• This record comes from PubMed

Why Are Some Snakes More Terrifying and What Is Behind the Fear?

. 2025 Mar 04 ; 15 (5) : . [epub] 20250304

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
20-21608S Czech Science Foundation

Snakes are stimuli inducing an ancestral fear response in humans and other primates. Certain snakes evoke more subjective fear than others. True vipers are high-fear-eliciting snakes for both African and European respondents. This can be explained by the evolutionary experience of human ancestors in Africa. The question arises as to how snakes living in the Americas and Australia, with which humans have no evolutionary experience, will be evaluated. While these snakes belong to broader taxonomic groups that have distant relatives in the Old World, they have evolved independently for tens of millions of years. We prepared a set of 32 pictures depicting eight American pit vipers, eight Australian elapids, eight constrictors, and eight colubrids and asked the respondents to rank these stimuli according to the fear these snakes evoke. Here, we show a high cross-cultural agreement between evaluations by African and European respondents. Snakes characterized by a robust body shape, such as American pit vipers, Australian death adders, pythons, and boas, were the most fear-evoking. The body width was the strongest predictor of evoked fear. The contribution of coloration and pattern of the stimulus to the fear response was not proved. This supports the view that the patterns of fear are not dependent on direct experience, but its underlying mechanisms are shared cross-culturally.

See more in PubMed

Polák J., Rádlová S., Janovcová M., Flegr J., Landová E., Frynta D. Scary and nasty beasts: Self-reported fear and disgust of common phobic animals. Br. J. Psychol. 2020;111:297–321. doi: 10.1111/bjop.12409. PubMed DOI

Onyishi I.E., Nwonyi S.K., Pazda A., Prokop P. Attitudes and behaviour toward snakes on the part of Igbo people in southeastern Nigeria. Sci. Total Environ. 2021;763:143045. doi: 10.1016/j.scitotenv.2020.143045. PubMed DOI

Staňková H., Janovcová M., Peléšková S., Sedláčková K., Landová E., Frynta D. The Ultimate List of the Most Frightening and Disgusting Animals: Negative Emotions Elicited by Animals in Central European Respondents. Animals. 2021;11:21. doi: 10.3390/ani11030747. PubMed DOI PMC

Zsido A.N., Polák J., Coelho C.M. The evolutionary background of ophidiophobia and ophidiophilia. In: Penning D., editor. Snakes: Morphology, Function, and Ecology. Nova Science Publisher; Hauppauge, NY, USA: 2023. pp. 479–501. DOI

Isbell L.A. Snakes as agents of evolutionary change in primate brains. J. Hum. Evol. 2006;51:1–35. doi: 10.1016/j.jhevol.2005.12.012. PubMed DOI

Frynta D., Elmi H., Janovcová M., Rudolfová V., Štolhoferová I., Rexová K., Král D., Sommer D., Berti D., Landová E., et al. Are vipers prototypic fear-evoking snakes? A cross-cultural comparison of Somalis and Czechs. Front. Psychol. 2023;14:1233667. doi: 10.3389/fpsyg.2023.1233667. PubMed DOI PMC

Headland T.N., Greene H.W. Hunter-gatherers and other primates as prey, predators, and competitors of snakes. Proc. Natl. Acad. Sci. USA. 2011;108:E1470–E1474. doi: 10.1073/pnas.1115116108. PubMed DOI PMC

Perry G., Lacy M., Das I. Snakes, snakebites, and humans. In: Angelici F.M., Rossi L., editors. Problematic Wildlife II: New Conservation and Management Challenges in the Human-Wildlife Interactions. Springer; Cham, Switzerland: 2020. pp. 561–580. DOI

Roberts N., Johnson E., Zeng S., Hamilton E., Abdoli A., Alahdab F., Alipour V., Ancuceanu R., Andrei C., Anvari D., et al. Global mortality of snakebite envenoming between 1990 and 2019. Nat. Commun. 2022;13:6160. doi: 10.1038/s41467-022-33627-9. PubMed DOI PMC

Kasturiratne A., Wickremasinghe A., de Silva N., Gunawardena N., Pathmeswaran A., Premaratna R., Savioli L., Lalloo D., de Silva H. The Global Burden of Snakebite: A Literature Analysis and Modelling Based on Regional Estimates of Envenoming and Deaths. PLoS Med. 2008;5:1591–1604. doi: 10.1371/journal.pmed.0050218. PubMed DOI PMC

Gutiérrez J., Calvete J., Habib A., Harrison R., Williams D., Warrell D. Snakebite envenoming. Nat. Rev. Dis. Primers. 2017;3:nrdp201763. doi: 10.1038/nrdp.2017.63. PubMed DOI

Afroz A., Siddiquea B., Chowdhury H., Jackson T., Watt A. Snakebite envenoming: A systematic review and meta-analysis of global morbidity and mortality. PLoS Negl. Trop. Dis. 2024;18:e0012080. doi: 10.1371/journal.pntd.0012080. PubMed DOI PMC

Mukherjee A., Mackessy S. Prevention and improvement of clinical management of snakebite in Southern Asian countries: A proposed road map. Toxicon. 2021;200:140–152. doi: 10.1016/j.toxicon.2021.07.008. PubMed DOI

Halilu S., Iliyasu G., Hamza M., Chippaux J.P., Kuznik A., Habib A.G. Snakebite burden in Sub-Saharan Africa: Estimates from 41 countries. Toxicon. 2019;159:1–4. doi: 10.1016/j.toxicon.2018.12.002. PubMed DOI

Ayesiga I., Gmanyami J., Akaka A., Kubwimana O., Ternor J., Hashim U., Gyabaah G., Turzin J., Kahwa I. Health economics of snakebite envenomation: A sub-Saharan African perspective. Trans. R. Soc. Trop. Med. Hyg. 2025:trae062. doi: 10.1093/trstmh/trae062. PubMed DOI

Chippaux J. Epidemiology of snakebites in Europe: A systematic review of the literature. Toxicon. 2012;59:86–99. doi: 10.1016/j.toxicon.2011.10.008. PubMed DOI

Paolino G., Di Nicola M., Pontara A., Didona D., Moliterni E., Mercuri S., Grano M., Borgianni N., Kumar R., Pampena R. Viperasnakebite in Europe: A systematic review of a neglected disease. J. Eur. Acad. Dermatol. Venereol. 2020;34:2247–2260. doi: 10.1111/jdv.16722. PubMed DOI

Borak M., Babic Z., Caganova B., Grenc D., Karabuva S., Kolpach Z., Krakowiak A., Kolesnikova V., Luksic B., Pap C., et al. Viper envenomation in Central and Southeastern Europe: A multicentre study. Clin. Toxicol. 2023;61:656–664. doi: 10.1080/15563650.2023.2273761. PubMed DOI

Janovcová M., Rádlová S., Polák J., Sedláčková K., Peléšková S., Žampachová B., Frynta D., Landová E. Human Attitude toward Reptiles: A Relationship between Fear, Disgust, and Aesthetic Preferences. Animals. 2019;9:17. doi: 10.3390/ani9050238. PubMed DOI PMC

Frynta D., Elmi H., Rexová K., Janovcová M., Rudolfová V., Štolhoferová I., Král D., Sommer D., Berti D., Frýdlová P. Animals evoking fear in the Cradle of Humankind: Snakes, scorpions, and large carnivores. Sci. Nat. 2023;110:33. doi: 10.1007/s00114-023-01859-4. PubMed DOI PMC

Isbell L.A. The Fruit, the Tree, and the Serpent: Why We See So Well. Harvard University Press; Cambridge, MA, USA: 2009.

Van Le Q., Isbell L.A., Matsumoto J., Nguyen M., Hori E., Maior R.S., Tomaz C., Tran A.H., Ono T., Nishijo H. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proc. Natl. Acad. Sci. USA. 2013;110:19000–19005. doi: 10.1073/pnas.1312648110. PubMed DOI PMC

Almeida I., Soares S.C., Castelo-Branco M. The Distinct Role of the Amygdala, Superior Colliculus and Pulvinar in Processing of Central and Peripheral Snakes. PLoS ONE. 2015;10:e0129949. doi: 10.1371/journal.pone.0129949. PubMed DOI PMC

Carli G., Farabollini F. Neural circuits of fear and defensive behavior. In: Carli G., Farabollini F., editors. Progress in Brain Research. Volume 271. Elsevier; Amsterdam, The Netherlands: 2022. pp. 51–69. PubMed

Setogawa T., Matsumoto J., Nishijo H., Nishimaru H. Neuronal mechanism of innate rapid processing of threating animacy cue in primates: Insights from the neuronal responses to snake images. Front. Psychol. 2024;15:1462961. doi: 10.3389/fpsyg.2024.1462961. PubMed DOI PMC

LoBue V., DeLoache J.S. What’s so special about slithering serpents? Children and adults rapidly detect snakes based on their simple features. Vis. Cogn. 2011;19:129–143. doi: 10.1080/13506285.2010.522216. DOI

Van Strien J.W., Christiaans G., Franken I.H.A., Huijding J. Curvilinear shapes and the snake detection hypothesis: An ERP study. Psychophysiology. 2016;53:252–257. doi: 10.1111/psyp.12564. PubMed DOI

Kawai N. Japanese monkeys rapidly noticed snake-scale cladded salamanders, similar to detecting snakes. Sci. Rep. 2024;14:27458. doi: 10.1038/s41598-024-78595-w. PubMed DOI PMC

Van Strien J.W., Isbell L.A. Snake scales, partial exposure, and the Snake Detection Theory: A human event-related potentials study. Sci. Rep. 2017;7:srep46331. doi: 10.1038/srep46331. PubMed DOI PMC

Isbell L.A., Etting S.F. Scales drive detection, attention, and memory of snakes in wild vervet monkeys (Chlorocebus pygerythrus) Primates. 2017;58:121–129. doi: 10.1007/s10329-016-0562-y. PubMed DOI

Kawai N. The Fear of Snakes. Springer; Singapore: 2019. Searching for the Critical Features of Snakes; pp. 121–153. DOI

Coss R., Charles E. The Saliency of Snake Scales and Leopard Rosettes to Infants: Its Relevance to Graphical Patterns Portrayed in Prehistoric Art. Front. Psychol. 2021;12:763436. doi: 10.3389/fpsyg.2021.763436. PubMed DOI PMC

Rádlová S., Janovcová M., Sedláčková K., Polák J., Nácar D., Peléšková S., Frynta D., Landová E. Snakes Represent Emotionally Salient Stimuli That May Evoke Both Fear and Disgust. Front. Psychol. 2019;10:18. doi: 10.3389/fpsyg.2019.01085. PubMed DOI PMC

Landová E., Peléšková S., Sedláčková K., Janovcová M., Polák J., Rádlová S., Vobrubová B., Frynta D. Venomous snakes elicit stronger fear than nonvenomous ones: Psychophysiological response to snake images. PLoS ONE. 2020;15:e0236999. doi: 10.1371/journal.pone.0236999. PubMed DOI PMC

Vobrubová B., Sedláčková K., Janovcová M., Rádlová S., Polák J., Peléšková Š., Frynta D., Landová E. Eye movement patterns in response to fear-and disgust-eliciting reptiles. Acta Soc. Zool. Boh. 2023;86:193–209.

Landová E., Bakhshaliyeva N., Janovcová M., Peléšková S., Suleymanova M., Polák J., Guliev A., Frynta D. Association Between Fear and Beauty Evaluation of Snakes: Cross-Cultural Findings. Front. Psychol. 2018;9:15. doi: 10.3389/fpsyg.2018.00333. PubMed DOI PMC

Frynta D., Štolhoferová I., Elmi H., Janovcová M., Rudolfová V., Rexová K., Sommer D., Král D., Berti D., Landová E., et al. Hooding cobras can get ahead of other snakes in the ability to evoke human fear. Sci. Nat. 2025;112:1–13. doi: 10.1007/s00114-024-01952-2. PubMed DOI PMC

Lordkipanidze D., de León M., Margvelashvili A., Rak Y., Rightmire G., Vekua A., Zollikofer C. A Complete Skull from Dmanisi, Georgia, and the Evolutionary Biology of Early Homo. Science. 2013;342:326–331. doi: 10.1126/science.1238484. PubMed DOI

Rightmire G. Early Homo: Systematics, Paleobiology, and the First Out-of-Africa Dispersals. In: Larsen C., editor. A Companion to Biological Anthropology. Wiley Online Library; Hoboken, NJ, USA: 2023. DOI

Stringer C. The origin and evolution of Homo sapiens. Philos. Trans. R. Soc. B Biol. Sci. 2016;371:20150237. doi: 10.1098/rstb.2015.0237. PubMed DOI PMC

Vidal C., Lane C., Asrat A., Barfod D., Mark D., Tomlinson E., Tadesse A., Yirgu G., Deino A., Hutchison W., et al. Age of the oldest known Homo sapiens from eastern Africa. Nature. 2022;601:579–583. doi: 10.1038/s41586-021-04275-8. PubMed DOI PMC

Hublin J. How old are the oldest Homo sapiens in Far East Asia? Proc. Natl. Acad. Sci. USA. 2021;118:e2101173118. doi: 10.1073/pnas.2101173118. PubMed DOI PMC

Vallini L., Marciani G., Aneli S., Bortolini E., Benazzi S., Pievani T., Pagani L. Genetics and Material Culture Support Repeated Expansions into Paleolithic Eurasia from a Population Hub Out of Africa. Genome Biol. Evol. 2022;14:evac045. doi: 10.1093/gbe/evac045. PubMed DOI PMC

Villanea F., Schraiber J. Multiple episodes of interbreeding between Neanderthal and modern humans. Nat. Ecol. Evol. 2019;3:39–44. doi: 10.1038/s41559-018-0735-8. PubMed DOI PMC

Villanea F., Witt K. Underrepresented Populations at the Archaic Introgression Frontier. Front. Genet. 2022;13:821170. doi: 10.3389/fgene.2022.821170. PubMed DOI PMC

Alencar L., Quental T., Grazziotin F., Alfaro M., Martins M., Venzon M., Zaher H. Diversification in vipers: Phylogenetic relationships, time of divergence and shifts in speciation rates. Mol. Phylogen. Evol. 2016;105:50–62. doi: 10.1016/j.ympev.2016.07.029. PubMed DOI

Esparza-Estrada C., Terribile L., Rojas-Soto O., Yáñez-Arenas C., Villalobos F. Evolutionary dynamics of climatic niche influenced the current geographical distribution of Viperidae (Reptilia: Squamata) worldwide. Biol. J. Linn. Soc. 2022;135:665–678. doi: 10.1093/biolinnean/blac012. DOI

Esparza-Estrada C.E., Alencar L.R.V., Terribile L.C., Rojas-Soto O., Yanez-Arenas C., Villalobos F. Vipers on the Scene: Assessing the Relationship Between Speciation and Climatic Niche Evolution in Venomous Snakes (Reptilia: Viperidae) Evol. Biol. 2023;50:264–273. doi: 10.1007/s11692-023-09604-5. DOI

Figueroa A., McKelvy A., Grismer L., Bell C., Lailvaux S. A Species-Level Phylogeny of Extant Snakes with Description of a New Colubrid Subfamily and Genus. PLoS ONE. 2016;11:e0161070. doi: 10.1371/journal.pone.0161070. PubMed DOI PMC

Zaher H., Murphy R.W., Arredondo J.C., Graboski R., Machado P.R., Mahlow K., Montingellil G.G., Quadros A.B., Orlov N.L., Wilkinson M., et al. Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes) PLoS ONE. 2019;14:e0216148. doi: 10.1371/journal.pone.0216148. PubMed DOI PMC

Carrasco P., Koch C., Grazziotin F., Venegas P., Chaparro J., Scrocchi G., Salazar-Valenzuela D., Leynaud G., Mattoni C. Total-evidence phylogeny and evolutionary morphology of New World pitvipers (Serpentes: Viperidae: Crotalinae) Cladistics. 2023;39:71–100. doi: 10.1111/cla.12522. PubMed DOI

Fernández C., Youssef P. Snakebites in the Americas: A Neglected Problem in Public Health. Curr. Trop. Med. Rep. 2024;11:19–27. doi: 10.1007/s40475-023-00309-5. DOI

Jowers M., Mudarra J., Charles S., Murphy J. Phylogeography of West Indies Coral snakes (Micrurus): Island colonisation and banding patterns. Zool. Scr. 2019;48:263–276. doi: 10.1111/zsc.12346. DOI

Zaher H., Grazziotin F.G., da Costa Prudente A.L., de Aguiar Quadros A.B., Trevine V.C., da Silva N.J. Advances in Coralsnake Biology: With an Emphasis on the South America. HAL Open Science; Lyon, France: 2020. Origin and evolution of elapids and New World coralsnakes.

Weinell J., Burbrink F., Das S., Brown R. Novel phylogenomic inference and ‘Out of Asia’ biogeography of cobras, coral snakes and their allies. R. Soc. Open Sci. 2024;11:240064. doi: 10.1098/rsos.240064. PubMed DOI PMC

Rabosky A., Cox C., Rabosky D., Title P., Holmes I., Feldman A., McGuire J. Coral snakes predict the evolution of mimicry across New World snakes. Nat. Commun. 2016;7:11484. doi: 10.1038/ncomms11484. PubMed DOI PMC

Mouy H. The function of red and banded patterns in snakes: The eyes of the beholders-also, the function of bands in fish. Biol. J. Linn. Soc. 2024;142:452–467. doi: 10.1093/biolinnean/blad154. DOI

Landová E., Marešová J., Šimková O., Cikanová V., Frynta D. Human responses to live snakes and their photographs: Evaluation of beauty and fear of the king snakes. J. Environ. Psychol. 2012;32:69–77. doi: 10.1016/j.jenvp.2011.10.005. DOI

Souchet J., Aubret F. Revisiting the fear of snakes in children: The role of aposematic signalling. Sci. Rep. 2016;6:37619. doi: 10.1038/srep37619. PubMed DOI PMC

Prokop P., Fančovičová J., Kučerová A. Aposematic colouration does not explain fear of snakes in humans. J. Ethol. 2018;36:35–41. doi: 10.1007/s10164-017-0533-9. DOI

Fančovičová J., Prokop P., Szikhart M., Pazda A. Snake coloration does not influence children’s detection time. Hum. Dimens. Wildl. 2020;25:489–497. doi: 10.1080/10871209.2020.1758252. DOI

Sanches V., Gomes C. Aposematic and cryptic snakes are equally attacked at occidental Amazonian Forest. Herp. Notes. 2019;12:1105–1111.

Onary S., Fachini T., Hsiou A. The Snake Fossil Record from Brazil. J. Herpetol. 2017;51:365–374. doi: 10.1670/16-031. DOI

Croghan J., Palci A., Onary S., Lee M., Caldwell M. Morphology and systematics of a new fossil snake from the early Rupelian (Oligocene) White River Formation, Wyoming. Zool. J. Linn. Soc. 2024:zlae073. doi: 10.1093/zoolinnean/zlae073. DOI

Rehák I., Štáhlavská I., Somerová B., Šimková O., Frynta D. A deep divergence and high diversity of mitochondrial haplotypes in an island snake: The case of Chilabothrus angulifer (Seprentes: Boidae) Acta Soc. Zool. Bohem. 2022;85:1–22.

Palci A., Onary S., Lee M., Smith K., Wings O., Rabi M., Georgalis G. A new booid snake from the Eocene (Lutetian) Konservat-Lagerstätte of Geiseltal, Germany, and a new phylogenetic analysis of Booidea. Zool. J. Linn. Soc. 2023;202:zlad179. doi: 10.1093/zoolinnean/zlad179. DOI

Scanferla A., Smith K. Exquisitely Preserved Fossil Snakes of Messel: Insight into the Evolution, Biogeography, Habitat Preferences and Sensory Ecology of Early Boas. Diversity. 2020;12:100. doi: 10.3390/d12030100. DOI

Onary S., Hsiou A., Lee M., Palci A. Redescription, taxonomy and phylogenetic relationships of Boavus Marsh, 1871 (Serpentes: Booidea) from the early-middle Eocene of the USA. J. Syst. Paleontol. 2021;19:1601–1622. doi: 10.1080/14772019.2022.2068386. DOI

Head J., Rincon A., Suarez C., Montes C., Jaramillo C. Fossil evidence for ealiest neogene american faunal interchange: Boa (Serpentes, Boinae) from the early Miocene of Panama. J. Vert. Paleontol. 2012;32:1328–1334. doi: 10.1080/02724634.2012.694387. DOI

Onary S., Hsiou A. Systematic revision of the early Miocene fossil Pseudoepicrates (Serpentes: Boidae): Implications for the evolution and historical biogeography of the West Indian boid snakes (Chilabothrus) Zool. J. Linn. Soc. 2018;184:453–470. doi: 10.1093/zoolinnean/zly002. DOI

Lee M., Sanders K., King B., Palci A. Diversification rates and phenotypic evolution in venomous snakes (Elapidae) R. Soc. Open Sci. 2016;3:150277. doi: 10.1098/rsos.150277. PubMed DOI PMC

Sherratt E., Nash-Hahn T., Nankivell J., Rasmussen A., Hampton P., Sanders K. Macroevolution in axial morphospace: Innovations accompanying the transition to marine environments in elapid snakes. R. Soc. Open Sci. 2022;9:221087. doi: 10.1098/rsos.221087. PubMed DOI PMC

Jackson T., Koludarov I., Ali S., Dobson J., Zdenek C., Dashevsky D., op Den Brouw B., Masci P., Nouwens A., Josh P., et al. Rapid Radiations and the Race to Redundancy: An Investigation of the Evolution of Australian Elapid Snake Venoms. Toxins. 2016;8:309. doi: 10.3390/toxins8110309. PubMed DOI PMC

Murphy K., Tasoulis T., Dunstan N., Isbister G. Anticoagulant activity in Australasian elapid snake venoms and neutralisation with antivenom and varespladib. Toxicon. 2024;247:107836. doi: 10.1016/j.toxicon.2024.107836. PubMed DOI

Valenta J. Venomous Snakes—Envenoming, Therapy. Nova Science Publishers, Inc.; New York, NY, USA: 2010.

Mirtschin P., Rasmussen A., Weinstein S. Australia’s Dangerous Snakes: Identification, Biology and Envenoming. Csiro Publishing; Clayton, Australia: 2017.

Johnston C., Ryan N., Page C., Buckley N., Brown S., O’Leary M., Isbister G. The Australian Snakebite Project, 2005-2015 (ASP-20) Med. J. Aust. 2017;207:119–125. doi: 10.5694/mja17.00094. PubMed DOI

Weinstein S., Keyler D., Jensen J., Sawyers R., Steward H., Facente J., Dean D. Envenoming by a captive inland taipan, Oxyuranus microlepidotus (McCoy, 1879), Elapidae. A case report, observations on clinical efficacy of expired antivenom and review of O. microlepidotus envenoming. Toxicon. 2025;254:108210. doi: 10.1016/j.toxicon.2024.108210. PubMed DOI

Zaher H., Smith K. Pythons in the Eocene of Europe reveal a much older divergence of the group in sympatry with boas. Biol. Lett. 2020;16:20200735. doi: 10.1098/rsbl.2020.0735. PubMed DOI PMC

Singh N., Patnaik R., Cernansky A., Sharma K., Singh N., Choudhary D., Sehgal R. A new window to the fossil herpetofauna of India: Amphibians and snakes from the Miocene localities of Kutch (Gujarat) Palaebiodiversity Palaeoenvironments. 2022;102:419–435. doi: 10.1007/s12549-021-00515-x. DOI

Smith K., Georgalis G. The Diversity and Distribution of Palaeogene Snakes. A Review with Comments on Vertebral Sufficiency. In: Gower D., Zaher H., editors. The Origin and Early Evolutionary History of Snakes. Cambridge University Press; Cambridge, UK: 2022.

Scanlon J. Montypythonoides: The Miocene snake Morelia riversleighensis (Smith & Plane, 1985) and the geographical origin of pythons. Mem. Assoc. Australas. Palaeontol. 2001;25:1–36.

Esquerré D., Brennan I., Donnellan S., Keogh J. Evolutionary models demonstrate rapid and adaptive diversification of Australo-Papuan pythons. Biol. Lett. 2022;18:20220360. doi: 10.1098/rsbl.2022.0360. PubMed DOI PMC

Reynolds R.G., Niemiler M.L., Revell L.J. Toward a Tree-of-Life for the boas and pythons: Multi locus species-level phylogeny with unprecedented taxon sampling. Mol. Phylogen. Evol. 2014;71:201–213. doi: 10.1016/j.ympev.2013.11.011. PubMed DOI

Uetz P., Freed P., Aguilar R., Reyes F., Kudera J., Hošek J., editors. The Reptile Database. [(accessed on 4 January 2025)]. Available online: http://www.reptile-database.org.

Serrano F., Pontes-Nogueira M., Sawaya R., Alencar L., Nogueira C., Grazziotin F. There and back again: When and how the world’s richest snake family (Dipsadidae) dispersed and speciated across the Neotropical region. J. Biogeogr. 2024;51:878–893. doi: 10.1111/jbi.14790. DOI

Wilcox C.D., Dove S.B., Doss-McDavid W., Greer D.B. UTHSCSA ImageTool©, 3.1.922. University of Texas Health Science Center; San Antonio, TX, USA: 2002.

Rasband W.S. ImageJ. U. S. National Institutes of Health; Bethesda, MD, USA: 2016.

Landová E., Janovcová M., Štolhoferová I., Rádlová S., Frýdlová P., Sedláčková K., Frynta D. Specificity of spiders among fear- and disgust-eliciting arthropods: Spiders are special, but phobics not so much. PLoS ONE. 2021;16:e0257726. doi: 10.1371/journal.pone.0257726. PubMed DOI PMC

Rádlová S., Viktorin P., Frynta D. Barvocuc 2.0, Software for Color Image Analysis. 2016. Produced personally by Viktorin Lišková and Daniel Frynta.

Lišková S., Frynta D. What Determines Bird Beauty in Human Eyes? Anthrozoos. 2013;26:27–41. doi: 10.2752/175303713X13534238631399. DOI

Newsam S. Proceedings of MDM ‘05: Proceedings of the 6th International Workshop on Multimedia Data Mining: Mining Integrated Media and Complex Data. ACM; New York, NY, USA: 2005. Seeing and reading red: Hue and color-word correlation in images and attendant text on the WWW; pp. 101–106.

Lišková S., Landová E., Frynta D. Human Preferences for Colorful Birds: Vivid Colors or Pattern? Evol. Psychol. 2015;13:339–359. doi: 10.1177/147470491501300203. PubMed DOI PMC

Ugail H., Stork D., Edwards H., Seward S., Brooke C. Deep transfer learning for visual analysis and attribution of paintings by Raphael. Herit. Sci. 2023;11:268. doi: 10.1186/s40494-023-01094-0. DOI

Gamer M., Lemon J., Singh I. irr: Various Coefficients of Interrater Reliability and Agreement. R Package Version 0.84.1. 2022. [(accessed on 3 June 2022)]. Available online: https://CRAN.R-project.org/package=irr.

Eser M., Aksu G. Comparison of the results of the generalizability theory with the inter-rater agreement coefficients: Comparison of the results of the generalizability theory. Int. J. Curric. Instr. 2022;14:1629–1643.

Pohlert T. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended. 2024. [(accessed on 10 October 2024)]. version 1.9.12. Available online: https://CRAN.R-project.org/package=PMCMRplus.

Oksanen J., Simpson G.L., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O’Hara R.B., Solymos P., Stevens M.H.H., Szoecs E., et al. Vegan: Community Ecology Package. 2024. [(accessed on 19 July 2024)]. version2.6-6.1. Available online: https://cran.r-project.org/web/packages/vegan/index.html.

Lai J., Cui D., Zhu W., Mao L. The Use of R and R Packages in Biodiversity Conservation Research. Diversity. 2023;15:1202. doi: 10.3390/d15121202. DOI

The R Core Team . R: A Language and Environment for Statistical Computing. The R Core Team; Vienna, Austria: 2012.

Statsoft S. Statistica. 2009. [(accessed on 23 August 2009)]. version 9.1. Available online: www.statsoft.com.

Frynta D., Janovcová M., Štolhoferová I., Peléšková S., Vobrubová B., Frýdlová P., Skalíková H., Šípek P., Landová E. Emotions triggered by live arthropods shed light on spider phobia. Sci. Rep. 2021;11:22268. doi: 10.1038/s41598-021-01325-z. PubMed DOI PMC

Šmíd J., Tolley K. Calibrating the tree of vipers under the fossilized birth-death model. Sci. Rep. 2019;9:5510. doi: 10.1038/s41598-019-41290-2. PubMed DOI PMC

Dufresnes C., Ghielmi S., Halpern B., Martínez-Freiría F., Mebert K., Jelic D., Crnobrnja-Isailovic J., Gippner S., Jablonski D., Joger U., et al. Phylogenomic insights into the diversity and evolution of Palearctic vipers. Mol. Phylogen. Evol. 2024;197:108095. doi: 10.1016/j.ympev.2024.108095. PubMed DOI

Freitas I., Ursenbacher S., Mebert K., Zinenko O., Schweiger S., Wüster W., Brito J., Crnobrnja-Isailovic J., Halpern B., Fahd S., et al. Evaluating taxonomic inflation: Towards evidence-based species delimitation in Eurasian vipers (Serpentes: Viperinae) Amphibia-Reptilia. 2020;41:285–311. doi: 10.1163/15685381-bja10007. DOI

Kazandjian T., Petras D., Robinson S., van Thiel J., Greene H., Arbuckle K., Barlow A., Carter D., Wouters R., Whiteley G., et al. Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science. 2021;371:386–390. doi: 10.1126/science.abb9303. PubMed DOI PMC

Shine R. So many Snakes, So Little Time: Uncovering the Secret Lives of Australia’s Serpents. CRC Press; Boca Raton, FL, USA: 2022.

Štolhoferová I., Frynta D., Janovcová M., Rudolfová V., Elmi H., Rexová K., Berti D., Král D., Sommer D., Landová E., et al. The bigger the threat, the longer the gaze? A cross-cultural study of Somalis and Czechs. Front. Psychol. 2023;14:1234593. doi: 10.3389/fpsyg.2023.1234593. PubMed DOI PMC

Chowdhury A., Lewin M., Carter R., Soria R., Aldridge M., Fry B. Extreme Procoagulant Potency in Human Plasma of Venoms from the African Viperid Genera Atheris, Cerastes, and Proatheris and the Relative Efficacy of Antivenoms and Synthetic Enzyme-Inhibitors. Toxins. 2022;14:836. doi: 10.3390/toxins14120836. PubMed DOI PMC

Neri-Castro E., Zarzosa V., Benard-Valle M., Rodríguez-Solís A., Hernández-Orihuela L., Ortiz-Medina J., Alagón A. Quantifying venom production: A study on Micrurus snakes in Mexico. Toxicon. 2024;240:107658. doi: 10.1016/j.toxicon.2024.107658. PubMed DOI

Rodríguez-Vargas A., Franco-Vásquez A., Bolívar-Barbosa J., Vega N., Reyes-Montaño E., Arreguín-Espinosa R., Carbajal-Saucedo A., Angarita-Sierra T., Ruiz-Gómez F. Unveiling the Venom Composition of the Colombian Coral Snakes Micrurus helleri, M. medemi, and M. sangilensis. Toxins. 2023;15:622. doi: 10.3390/toxins15110622. PubMed DOI PMC

Cleuren S., Hocking D., Evans A. Fang evolution in venomous snakes: Adaptation of 3D tooth shape to the biomechanical properties of their prey. Evolution. 2021;75:1377–1394. doi: 10.1111/evo.14239. PubMed DOI

Holding M., Trevine V., Zinenko O., Strickland J., Rautsaw R., Mason A., Hogan M., Parkinson C., Grazziotin F., Santana S., et al. Evolutionary allometry and ecological correlates of fang length evolution in vipers. Proc. Biol. Sci. 2022;289:20221132. doi: 10.1098/rspb.2022.1132. PubMed DOI PMC

Marešová J., Krása A., Frynta D. We all Appreciate the Same Animals: Cross-Cultural Comparison of Human Aesthetic Preferences for Snake Species in Papua New Guinea and Europe. Ethology. 2009;115:297–300. doi: 10.1111/j.1439-0310.2009.01620.x. DOI

Frynta D., Marešová J., Řeháková-Petrů M., Šklíba J., Šumbera R., Krása A. Cross-Cultural Agreement in Perception of Animal Beauty: Boid Snakes Viewed by People from Five Continents. Hum. Ecol. 2011;39:829–834. doi: 10.1007/s10745-011-9447-2. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...