Calibrating the tree of vipers under the fossilized birth-death model

. 2019 Apr 02 ; 9 (1) : 5510. [epub] 20190402

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30940820
Odkazy

PubMed 30940820
PubMed Central PMC6445296
DOI 10.1038/s41598-019-41290-2
PII: 10.1038/s41598-019-41290-2
Knihovny.cz E-zdroje

Scaling evolutionary trees to time is essential for understanding the origins of clades. Recently developed methods allow including the entire fossil record known for the group of interest and eliminated the need for specifying prior distributions for node ages. Here we apply the fossilized birth-death (FBD) approach to reconstruct the diversification timeline of the viperines (subfamily Viperinae). Viperinae are an Old World snake subfamily comprising 102 species from 13 genera. The fossil record of vipers is fairly rich and well assignable to clades due to the unique vertebral and fang morphology. We use an unprecedented sampling of 83 modern species and 13 genetic markers in combination with 197 fossils representing 28 extinct taxa to reconstruct a time-calibrated phylogeny of the Viperinae. Our results suggest a late Eocene-early Oligocene origin with several diversification events following soon after the group's establishment. The age estimates inferred with the FBD model correspond to those from previous studies that were based on node dating but FBD provides notably narrower credible intervals around the node ages. Viperines comprise two African and an Eurasian clade, but the ancestral origin of the subfamily is ambiguous. The most parsimonious scenarios require two transoceanic dispersals over the Tethys Sea during the Oligocene.

Zobrazit více v PubMed

Hedges SB, Dudley J, Kumar S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics. 2006;22:2971–2972. doi: 10.1093/bioinformatics/btl505. PubMed DOI

Ho SY, Phillips MJ. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 2009;58:367–380. doi: 10.1093/sysbio/syp035. PubMed DOI

Springer MS. Molecular clocks and the incompleteness of the fossil record. J. Mol. Evol. 1995;41:531–538. doi: 10.1007/BF00175810. DOI

Hedges SB, Kumar S. Precision of molecular time estimates. Trends Genet. 2004;20:242–247. doi: 10.1016/j.tig.2004.03.004. PubMed DOI

Marshall CR. The fossil record and estimating divergence times between lineages: Maximum divergene times and the importance of reliable phylogenies. J. Mol. Evol. 1990;30:400–408. doi: 10.1007/BF02101112. PubMed DOI

Nowak MD, Smith AB, Simpson C, Zwickl DJ. A simple method for estimating informative node age priors for the fossil calibration of molecular divergence time analyses. PLoS One. 2013;8:e66245. doi: 10.1371/journal.pone.0066245. PubMed DOI PMC

Heath TA, Huelsenbeck JP, Stadler T. The fossilized birth–death process for coherent calibration of divergence-time estimates. PNAS. 2014;111:E2957–E2966. doi: 10.1073/pnas.1319091111. PubMed DOI PMC

Didier G, Royer-Carenzi M, Laurin M. The reconstructed evolutionary process with the fossil record. J. Theor. Biol. 2012;315:26–37. doi: 10.1016/j.jtbi.2012.08.046. PubMed DOI

Phelps, T. Old World Vipers, a natural history of the Azemiopinae and Viperinae. (Edition Chimaira, 2010).

Pyron RA, Burbrink F, Wiens J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 2013;13:93. doi: 10.1186/1471-2148-13-93. PubMed DOI PMC

Zheng Y, Wiens JJ. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogen. Evol. 2016;94:537–547. doi: 10.1016/j.ympev.2015.10.009. PubMed DOI

Groombridge, B. A phyletic analysis of viperine snakes PhD thesis, City of London Polytechnic (1980).

Hsiang AY, et al. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evol. Biol. 2015;15:87. doi: 10.1186/s12862-015-0358-5. PubMed DOI PMC

Gauthier JA, Kearney M, Maisano JA, Rieppel O, Behlke AD. Assembling the squamate tree of life: perspectives from the phenotype and the fossil record. Bulletin of the Peabody Museum of Natural History. 2012;53:3–308. doi: 10.3374/014.053.0101. DOI

Herrmann H-W, Joger U, Lenk P, Wink M. Morphological and molecular phylogenies of viperines: conflicting evidence? Kaupia. 1999;8:21–30.

Lenk P, Kalyabina S, Wink M, Joger U. Evolutionary relationships among the true vipers (Reptilia: Viperidae) inferred from mitochondrial DNA sequences. Mol. Phylogen. Evol. 2001;19:94–104. doi: 10.1006/mpev.2001.0912. PubMed DOI

Wüster W, Peppin L, Pook CE, Walker DE. A nesting of vipers: phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes) Mol. Phylogen. Evol. 2008;49:445–459. doi: 10.1016/j.ympev.2008.08.019. PubMed DOI

Pook CE, Joger U, Stümpel N, Wüster W. When continents collide: phylogeny, historical biogeography and systematics of the medically important viper genus Echis (Squamata: Serpentes: Viperidae) Mol. Phylogen. Evol. 2009;53:792–807. doi: 10.1016/j.ympev.2009.08.002. PubMed DOI

Pyron RA, Burbrink FT. Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. Ecol. Lett. 2014;17:13–21. doi: 10.1111/ele.12168. PubMed DOI

Pyron RA, et al. The phylogeny of advanced snakes (Colubroidea), with discovery of a new subfamily and comparison of support methods for likelihood trees. Mol. Phylogen. Evol. 2011;58:329–342. doi: 10.1016/j.ympev.2010.11.006. PubMed DOI

Tonini JFR, Beard KH, Ferreira RB, Jetz W, Pyron RA. Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 2016;204:23–31. doi: 10.1016/j.biocon.2016.03.039. DOI

Alencar LR, et al. Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in speciation rates. Mol. Phylogen. Evol. 2016;105:50–62. doi: 10.1016/j.ympev.2016.07.029. PubMed DOI

Figueroa A, McKelvy AD, Grismer LL, Bell CD, Lailvaux SP. A species-level phylogeny of extant snakes with description of a new colubrid subfamily and genus. PloS one. 2016;11:e0161070. doi: 10.1371/journal.pone.0161070. PubMed DOI PMC

Szyndlar, Z. & Rage, J.-C. In Biology of the vipers (eds Gordon W. Schuett, Mats Hoggren, & Michael E. Douglas) 419–444 (Eagle Mountain Publishing, 2002).

Kuch U, Müller J, Mödden C, Mebs D. Snake fangs from the Lower Miocene of Germany: evolutionary stability of perfect weapons. Naturwissenschaften. 2006;93:84–87. doi: 10.1007/s00114-005-0065-y. PubMed DOI

Szyndlar Z. Snakes from the lower Miocene locality of Dolnice (Czechoslovakia) J. Vert. Paleontol. 1987;7:55–71. doi: 10.1080/02724634.1987.10011637. DOI

Groombridge, B. In Studies in Herpetology (ed. Zbyněk Roček) 219–222 (1986).

Szyndlar, Z. In Proceedings of the 4th Ordinary General Meeting of the Societas Europaea Herpetologica. (eds J. J. Van Gelder, Henk Strijbosch, & P. J. M. Bergers) 387–390 (1987).

Ashe J, Marx H. Phylogeny of viperine snakes (Viperinae): Part II. Cladistic analysis and major lineages. Fieldiana Zoology. 1988;52:1–23.

Herrmann H-W, Joger U, Nilson G. Phylogeny and systematics of viperine snakes. III: resurrection of the genus Macrovipera (Reuss, 1927) as suggested by biochemical evidence. Amphibia-Reptilia. 1992;13:375–392. doi: 10.1163/156853892X00076. DOI

Fenwick AM, Greene HW, Parkinson CL. The serpent and the egg: unidirectional evolution of reproductive mode in vipers? J. Zool. Syst. Evol. Res. 2012;50:59–66. doi: 10.1111/j.1439-0469.2011.00646.x. DOI

Böhme, M. & Ilg, A. FosFARbase. http://www.wahre-staerke.com/ Accessed December 2017 (2003).

Szyndlar Z, Böhme W. Die fossilen Schlangen Deutschlands: geschichte der Faunen und ihrer Erforschung. Mertensiella. 1993;3:381–431.

Szyndlar Z, Rage J-C. Oldest fossil vipers (Serpentes: Viperidae) from the Old. World. Kaupia. 1999;8:9–20.

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI

Lanfear R, Calcott B, Ho SYW, Guindon S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012;29:1695–1701. doi: 10.1093/molbev/mss020. PubMed DOI

Mayrose I, Friedman N, Pupko T. A Gamma mixture model better accounts for among site rate heterogeneity. Bioinformatics. 2005;21:ii151–ii158. doi: 10.1093/bioinformatics/bti1125. PubMed DOI

Bouckaert R, et al. BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput Biol. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC

Miller, M., Pfeiffer, W. & Schwartz, T. In Proceedings of the Gateway Computing Environments Workshop (GCE). 1–8 (IEE) (2010).

Gavryushkina A, Welch D, Stadler T, Drummond AJ. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comp. Biol. 2014;10:e1003919. doi: 10.1371/journal.pcbi.1003919. PubMed DOI PMC

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30:2725–2729. doi: 10.1093/molbev/mst197. PubMed DOI PMC

Rambaut, A. & Drummond, A. Tracer v1.4. Available from, http://beast.bio.ed.ac.uk/Tracer (2007).

Matzke NJ. BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis in R Scripts. R package, version 0.2. 2013;1:2013.

Lynch VJ. Live-birth in vipers (Viperidae) is a key innovation and adaptation to global cooling during the Cenozoic. Evolution. 2009;63:2457–2465. doi: 10.1111/j.1558-5646.2009.00733.x. PubMed DOI

Oraie H, et al. Molecular and morphological analyses have revealed a new species of blunt-nosed viper of the genus Macrovipera in Iran. Salamandra. 2018;54:233–248.

Venczel M, Stiuca E. Late middle Miocene amphibians and squamate reptiles from Taut. Romania. Geodiversitas. 2008;30:731–763.

Grimm GW, Kapli P, Bomfleur B, McLoughlin S, Renner SS. Using more than the oldest fossils: dating Osmundaceae with three Bayesian clock approaches. Syst. Biol. 2015;64:396–405. doi: 10.1093/sysbio/syu108. PubMed DOI

Gavryushkina A, et al. Bayesian total-evidence dating reveals the recent crown radiation of penguins. Syst. Biol. 2017;66:57–73. PubMed PMC

Arcila D, Pyron AR, Tyler JC, Ortí G, Betancur-R R. An evaluation of fossil tip-dating versus node-age calibrations in tetraodontiform fishes (Teleostei: Percomorphaceae) Mol. Phylogen. Evol. 2015;82:131–145. doi: 10.1016/j.ympev.2014.10.011. PubMed DOI

Harrington SM, Reeder TW. Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction. Biol. J. Linn. Soc. 2017;121:379–394. doi: 10.1093/biolinnean/blw039. DOI

Pyron RA. Divergence time estimation using fossils as terminal taxa and the origins of Lissamphibia. Syst. Biol. 2011;60:466–481. doi: 10.1093/sysbio/syr047. PubMed DOI

Ronquist F, et al. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 2012;61:973–999. doi: 10.1093/sysbio/sys058. PubMed DOI PMC

Bosworth W, Huchon P, McClay K. The Red Sea and Gulf of Aden Basins. J. Afr. Earth Sci. 2005;43:334–378. doi: 10.1016/j.jafrearsci.2005.07.020. DOI

Popov, S. V. et al. Lithological-paleogeographic maps of Paratethys 10 maps Late Eocene to Pliocene. (Courier Forschungsinstitut Senckenberg, 2004).

Rögl F. Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview) Geologica Carpathica. 1999;50:339–349.

Rögl F. Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene) Annalen des Naturhistorischen Museums in Wien. Serie A für Mineralogie und Petrographie, Geologie und Paläontologie, Anthropologie und Prähistorie. 1998;99A:279–310.

Parkinson CL. Molecular systematics and biogeographical history of pitvipers as determined by mitochondrial ribosomal DNA sequences. Copeia. 1999;1999:576–586. doi: 10.2307/1447591. DOI

Zachos J, Pagani M, Sloan L, Thomas E, Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001;292:686–693. doi: 10.1126/science.1059412. PubMed DOI

Böhme M. The Miocene climatic optimum: evidence from ectothermic vertebrates of Central. Europe. Palaeogeogr., Palaeoclimatol., Palaeoecol. 2003;195:389–401. doi: 10.1016/S0031-0182(03)00367-5. DOI

Raup DM, Sepkoski JJ. Periodicity of extinctions in the geologic past. PNAS. 1984;81:801–805. doi: 10.1073/pnas.81.3.801. PubMed DOI PMC

Pearson PN, Palmer MR. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature. 2000;406:695–699. doi: 10.1038/35021000. PubMed DOI

Szyndlar Z. A review of neogene and quaternary snakes of Central and Eastern Europe. Part 11: natricinae, elapidae, viperidae. Estudios geol. 1991;47:237–266.

Szyndlar Z. A review of Neogene and Quaternary snakes of central and eastern Europe. Part 1: Scolecophidia, Boidae, Colubrinae. Estudios geol. 1991;47:103–126.

Čerňanský A. A revision of chamaeleonids from the Lower Miocene of the Czech Republic with description of a new species of Chamaeleo (Squamata, Chamaeleonidae) Geobios. 2010;43:605–613. doi: 10.1016/j.geobios.2010.04.001. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...