multiple QTL-Seq strategy delineates potential genomic loci governing flowering time in chickpea. PubMed PMC

Sun L., Miao Z., Cai C., Zhang D., Zhao M., Wu Y., et al. (2015) GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. PubMed

Suzuki M., Fujino K., Nakamoto Y., Ishimoto M. and Funatsuki H. (2010) Fine mapping and development of DNA markers for the qPDH1 locus associated with pod dehiscence in soybean.

Takahashi Y., Sakai H., Yoshitsu Y., Muto C., Anai T. and Pandiyan M. (2019) Domesticating PubMed PMC

Tanno K. and Willcox G. (2006) The origins of cultivation of

Tian Z., Wang J.W., Li J. and Han B. (2021) Designing future crops: challenges and strategies for sustainable agriculture. PubMed

Tian Z., Wang X., Lee R., Li Y., Specht J.E., Nelson R.L., et al. (2010) Artificial selection for determinate growth habit in soybean. PubMed PMC

Toker C., Canci H. and Yildirim T. (2007) Evaluation of perennial wild Cicer species for drought resistance.

Trněný O., Brus J., Hradilová I., Rathore A., Das R.R., Kopecký P., et al. (2018) Molecular evidence for two domestication events in the pea crop. PubMed PMC

Tuteja J.H., Clough S.J., Chan W.C. and Vodkin L.O. (2004) Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in PubMed PMC

Tuteja J.H., Zabala G., Varala K., Hudson M. and Vodkin L.O. (2009) Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in PubMed PMC

van der Maesen L.J.G. (1990) Pigeonpea origin, history, evolution, and taxonomy.

van Zeist W. and de Roller G.J. (1995) Plant remains from Asikli Höyük, a pre-pottery Neolithic site in Central Anatolia.

Varma Penmetsa R., Carrasquilla‐Garcia N., Bergmann E.M., Vance L., Castro B., Kassa M.T., et al. (2016) Multiple post‐domestication origins of kabuli chickpea through allelic variation in a diversification‐associated transcription factor. PubMed

Varshney R.K., Barmukh R., Roorkiwal M., Qi Y., Kholova J., Tuberosa R., et al. (2021a) Breeding custom-designed crops for improved drought adaptation. PubMed PMC

Varshney R.K., Roorkiwal M., Sun S., Bajaj P., Chitikineni A., Thudi M., et al. (2021b) A chickpea genetic variation map based on the sequencing of 3,366 genomes. PubMed PMC

Varshney R.K., Saxena R.K., Upadhyaya H.D., Khan A.W., Yu Y., Kim C., et al. (2017) Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. PubMed

Varshney R.K., Song C., Saxena R.K., Azam S., Yu S., Sharpe A.G., et al. (2013) Draft genome sequence of chickpea ( PubMed

Varshney R.K., Thudi M., Roorkiwal M., He W., Upadhyaya H.D., Yang W., et al. (2019) Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. PubMed

Vinson C.C., Mota A.P.Z., Oliveira T.N., Guimaraes L.A., Leal-Bertioli S.C.M., Williams T.C.R., et al. (2018) Early responses to dehydration in contrasting wild Arachis species. PubMed PMC

Von Wettberg E., Chang P.L., Başdemir F., Carrasquila-Garcia N., Korbu L.B., et al. (2018) Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. PubMed PMC

Wang M., Li W., Fang C., Xu F., Liu Y., Wang Z., et al. (2018) Parallel selection on a dormancy gene during domestication of crops from multiple families. PubMed

Wang W., He Q., Yang H., Xiang S., Zhao T. and Gai J. (2013) Development of a chromosome segment substitution line population with wild soybean (

Wang Y., Gu Y., Gao H., Qiu L., Chang R., Chen S., et al. (2016) Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time. PubMed PMC

Warschefsky E., Penmetsa R.V., Cook D.R. and Von Wettberg E.J. (2014) Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. PubMed

Watanabe S., Xia Z., Hideshima R., Tsubokura Y., Sato S., Yamanaka N., et al. (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. PubMed PMC

Weeden N.F. (2007) Genetic changes accompanying the domestication of PubMed PMC

Weeden N.F., Brauner S. and Przyborowski J.A. (2002) Genetic analysis of pod dehiscence in pea ( PubMed

Weller J.L., Liew L.C., Hecht V.F., Rajandran V., Laurie R.E., Ridge S., et al. (2012) A conserved molecular basis for photoperiod adaptation in two temperate legumes. PubMed PMC

Wolko B., Clements J.C., Naganowska B., Nelson M.N. and Yang H.A. (2011) Lupinus.

Wu J., Wang L., Fu J., Chen J., Wei S., Zhang S., et al. (2020) Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline. PubMed

Xie M., Chung C.Y.L., Li M.W., Wong F.L., Wang X., Liu A.L., et al. (2019) A reference-grade wild soybean genome. PubMed PMC

Xu D., Abe J., Gai J. and Shimamoto Y. (2002) Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean. PubMed

Yang H., Wang W., He Q., Xiang S., Tian D., Zhao T., et al. (2019) Identifying a wild allele conferring small seed size, high protein content and low oil content using chromosome segment substitution lines in soybean. PubMed

Yang H.Y., Wang W.B., He Q.Y., Xiang S.H., Tian D., Zhao T.J., et al. (2017) Chromosome segment detection for seed size and shape traits using an improved population of wild soybean chromosome segment substitution lines. PubMed PMC

Yu H. and Li J. (2022) Breeding future crops to feed the world through de novo domestication. PubMed PMC

Yu H., Lin T., Meng X., Du H., Zhang J., Liu G., et al. (2021) A route to de novo domestication of wild allotetraploid rice. PubMed

Yuan. C.P., Wang Y.J., Zhao H.K., Zhang L., Wang Y.M., Liu X.D., et al. (2016) Genetic diversity of rhg1 and Rhg4 loci in wild soybeans resistant to soybean cyst nematode race 3. PubMed

Yue Y., Liu N., Jiang B., Li M., Wang H., Jiang Z., et al. (2017) A single nucleotide deletion in j encoding gmelf3 confers long juvenility and is associated with adaption of tropic soybean. PubMed

Yun D.Y., Kang Y.G., Kim M., Kim D., Kim E.H. and Hong Y.S. (2020) Metabotyping of different soybean genotypes and distinct metabolism in their seeds and leaves. PubMed

Zablatzká L. and Smýkal P. (2015) Establishment of wild pea

Zhang D., Wang X., Li S., Wang C., Gosney M., Mickelbart M., et al. (2019) A post-domestication mutation Dt2 triggers systemic modification of divergent and convergent pathways modulating multiple agronomic traits in soybean. PubMed

Zhang H., Li Y. and Zhu J.K. (2018) Developing naturally stress-resistant crops for a sustainable agriculture. PubMed

Zhang Q., Li H., Li R., Hu R., Fan C., Chen F., et al. (2008) Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. PubMed PMC

Zhao J., Bayer P.E., Ruperao P., Saxena R.K., Khan A.W., Golicz A.A., et al. (2020) Trait associations in the pangenome of pigeonpea ( PubMed PMC

Zhou L., Wang S.B., Jian J., Geng Q.C., Wen J., Song Q., et al. (2015a) Identification of domestication-related loci associated with flowering time and seed size in soybean with the RAD-seq genotyping method. PubMed PMC

Zhou Z., Jiang Y., Wang Z., Gou Z., Lyu J., Li W., et al. (2015b) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. PubMed

Zhu M., Chen G., Zhou S., Tu Y., Wang Y., Dong T., et al. (2014) A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. PubMed

Zhuang W., Chen H., Yang M., Wang J., Pandey M.K., Zhang C., et al. (2019) The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. PubMed PMC

Zohary D. (1992) Domestication of the Neolithic Near Eastern crop assemblage.

Zohary D. and Hopf M. (1973) Domestication of pulses in the Old World: legumes were companions of wheat and barley when agriculture began in the Near East. PubMed

Zohary D. and Hopf M. (2000) Domestication of Plants in the Old World, 3rd edn. Oxford University Press, Oxford.

Zsögön A., Cermák T., Naves E.R., Notini M.M., Edel K.H., Weinl S., et al. (2018) De novo domestication of wild tomato using genome editing. PubMed

Zsögön A., Peres L.E.P., Xiao Y., Yan J. and Fernie A.R. (2022) Enhancing crop diversity for food security in the face of climate uncertainty. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...