The Key to the Future Lies in the Past: Insights from Grain Legume Domestication and Improvement Should Inform Future Breeding Strategies
Language English Country Japan Media print
Document type Review, Journal Article
Grant support
Food Future Institute, Murdoch University
PubMed
35713290
PubMed Central
PMC9680861
DOI
10.1093/pcp/pcac086
PII: 6609702
Knihovny.cz E-resources
- Keywords
- Crop wild relatives, Diversification, Domestication, Genes, Grain legumes, Selective sweeps,
- MeSH
- Domestication * MeSH
- Fabaceae * genetics MeSH
- Edible Grain genetics MeSH
- Humans MeSH
- Plant Breeding MeSH
- Crops, Agricultural genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Crop domestication is a co-evolutionary process that has rendered plants and animals significantly dependent on human interventions for survival and propagation. Grain legumes have played an important role in the development of Neolithic agriculture some 12,000 years ago. Despite being early companions of cereals in the origin and evolution of agriculture, the understanding of grain legume domestication has lagged behind that of cereals. Adapting plants for human use has resulted in distinct morpho-physiological changes between the wild ancestors and domesticates, and this distinction has been the focus of several studies aimed at understanding the domestication process and the genetic diversity bottlenecks created. Growing evidence from research on archeological remains, combined with genetic analysis and the geographical distribution of wild forms, has improved the resolution of the process of domestication, diversification and crop improvement. In this review, we summarize the significance of legume wild relatives as reservoirs of novel genetic variation for crop breeding programs. We describe key legume features, which evolved in response to anthropogenic activities. Here, we highlight how whole genome sequencing and incorporation of omics-level data have expanded our capacity to monitor the genetic changes accompanying these processes. Finally, we present our perspective on alternative routes centered on de novo domestication and re-domestication to impart significant agronomic advances of novel crops over existing commodities. A finely resolved domestication history of grain legumes will uncover future breeding targets to develop modern cultivars enriched with alleles that improve yield, quality and stress tolerance.
Crop Improvement Division ICAR Indian Institute of Pulses Research Kalyanpur Kanpur 208024 India
Department of Biotechnology Visva Bharati Santiniketan Santiniketan Road Bolpur 731235 India
Division of Genetics and Plant Breeding Faculty of Agriculture SKUAST Shalimar Srinagar 190025 India
See more in PubMed
Abbo S., Berger J. and Turner N.C. (2003) Evolution of cultivated chickpea: four bottlenecks limit diversity and constrain adaptation. Funct. Plant Biol. 30: 1081–1087. PubMed
Abbo S., Lev-Yadun S. and Gopher A. (2012) Plant domestication and crop evolution in the near east: on events and processes. Crit. Rev. Plant Sci. 31: 241–257.
Abbo S., Pinhasi Van-oss R., Gopher A., Saranga Y., Ofner I. and Peleg Z. (2014) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci. 19: 351–360. PubMed
Abbo S., Saranga Y., Peleg Z., Kerem Z., Lev-Yadun S. and Gopher A. (2009) Reconsidering domestication of legumes versus cereals in the ancient Near East. Q. Rev. Biol. 84: 29–50. PubMed
Abbo S., Zezak I., Zehavi Y., Schwartz E., Lev-Yadun S. and Gopher A. (2013) Six seasons of wild pea harvest in Israel: bearing on Near Eastern plant domestication. J. Archaeol. Sci. 40: 2095–2100.
Alonge M., Wang X., Benoit M., Soyk S., Pereira L., Zhang L., et al. (2020) Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182: 145–161. PubMed PMC
Alseekh S., Scossa F. and Fernie A.R. (2020) Mobile transposable elements shape plant genome diversity. Trends Plant Sci. 25: 1062–1064. PubMed
Alseekh S., Scossa F., Wen W., Luo J., Yan J., Beleggia R., et al. (2021) Domestication of crop metabolomes: desired and unintended consequences. Trends Plant Sci. 26: 650–661. PubMed
Aryamanesh N., Byrne O., Hardie D.C., Khan T., Siddique K.H.M. and Yan G. (2012) Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum. Crop Pasture Sci. 63: 612–618.
Aryamanesh N., Zeng Y., Byrne O., Hardie D.C., Al-Subhi A.M., Khan T., et al. (2014) Identification of genome regions controlling cotyledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping. Theor. Appl. Genet. 127: 489–497. PubMed
Avni R., Nave M., Barad O., Baruch K., Twardziok S.O., Gundlach H., et al. (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357: 93–97. PubMed
Beji S., Fontaine V., Devaux R., Thomas M., Negro S.S., Bharman N., et al. (2020) Genome-wide association study identifies favorable SNP alleles and candidate genes for frost tolerance in pea. BMC Genomics 21: 536. PubMed PMC
Belachew K.Y., Nagel K.A., Fiorani F. and Stoddard F.L. (2018) Diversity in root growth responses to moisture deficit in young faba bean (Vicia faba L.) plants. Peer J. 6: e4401. PubMed PMC
Bellucci E., Bitocchi E., Ferrarini A., Benazzo A., Biagetti E., Klie S., et al. (2014) Decreased nucleotide and expression diversity and modified coexpression patterns characterize domestication in the common bean. Plant Cell 26: 1901–1912. PubMed PMC
Berger J.D., Adhikari K.N., Wilkinson D., Buirchell B.J. and Sweetingham M.W. (2008) Ecogeography of the Old World lupins. 1. Ecotypic variation in yellow lupin (Lupinus luteus L. Aust. J. Agric. Res. 59: 691–701.
Berger J.D., Milroy S.P., Turner N.C., Siddique K.H.M., Imtiaz M. and Malhotra R. (2011) Chickpea evolution has selected for contrasting phenological mechanisms among different habitats. Euphytica 180: 1–15.
Berger J.D., Shrestha D. and Ludwig C. (2017) Reproductive strategies in Mediterranean legumes: trade-offs between phenology, seed size and vigor within and between wild and domesticated Lupinus species collected along aridity gradients. Front. Plant. Sci. 8: 548. PubMed PMC
Bitocchi E., Rau D., Bellucci E., Rodriguez M., Murgia M.L., Gioia T., et al. (2017) Beans (Phaseolus ssp.) as a model for understanding crop evolution. Front. Plant Sci. 8: 722. PubMed PMC
Blair M.W., Iriarte G. and Beebe S. (2006) QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean x wild common bean (Phaseolus vulgaris L.) cross. Theor. Appl. Genet. 112: 1149–1163. PubMed
Blair M.W. and Izquierdo P. (2012) Use of the advanced backcross-QTL method to transfer seed mineral accumulation nutrition traits from wild to Andean cultivated common beans. Theor. Appl. Genet. 125: 1015–1031. PubMed
Blair M.W., Soler A. and Cortés A.J. (2012) Diversification and population structure in common beans (Phaseolus vulgaris L.). PLoS One 7: e49488. PubMed PMC
Blixt S. (1972) Mutation genetics in Pisum. Agri Hort. Genet. 30: 1–293.
Bohra A., Kilian B., Sivasankar S., Caccamo M., Mba C., McCouch S.R., et al. (2022) Reap the crop wild relatives for breeding future crops. Trends Biotechnol. 40: 412–431. PubMed
Boyer J.S. (1982) Plant productivity and environment. Science 218: 443–448. PubMed
Byrne O.M., Hardie D.C., Khan T.N., Speijers J. and Yan G. (2008) Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross. Aust. J. Agric. Res. 59: 854–862.
Caracuta V., Barzilai O., Khalaily H., Milevski I., Paz Y., Vardi J., et al. (2015) The onset of faba bean farming in the Southern Levant. Sci. Rep. 5: 1–9. PubMed PMC
Caracuta V., Weinstein-Evron M., Kaufman D., Yeshurun R., Silvent J. and Boaretto E. (2016) 14,000-year-old seeds indicate the Levantine origin of the lost progenitor of faba bean. Sci. Rep. 6: 1–6. PubMed PMC
Chen W., Chen L., Zhang X., Yang N., Guo J., Wang M., et al. (2022) Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science 375: eabg7985. PubMed
Chen X., Li H., Pandey M.K., Yang Q., Wang X., Garg V., et al. (2016) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc. Natl. Acad. Sci. USA 113: 6785–6790. PubMed PMC
Cook D.E., Lee T.G., Guo X., Melito S., Wang K., Bayless A.M., et al. (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338: 1206–1209. PubMed
Coyne C.J., Kumar S., von Wettberg E.J., Marques E., Berger J.D., Redden R.J., et al. (2020) Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement. Legum. Sci. 2: e36.
De Candolle A. (1883) Origine des plantes cultivées. Germer Baillière, Paris, VIII-379 p.
Delfini J., Moda-Cirino V., Dos Santos Neto J., Zeffa D.M., Nogueira A.F., Ribeiro L.A.B., et al. (2021) Genome-wide association study identifies genomic regions for important morpho-agronomic traits in Mesoamerican common bean. Front. Plant Sci. 12: 748829. PubMed PMC
Di Vittori V., Bitocchi E., Rodriguez M., Alseekh S., Bellucci E., Nanni L., et al. (2021) Pod indehiscence in common bean is associated with the fine regulation of PvMYB26. J. Exp. Bot. 72: 1617–1633. PubMed PMC
Doebley J.F., Gaut B.S. and Smith B.D. (2006) The molecular genetics of crop domestication. Cell 12: 1309–1321. PubMed
Domínguez M., Dugas E., Benchouaia M., Leduque B., Jiménez-Gómez J.M., Colot V., et al. (2020) The impact of transposable elements on tomato diversity. Nat. Commun. 11: 4058. PubMed PMC
Dong Y., Yang X., Liu J., Wang B.H., Liu B.L. and Wang Y.Z. (2014) Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat. Commun. 5: 3352. PubMed
Fernie A., Alseekh S., Liu J. and Yan J. (2021) Using precision phenotyping to inform de novo domestication. Plant Physiol. 186: 1397–1411. PubMed PMC
Fernie A.R., Tadmor Y. and Zamir D. (2006) Natural genetic variation for improving crop quality. Curr. Opin. Plant Biol. 9: 196–202. PubMed
Fernie A.R. and Yan J. (2019) De novo domestication: an alternative route toward new crops for the future. Mol. Plant 12: 615–631. PubMed
Fonceka D., Tossim H.A., Rivallan R., Vignes H., Lacut E., de Bellis F., et al. (2012) Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS One 7: e48642. PubMed PMC
Fuller D.Q. (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann. Bot. 100: 903–924. PubMed PMC
Fuller D.Q. and Allaby R. (2018) Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation. Ann. Plant Rev. 38: 238–295.
Fuller D.Q., Denham T., Arroyo-Kalin M., Lucas L., Stevens C.J., Qin L., et al. (2014) Convergent evolution and parallelism in plant domestication revealed by an expanding archaeological record. Proc. Natl. Acad. Sci. USA 111: 6147–6152. PubMed PMC
Funatsuki H., Suzuki M., Hirose A., Inaba H., Yamada T., Hajika M., et al. (2014) Molecular basis of a shattering resistance boosting global dissemination of soybean. Proc. Natl. Acad. Sci. U.S.A 111: 17797–17802. PubMed PMC
García-Fernández C., Campa A., Garzón A.S., Miklas P. and Ferreira J.J. (2021) GWAS of pod morphological and color characters in common bean. BMC Plant Biol. 21: 184. PubMed PMC
Gioia T., Logozzo G., Kami J., Spagnoletti Zeuli. P. and Gepts P. (2013) Identification and characterization of a homologue to the Arabidopsis INDEHISCENT gene in common bean. J. Herd. 104: 273–286. PubMed
Gorim L.Y. and Vandenberg A. (2017) Evaluation of wild lentil species as genetic resources to improve drought tolerance in cultivated lentil. Front. Plant Sci. 8: 1129. PubMed PMC
Gutierrez N., Avila C.M. and Torres A.M. (2020) The bHLH transcription factor VfTT8 underlies zt2, the locus determining zero tannin content in faba bean (Vicia faba L. Sci. Rep. 10: 1–10. PubMed PMC
Gutierrez N. and Torres A.M. (2019) Characterization and diagnostic marker for TTG1 regulating tannin and anthocyanin biosynthesis in faba bean. Sci. Rep. 9: 1–10. PubMed PMC
Hansen J. and Renfrew J.M. (1978) Paleolithic-neolithic seed remains at Franchthi cave, Greece. Nature 71: 349–352.
Harlan J.R. (1971) Agricultural origins: centers and non centers. Science 174: 468–474. PubMed
Haupt M. and Schmid K. (2020) Combining focused identification of germplasm and core collection strategies to identify genebank accessions for central European soybean breeding. Plant Cell Environ. 43: 1421–1436. PubMed
He Q.Y., Yang H.Y., Xiang S.H., Tian D., Wang W.B., Zhao T.J., et al. (2015) Fine mapping of the genetic locus L1 conferring black pods using a chromosome segment substitution line population of soybean. Plant Breed 134: 437–445.
Hecht V., Knowles C.L., Vander Schoor J.K., Liew L.C., Jones S.E., Lambert M.J., et al. (2007) Pea LATE BLOOMER1 is a GIGANTEA ortholog with roles in photoperiodic flowering, deetiolation, and transcriptional regulation of circadian clock gene homologs. Plant Physiol. 144: 648–661. PubMed PMC
Helbaek H. (1969) Plant collecting, dry-farming and irrigation agriculture in prehistoric Deh Luran. InPrehistory and Human Ecology of the Deh Luran Plain: An Early Village Sequence from Khuzistan. Edited by Hole, F., Flannery, K.V. and Neely, J.A. Memoirs Museum Anthropology No. 1. pp. 383–426. University of Michigan, USA, Ann Arbor.
Hellens R.P., Moreau C., Lin-Wang K., Schwinn K.E., Thomson S.J., Fiers M.W., et al. (2010) Identification of Mendel’s white flower character. PLoS One 5: e13230. PubMed PMC
Hellwig T., Abbo S. and Ophir R. (2022) Phylogeny and disparate selection signatures suggest two genetically independent domestication events in pea (Pisum L.). Plant J. 110: 419–439. PubMed PMC
Hopf M. (1983) Jericho plant remains. InExcavations at Jericho. Edited by Kenyon, K.M. and Holland, T.A. Vol. 5. pp. 576–621. British School of Archaeology in Jerusalem, London.
Hradilová I., Duchoslav M., Brus J., Pechanec V., Hýbl M., Kopecký P., et al. (2019) Variation in wild pea (Pisum sativum subsp. elatius) seed dormancy and its relationship to the environment and seed coat traits. Peer J. 7: e6263. PubMed PMC
Hradilová I., Trněný O., Válková M., Cechová M., Janská A., Prokešová L., et al. (2017) A combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits: pod dehiscence and seed dormancy in pea (Pisum sp. Front. Plant Sci. 8: 542. PubMed PMC
Idrissi O., Houasli C., Udupa S.M., De Keyser E., Van Damme P. and Udupa S.M. (2015) Genetic variability for root and shoot traits in a lentil (Lens culinaris Medik.) recombinant inbred line population and their association with drought tolerance. Euphytica 204: 693–709. PubMed
Isemura T., Kato A., Tabata S., Somta P., Srinives P., et al. (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS One 7: e41304. PubMed PMC
Jain H.K., Mehra K.L. (1980) Evolution, Adaptation, Relationships, and Uses of the Species of Vigna cultivated in India. In: Advances in Legume Science (Summerfield RJ, Bunting AH eds), Kew Royal Botanic Gardens. pp. 459–468.
Jang S.J., Sato M., Sato K., Jitsuyama Y., Fujino K., Mori H., et al. (2015) A single-nucleotide polymorphism in an endo-1, 4-β-glucanase gene controls seed coat permeability in soybean. PLoS One 10: e0128527. PubMed PMC
Kaliamoorthy S., Marques E., Kalungwana N., Carrasquilla-Garcia N., Chang P.L., Bergmann E.M., et al. (2019) Functional dissection of the chickpea (Cicer arietinum L.) stay-green phenotype associated with molecular variation at an ortholog of Mendel’s I gene for cotyledon color: implications for crop production and carotenoid biofortification. Int. J. Mol. Sci. 20: 5562. PubMed PMC
Khan A.W., Garg V., Roorkiwal M., Golicz A.A., Eswards D. and Varshney R.K. (2020) Super pangenome by integrating the wild side of a species for accelerated crop improvement. Trends Plant Sci. 25: 148–158. PubMed PMC
Khan H.R., Link W., Hocking T.J.H. and Stoddard F.L. (2007) Evaluation of physiological traits for improving drought tolerance in faba bean (Vicia faba L. Plant Soil 292: 205–217.
Khazaei H., Street K., Bari A., Mackay M. and Stoddard F.L. (2013b) The FIGS (focused identification of germplasm strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS One 8: e63107. PubMed PMC
Khazaei H., Street K., Santanen A., Bari A. and Stoddard F.L. (2013a) Do faba bean (Vicia faba L.) accessions from environments with contrasting seasonal moisture availabilities differ in stomatal characteristics and related traits? Genet. Resour. Crop Evol. 60: 2343–2357.
Khera P., Pandey M.K., Mallikarjuna N., Sriswathi M., Roorkiwal M., Janila P., et al. (2019) Genetic imprints of domestication for disease resistance, oil quality, and yield component traits in groundnut (Arachis hypogaea L. Mol. Genet. Genom. 294: 365–378. PubMed
Khoury C.K., Casta.eda-alvarez N.P., Achicanoy H.A., Sosa C.C., Bernau V., Kassa M.T., et al. (2015) Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biol. Conserv. 184: 259–270.
Kim M.S., Lozano R., Kim J.H., Bae N.D., Kim S.T., Park J.H., et al. (2021) The patterns of deleterious mutations during the domestication of soybean. Nat. Commun. 12: 97. PubMed PMC
Kissing Kucek L., Riday H., Rufener B.P., Burke A.N., Eagen S.S., Ehlke N., et al. (2020) Pod dehiscence in hairy vetch (Vicia villosa Roth). Front. Plant. Sci. 11: 82. PubMed PMC
Kongjaimun A., Kaga A., Tomooka N., Somta P., Vaughan D. and Srinives P. (2012) The genetics of domestication of yardlong bean, Vigna unguiculata (L.) Walp.ssp.unguiculata cv.-gr. sesquipedalis. Ann. Bot. 109: 1185–1200. PubMed PMC
Kreplak J., Madoui M.A., Cápal P., Novák P., Labadie K., Aubert G., et al. (2019) A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 51: 1411–1422. PubMed
Ku Y.S., Contador C.A., Ng M.-S., Yu J., Chung G. and Lam H.M. (2020) The effects of domestication on secondary metabolite composition in legumes. Front. Genet. 11: 581357. PubMed PMC
Kwak M., Toro O., Debouck D.G. and Gepts P. (2012) Multiple origins of the determinate growth habit in domesticated common bean (Phaseolus vulgaris). Ann. Bot. 110: 1573–1580. PubMed PMC
Kwon C.T., Heo J., Lemmon Z.H., Capua Y., Hutton S.F., Van Eck J., et al. (2020) Rapid customization of Solanaceae fruit crops for urban agriculture. Nat. Biotechnol. 38: 182–188. PubMed
Ladizinsky G. (1979) The origin of lentil and its wild genepool. Euphytica 28: 179–187.
Ladizinsky G. (1993) Lentil domestication: on the quality of evidence and arguments. Econ. Bot. 47: 60–64.
Lam H.M., Xu. X., Liu. X., Chen. W., Yang. G., Wong F.L., et al. (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat. Genet. 42: 1053–1059. PubMed
Langewisch T., Zhang H., Vincent R., Joshi T., Xu D. and Bilyeu K. (2014) Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes. PLoS One 9: e94150. PubMed PMC
Leamy L.J., Zhang H., Li C., Chen C.Y. and Song B.H. (2017) A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genomics 18: 18. PubMed PMC
Lee G.A., Crawford G.W., Liu L., Sasaki Y. and Chen X. (2011) Archaeological Soybean (Glycine max) in East Asia: does size matter? PLoS ONE 6: e26720. PubMed PMC
Lemmon Z.H., Reem N.T., Dalrymple J., Soyk S., Swartwood K.E., Rodriguez-Leal D., et al. (2018) Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 4: 766. PubMed
Li T., Yang X., Yu Y., Si X., Zhai X., Zhang H., et al. (2018) Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36: 1160–1163. PubMed
Li Y.H., Zhao S.C., Ma J.X., Li D., Yan L., Li J., et al. (2013) Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics 14: 579. PubMed PMC
Li Y.H., Zhou G., Ma J., Jiang W., Jin L.G., Zhang Z., et al. (2014) De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat. Biotechnol. 32: 1045–1052. PubMed
Li Z., Zhang X., Zhao K., Zhao K., Qu C., Gao G., et al. (2021) Comprehensive transcriptome analyses reveal candidate genes for variation in seed size/weight during peanut (Arachis hypogaea L.) domestication. Front. Plant Sci. 12: 666483. PubMed PMC
Lin Z., Li X., Shannon L.M., Yeh C.T., Wang M.L., Bai G., et al. (2012) Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 44: 720–724. PubMed PMC
Liu B., Fujita T., Yan Z.H., Sakamoto S., Xu D. and Abe J. (2007) QTL mapping of domestication-related traits in soybean (Glycine max). Ann. Bot. 100: 1027–1038. PubMed PMC
Liu B., Watanabe S., Uchiyama T., Kong F., Kanazawa A., Xia Z., et al. (2010) The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol. 153: 198–210. PubMed PMC
Liu C., Chen X., Wang W., Hu X., Han W., He Q., et al. (2021) Identifying wild versus cultivated gene-alleles conferring seed coat color and days to flowering in soybean. Int. J. Mol. Sci. 22: 1559. PubMed PMC
Liu Y., Du H., Li P., Shen Y., Peng H., Liu S., et al. (2020) Pan-genome of wild and cultivated soybeans. Cell 182: 162–176. PubMed
Liu Y., Shao L., Zhou J., Li R., Pandey M.K., Han Y., et al. (2022) Genomic insights into the genetic signatures of selection and seed trait loci in cultivated peanut. J. Adv. Res. 10.1016/j.jare.2022.01.016. PubMed DOI PMC
Lu S., Dong L., Fang C., Liu S., Kong L., Cheng Q., et al. (2020) Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat. Genet. 52: 428–436. PubMed
Lv S., Wu W., Wang M., Meyer R.S., Ndjiondjop M.N. and Tan L. (2018) Genetic control of seed shattering during African rice domestication. Nat. Plants 4: 331–337. PubMed
Lye Z.N. and Purugganan M.D. (2019) Copy number variation in domestication. Trends Plant Sci. 24: 352–365. PubMed
Makasheva R.K. (1979) Gorokh (Pea) In Kulturnaya Flora SSR. In Edited by Korovina, O.N. pp. 1–324. Kolos Publishing, Leningrad, Russia.
McClean P.E., Bett K.E., Stonehouse R., Lee R., Pflieger S., Moghaddam S.M., et al. (2018) White seed color in common bean (Phaseolus vulgaris) results from convergent evolution in the P (pigment) gene. New Phytol. 219: 1112–1123. PubMed
McCouch S., Baute G.J., Bradeen J., Bramel P., Bretting P.K., Buckler E., et al. (2013) Agriculture: Feeding the future. Nature 499: 23–24. PubMed
Meyer R.S., DuVal A.E. and Jensen H.R. (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol. 196: 29–48. PubMed
Meyer R.S. and Purugganan M.D. (2013) Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14: 840–852. PubMed
Mir R.R., Kudapa H., Srikanth S., Saxena R.K., Sharma A., Azam S., et al. (2014) Candidate gene analysis for determinacy in pigeonpea (Cajanus spp. Theor. Appl. Genet. 127: 2663–2678. PubMed PMC
Mirali M., Purves R.W., Stonehouse R., Song R., Bett K. and Vandenberg A. (2016) Genetics and biochemistry of zero-tannin lentils. PLoS One 11: e0164624. PubMed PMC
Mota A.P.Z., Brasileiro A.C.M., Vidigal B., Oliveira T.N., da Cunha Q.M.A., Saraiva M.A.P., et al. (2021) Defining the combined stress response in wild. Arachis. Sci. Rep. 11: 11097. PubMed PMC
Nelson M.N., Książkiewicz M., Rychel S., Besharat N., Taylor C.M., Wyrwa K., et al. (2017) The loss of vernalization requirement in narrow‐leafed lupin is associated with a deletion in the promoter and de‐repressed expression of a Flowering Locus T (FT) homologue. New Phytol. 213: 220–232. PubMed
Ogutcen E., Ramsay L., von Wettberg E.B. and Bett K.E. (2018) Capturing variation in Lens (Fabaceae): development and utility of an exome capture array for lentil. Appl. Plant Sci. 6: e01165. PubMed PMC
Ortega R., Hecht V.F.G., Freeman J.S., Rubio J., Carrasquilla-Garcia N., Mir R.R., et al. (2019) Altered expression of an FT cluster underlies a major locus controlling domestication-related changes to chickpea phenology and growth habit. Front. Plant Sci. 10: 824. PubMed PMC
Paauw M., Koes R. and Quattrocchio F.M. (2019) Alteration of flavonoid pigmentation patterns during domestication of food crops. J. Exp. Bot. 70: 3719–3735. PubMed
Palmer J.P., Pajak A., Robson B., Zhang B., Joshi J., Diapari M., et al. (2021) Pectin acetylesterase 8 influences pectin acetylation in the seed coat, seed imbibition, and dormancy in common bean (Phaseolus vulgaris L.). Leg. Sci. e130. 10.1002/leg3.130. DOI
Pandey M.K., Upadhyaya H.D., Rathore A., Vadez V., Sheshshayee M.S., Sriswathi M., et al. (2014) Genome wide association studies for 50 agronomic traits in peanut using the ‘reference set’ comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PloS One 9: e105228. PubMed PMC
Parker T.A., Berny Mier Y Teran J.C., Palkovic A., Jernstedt J. and Gepts P. (2020) Pod indehiscence is a domestication and aridity resilience trait in common bean. New Phytol. 225: 558–570. PubMed
Parker T.A., Lo S. and Gepts P. (2021) Pod shattering in grain legumes: emerging genetic and environment-related patterns. Plant Cell 33: 179–199. PubMed PMC
Pimentel D., Cerasale D., Stanley R.C., Perlman R., Newman E.M., Brent L.C., et al. (2012) Annual vs. perennial grain production. Agric. Ecosyst. Environ. 161: 1–9.
Ping J., Liu Y., Sun L., Zhao M., Li Y., She M., et al. (2014) Dt2 is a gain-of-function MADS-domain factor gene that specifies semi-determinacy in soybean. Plant Cell 26: 2831–2842. PubMed PMC
Porter S.S. (2013) Adaptive divergence in seed color camouflage in contrasting soil environments. New Phytol. 197: 1311–1320. PubMed
Qi X., Li M.W., Xie M., Liu X., Ni M., Shao G., et al. (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat. Commun. 5: 4340. PubMed PMC
Qi Z., Wu Q., Han X., Sun Y., Du X., Liu C., et al. (2011) Soybean oil content QTL mapping and integrating with meta-analysis method for mining genes. Euphytica 179: 499–514.
Raggi L., Caproni L., Carboni A. and Negri V. (2019) Genome-wide association study reveals candidate genes for flowering time variation in common bean (Phaseolus vulgarisL.). Front. Plant Sci. 10: 962. PubMed PMC
Rau D., Murgia M.L., Rodriguez M., Bitocchi E., Bellucci E., Fois D., et al. (2019) Genomic dissection of pod shattering in common bean: mutations at nonorthologous loci at the basis of convergent phenotypic evolution under domestication of leguminous species. Plant J. 97: 693–714. PubMed
Repinski S.L., Kwak M. and Gepts P. (2012) The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theor. Appl. Genet. 124: 1539–1547. PubMed
Ridge S., Deokar A., Lee R., Daba K., Macknight R.C., Weller J.L., et al. (2017) The chickpea early flowering 1 (efl1) locus is an ortholog of arabidopsis elf3. Plant Physiol. 175: 802–815. PubMed PMC
Riehl S., Zeidi M. and Conard N.J. (2013) Emergence of agriculture in the foot hills of the Zagros Mountains of Iran. Science 341: 65–67. PubMed
Rodriguez-Leal D., Lemmon Z.H., Man J., Bartlett M.E. and Lippman Z.B. (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171: 470.e8–480.e8. PubMed
Sari H., Sari D., Eker T. and Toker C. (2021) De novo super-early progeny in interspecific crosses Pisum sativum L. × P. fulvum Sibth.et Sm. Sci. Rep. 11: 19706. PubMed PMC
Saxena R.K., Kale S., Mir R.R., Mallikarjuna N., Yadav P., Das R.R., et al. (2019) Genotyping-by-sequencing and multilocation evaluation of two interspecific backcross populations identify QTLs for yield-related traits in pigeonpea. Theor. Appl. Genet. 133: 737–749. PubMed
Schlautman B., Barriball S., Ciotir C., Herron S.A. and Miller A.J. (2018) Perennial grain legume domestication phase I: criteria for candidate species selection. Sustainability 10: 730.
Schmutz J., McClean P.E., Mamidi S., Wu G.A., Cannon S.B., Grimwood J., et al. (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 46: 707–713. PubMed PMC
Sedláková V., Hanáček P., Grulichová M., Zablatzká L. and Smýkal P. (2021) Evaluation of seed dormancy, one of the key domestication traits in chickpea. Agronomy 11: 2292.
Shi Z., Liu S., Noe J., Arelli P., Meksem K. and Li Z. (2015) SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genomics 16: 314. PubMed PMC
Singh D., Dikshit H.K. and Singh R. (2013) A new phenotyping technique for screening for drought tolerance in lentil (Lens culinaris M edik. Plant Breed 132: 185–190.
Singh K.B. and Ocampo B. (1997) Exploitation of wild Cicer species for yield improvement in chickpea. Theor. Appl. Genet. 95: 418–423.
Smýkal P., Hradilová I., Trněný O., Brus J., Rathore A., Bariotakis M., et al. (2017) Genomic diversity and macroecology of the crop wild relatives of domesticated pea. Sci. Rep. 7: 17384. PubMed PMC
Smýkal P., Jovanović Ž., Stanisavljević N., Zlatković B., Ćupina B., Đorđević V., et al. (2014b) A comparative study of ancient DNA isolated from charred pea (Pisum sativum L.) seeds from an Early Iron Age settlement in southeast Serbia: inference for pea domestication. Genet. Resour. Crop Evol. 61: 1533–1544.
Smýkal P., Nelson M.N., Berger J.D. and Von Wettberg E.J. (2018) The impact of genetic changes during crop domestication. Agronomy 8: 119.
Smýkal P., Vernoud V., Blair M.W., Soukup A. and Thompson R.D. (2014a) The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant Sci. 5: 351. PubMed PMC
Soltani A., Walter K.A., Wiersma A.T., Santiago J.P., Quiqley M., Chitwood D., et al. (2021) The genetics and physiology of seed dormancy, a crucial trait in common bean domestication. BMC Plant Biol. 21: 1–17. PubMed PMC
Sonnante G., Hammer K. and Pignone D. (2009) From the cradle of agriculture a handful of lentils: history of domestication. Rend. Lincei. 20: 2137.
Souter J.R., Gurusamy V., Porch T.G. and Bett K.E. (2017) Successful introgression of abiotic stress tolerance from wild Tepary bean to common bean. Crop Sci. 57: 1160–1171.
Srivastava R., Upadhyaya H.D., Kumar R., Daware A., Basu U., Shimray P.W., et al. (2017) A multiple QTL-Seq strategy delineates potential genomic loci governing flowering time in chickpea. Front. Plant Sci. 8:: 1105. PubMed PMC
Sun L., Miao Z., Cai C., Zhang D., Zhao M., Wu Y., et al. (2015) GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat. Genet. 47: 939–943. PubMed
Suzuki M., Fujino K., Nakamoto Y., Ishimoto M. and Funatsuki H. (2010) Fine mapping and development of DNA markers for the qPDH1 locus associated with pod dehiscence in soybean. Mol. Breed 25: 407–418.
Takahashi Y., Sakai H., Yoshitsu Y., Muto C., Anai T. and Pandiyan M. (2019) Domesticating Vigna Stipulacea: a potential legume crop with broad resistance to biotic stresses. Front. Plant Sci. 10: 1607. PubMed PMC
Tanno K. and Willcox G. (2006) The origins of cultivation of Cicer arietinum L. and Vicia faba L.: early finds from Tell el-Kerkh, north-west Syria, late 10th millennium B.P. Veget. Hist. Archaeobotany 15: 197–204.
Tian Z., Wang J.W., Li J. and Han B. (2021) Designing future crops: challenges and strategies for sustainable agriculture. Plant J. 105: 1165–1178. PubMed
Tian Z., Wang X., Lee R., Li Y., Specht J.E., Nelson R.L., et al. (2010) Artificial selection for determinate growth habit in soybean. Proc. Natl. Acad. Sci. USA 107: 8563–8568. PubMed PMC
Toker C., Canci H. and Yildirim T. (2007) Evaluation of perennial wild Cicer species for drought resistance. Genet. Resour. Crop Evol. 54: 1781–1786.
Trněný O., Brus J., Hradilová I., Rathore A., Das R.R., Kopecký P., et al. (2018) Molecular evidence for two domestication events in the pea crop. Genes 9: 535. PubMed PMC
Tuteja J.H., Clough S.J., Chan W.C. and Vodkin L.O. (2004) Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16: 819–835. PubMed PMC
Tuteja J.H., Zabala G., Varala K., Hudson M. and Vodkin L.O. (2009) Endogenous, tissue-specific short interfering RNAs silence the chalcone synthase gene family in Glycine max seed coats. Plant Cell 21: 3063–3077. PubMed PMC
van der Maesen L.J.G. (1990) Pigeonpea origin, history, evolution, and taxonomy. InThe Pigeonpea. Edited by Nene, Y.L., Hall, S.D. and Sheila, V.K. pp. 15–46. CAB International Publication, UK.
van Zeist W. and de Roller G.J. (1995) Plant remains from Asikli Höyük, a pre-pottery Neolithic site in Central Anatolia. Veget. History Archaeobot 4: 179–185.
Varma Penmetsa R., Carrasquilla‐Garcia N., Bergmann E.M., Vance L., Castro B., Kassa M.T., et al. (2016) Multiple post‐domestication origins of kabuli chickpea through allelic variation in a diversification‐associated transcription factor. New Phytol. 211: 1440–1451. PubMed
Varshney R.K., Barmukh R., Roorkiwal M., Qi Y., Kholova J., Tuberosa R., et al. (2021a) Breeding custom-designed crops for improved drought adaptation. Adv. Genet. 2: e202100017. PubMed PMC
Varshney R.K., Roorkiwal M., Sun S., Bajaj P., Chitikineni A., Thudi M., et al. (2021b) A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 599: 622–627. PubMed PMC
Varshney R.K., Saxena R.K., Upadhyaya H.D., Khan A.W., Yu Y., Kim C., et al. (2017) Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat. Genet. 49: 1082–1088. PubMed
Varshney R.K., Song C., Saxena R.K., Azam S., Yu S., Sharpe A.G., et al. (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 31: 240–246. PubMed
Varshney R.K., Thudi M., Roorkiwal M., He W., Upadhyaya H.D., Yang W., et al. (2019) Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat. Genet. 51: 857–864. PubMed
Vinson C.C., Mota A.P.Z., Oliveira T.N., Guimaraes L.A., Leal-Bertioli S.C.M., Williams T.C.R., et al. (2018) Early responses to dehydration in contrasting wild Arachis species. PLoS One 13: e0198191. PubMed PMC
Von Wettberg E., Chang P.L., Başdemir F., Carrasquila-Garcia N., Korbu L.B., et al. (2018) Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nat. Commun. 9: 649. PubMed PMC
Wang M., Li W., Fang C., Xu F., Liu Y., Wang Z., et al. (2018) Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat. Genet. 50: 1435–1441. PubMed
Wang W., He Q., Yang H., Xiang S., Zhao T. and Gai J. (2013) Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. et Zucc.) as donor parent. Euphytica 189: 293–307.
Wang Y., Gu Y., Gao H., Qiu L., Chang R., Chen S., et al. (2016) Molecular and geographic evolutionary support for the essential role of GIGANTEAa in soybean domestication of flowering time. BMC Evol. Biol. 16: 79. PubMed PMC
Warschefsky E., Penmetsa R.V., Cook D.R. and Von Wettberg E.J. (2014) Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. Am. J. Bot. 101: 1791–1800. PubMed
Watanabe S., Xia Z., Hideshima R., Tsubokura Y., Sato S., Yamanaka N., et al. (2011) A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering. Genetics 188: 395–407. PubMed PMC
Weeden N.F. (2007) Genetic changes accompanying the domestication of Pisum sativum: Is there a common genetic basis to the ‘Domestication Syndrome’ for legumes? Ann. Bot. 100: 1017–1025. PubMed PMC
Weeden N.F., Brauner S. and Przyborowski J.A. (2002) Genetic analysis of pod dehiscence in pea (Pisum sativum L.). Cell. Mol. Biol. Lett. 7: 657–663. PubMed
Weller J.L., Liew L.C., Hecht V.F., Rajandran V., Laurie R.E., Ridge S., et al. (2012) A conserved molecular basis for photoperiod adaptation in two temperate legumes. Proc. Natl. Acad. Sci. USA 109: 21158–21163. PubMed PMC
Wolko B., Clements J.C., Naganowska B., Nelson M.N. and Yang H.A. (2011) Lupinus. InWild Crop Relatives: Genomic and Breeding Resources. Edited by C. Kole pp. 153–206. Springer, Berlin, Heidelberg.
Wu J., Wang L., Fu J., Chen J., Wei S., Zhang S., et al. (2020) Resequencing of 683 common bean genotypes identifies yield component trait associations across a north–south cline. Nat. Genet. 52: 118–125. PubMed
Xie M., Chung C.Y.L., Li M.W., Wong F.L., Wang X., Liu A.L., et al. (2019) A reference-grade wild soybean genome. Nat. Commun. 10: 1216. PubMed PMC
Xu D., Abe J., Gai J. and Shimamoto Y. (2002) Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean. Theor. Appl. Genet. 105: 645–653. PubMed
Yang H., Wang W., He Q., Xiang S., Tian D., Zhao T., et al. (2019) Identifying a wild allele conferring small seed size, high protein content and low oil content using chromosome segment substitution lines in soybean. Theor. Appl. Genet. 132: 2793–2807. PubMed
Yang H.Y., Wang W.B., He Q.Y., Xiang S.H., Tian D., Zhao T.J., et al. (2017) Chromosome segment detection for seed size and shape traits using an improved population of wild soybean chromosome segment substitution lines. Physiol. Mol. Biol. Plants 23: 877–889. PubMed PMC
Yu H. and Li J. (2022) Breeding future crops to feed the world through de novo domestication. Nat. Commun. 13: 1171. PubMed PMC
Yu H., Lin T., Meng X., Du H., Zhang J., Liu G., et al. (2021) A route to de novo domestication of wild allotetraploid rice. Cell 184: 1156–1170.e14. PubMed
Yuan. C.P., Wang Y.J., Zhao H.K., Zhang L., Wang Y.M., Liu X.D., et al. (2016) Genetic diversity of rhg1 and Rhg4 loci in wild soybeans resistant to soybean cyst nematode race 3. Genet. Mol. Res. 10: 15. PubMed
Yue Y., Liu N., Jiang B., Li M., Wang H., Jiang Z., et al. (2017) A single nucleotide deletion in j encoding gmelf3 confers long juvenility and is associated with adaption of tropic soybean. Mol. Plant 10: 656–658. PubMed
Yun D.Y., Kang Y.G., Kim M., Kim D., Kim E.H. and Hong Y.S. (2020) Metabotyping of different soybean genotypes and distinct metabolism in their seeds and leaves. Food Chem. 330: 127198. PubMed
Zablatzká L. and Smýkal P. (2015) Establishment of wild pea Pisum fulvum and Pisum elatius chromosome segment substitution lines in cultivated P. sativum genetic background. InProceedings of the 5th International Conference on Next Generation Genomics and Integrated Breeding for Crop Improvement, Telangana, India. Nature India. pp. 66–67.
Zhang D., Wang X., Li S., Wang C., Gosney M., Mickelbart M., et al. (2019) A post-domestication mutation Dt2 triggers systemic modification of divergent and convergent pathways modulating multiple agronomic traits in soybean. Mol. Plant 12: 1366–1382. PubMed
Zhang H., Li Y. and Zhu J.K. (2018) Developing naturally stress-resistant crops for a sustainable agriculture. Nat. Plants 4: 989–996. PubMed
Zhang Q., Li H., Li R., Hu R., Fan C., Chen F., et al. (2008) Association of the circadian rhythmic expression of GmCRY1a with a latitudinal cline in photoperiodic flowering of soybean. Proc. Natl. Acad. Sci. U.S.A 105: 21028–21033. PubMed PMC
Zhao J., Bayer P.E., Ruperao P., Saxena R.K., Khan A.W., Golicz A.A., et al. (2020) Trait associations in the pangenome of pigeonpea (Cajanus cajan). Plant Biotechnol. J. 18: 1946–1954. PubMed PMC
Zhou L., Wang S.B., Jian J., Geng Q.C., Wen J., Song Q., et al. (2015a) Identification of domestication-related loci associated with flowering time and seed size in soybean with the RAD-seq genotyping method. Sci. Rep. 5: 9350. PubMed PMC
Zhou Z., Jiang Y., Wang Z., Gou Z., Lyu J., Li W., et al. (2015b) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat. Biotechnol. 33: 408–414. PubMed
Zhu M., Chen G., Zhou S., Tu Y., Wang Y., Dong T., et al. (2014) A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation. Plant Cell Physiol. 55: 119–135. PubMed
Zhuang W., Chen H., Yang M., Wang J., Pandey M.K., Zhang C., et al. (2019) The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat. Genet. 51: 865–876. PubMed PMC
Zohary D. (1992) Domestication of the Neolithic Near Eastern crop assemblage. InPréhistoire de l’agriculture: nouvelles approches expérimentales et ethnographiques. Monographie du CRA No. 6, Centre de Recherches Archéologiques Edited by Anderson, P.C. pp. 81–86. CNRS, Paris, France.
Zohary D. and Hopf M. (1973) Domestication of pulses in the Old World: legumes were companions of wheat and barley when agriculture began in the Near East. Science 182: 887–894. PubMed
Zohary D. and Hopf M. (2000) Domestication of Plants in the Old World, 3rd edn. Oxford University Press, Oxford.
Zsögön A., Cermák T., Naves E.R., Notini M.M., Edel K.H., Weinl S., et al. (2018) De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36: 1211–1216. PubMed
Zsögön A., Peres L.E.P., Xiao Y., Yan J. and Fernie A.R. (2022) Enhancing crop diversity for food security in the face of climate uncertainty. Plant J. 109: 402–414. PubMed