Measurement of the jet mass in highly boosted [Formula: see text] events from pp collisions at [Formula: see text][Formula: see text]

. 2017 ; 77 (7) : 467. [epub] 20170714

Status PubMed-not-MEDLINE Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28943793

The first measurement of the jet mass [Formula: see text] of top quark jets produced in [Formula: see text] events from pp collisions at [Formula: see text] [Formula: see text] is reported for the jet with the largest transverse momentum [Formula: see text] in highly boosted hadronic top quark decays. The data sample, collected with the CMS detector, corresponds to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the lepton+jets channel in which the products of the semileptonic decay [Formula: see text] with [Formula: see text] where [Formula: see text] is an electron or muon, are used to select [Formula: see text] events with large Lorentz boosts. The products of the fully hadronic decay [Formula: see text] with [Formula: see text] are reconstructed using a single Cambridge-Aachen jet with distance parameter [Formula: see text], and [Formula: see text] [Formula: see text]. The [Formula: see text] cross section as a function of [Formula: see text] is unfolded at the particle level and is used to test the modelling of highly boosted top quark production. The peak position of the [Formula: see text] distribution is sensitive to the top quark mass [Formula: see text], and the data are used to extract a value of [Formula: see text] to assess this sensitivity.

Academy of Scientific Research and Technology of the Arab Republic of Egypt Egyptian Network of High Energy Physics Cairo Egypt

Baylor University Waco USA

Beihang University Beijing China

Benemerita Universidad Autonoma de Puebla Puebla Mexico

Bhabha Atomic Research Centre Mumbai India

Bogazici University Istanbul Turkey

Boston University Boston USA

Brown University Providence USA

Brunel University Uxbridge UK

California Institute of Technology Pasadena USA

Carnegie Mellon University Pittsburgh USA

Catholic University of America Washington USA

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules CNRS IN2P3 Villeurbanne France

Centro Brasileiro de Pesquisas Fisicas Rio de Janeiro Brazil

Centro de Investigacion y de Estudios Avanzados del IPN Mexico City Mexico

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas Madrid Spain

CERN European Organization for Nuclear Research Geneva Switzerland

Charles University Prague Czech Republic

Chonbuk National University Chonju Korea

Chonnam National University Institute for Universe and Elementary Particles Kwangju Korea

Chulalongkorn University Faculty of Science Department of Physics Bangkok Thailand

Cornell University Ithaca USA

Department of Physics University of Helsinki Helsinki Finland

Deutsches Elektronen Synchrotron Hamburg Germany

Fairfield University Fairfield USA

Fermi National Accelerator Laboratory Batavia USA

Florida Institute of Technology Melbourne USA

Florida International University Miami USA

Florida State University Tallahassee USA

Georgian Technical University Tbilisi Georgia

Ghent University Ghent Belgium

Hanyang University Seoul Korea

Helsinki Institute of Physics Helsinki Finland

Imperial College London UK

Indian Institute of Science Bangalore India

Indian Institute of Science Education and Research Pune India

Indian Institute of Technology Madras Madras India

INFN Laboratori Nazionali di Frascati Frascati Italy

INFN Sezione di Bari Università di Bari Politecnico di Bari Bari Italy

INFN Sezione di Bologna Università di Bologna Bologna Italy

INFN Sezione di Catania Università di Catania Catania Italy

INFN Sezione di Firenze Università di Firenze Firenze Italy

INFN Sezione di Genova Università di Genova Genoa Italy

INFN Sezione di Milano Bicocca Università di Milano Bicocca Milan Italy

INFN Sezione di Napoli Università di Napoli 'Federico II' Naples Italy Università della Basilicata Potenza Italy Università G Marconi Rome Italy

INFN Sezione di Padova Università di Padova Padua Italy Università di Trento Trento Italy

INFN Sezione di Pavia Università di Pavia Pavia Italy

INFN Sezione di Perugia Università di Perugia Perugia Italy

INFN Sezione di Pisa Università di Pisa Scuola Normale Superiore di Pisa Pisa Italy

INFN Sezione di Roma Università di Roma Rome Italy

INFN Sezione di Torino Università di Torino Turin Italy Università del Piemonte Orientale Novara Italy

INFN Sezione di Trieste Università di Trieste Trieste Italy

Institut für Experimentelle Kernphysik Karlsruhe Germany

Institut für Hochenergiephysik Wien Austria

Institut Pluridisciplinaire Hubert Curien Université de Strasbourg CNRS IN2P3 Strasbourg France

Institute for Nuclear Problems Minsk Belarus

Institute for Nuclear Research and Nuclear Energy Sofia Bulgaria

Institute for Nuclear Research Moscow Russia

Institute for Particle Physics ETH Zurich Zurich Switzerland

Institute for Research in Fundamental Sciences Tehran Iran

Institute for Scintillation Materials of National Academy of Science of Ukraine Kharkov Ukraine

Institute for Theoretical and Experimental Physics Moscow Russia

Institute of Experimental Physics Faculty of Physics University of Warsaw Warsaw Poland

Institute of High Energy Physics Beijing China

Institute of Nuclear and Particle Physics NCSR Demokritos Aghia Paraskevi Greece

Institute of Nuclear Research ATOMKI Debrecen Hungary

Institute of Physics University of Debrecen Debrecen Hungary

Institute Rudjer Boskovic Zagreb Croatia

Instituto de Física de Cantabria CSIC Universidad de Cantabria Santander Spain

IRFU CEA Université Paris Saclay Gif sur Yvette France

Istanbul Technical University Istanbul Turkey

Johns Hopkins University Baltimore USA

Joint Institute for Nuclear Research Dubna Russia

Kansas State University Manhattan USA

Korea University Seoul Korea

Kyungpook National University Taegu Korea

Laboratoire Leprince Ringuet Ecole Polytechnique IN2P3 CNRS Palaiseau France

Laboratório de Instrumentação e Física Experimental de Partículas Lisbon Portugal

Lappeenranta University of Technology Lappeenranta Finland

Lawrence Livermore National Laboratory Livermore USA

Massachusetts Institute of Technology Cambridge USA

Middle East Technical University Physics Department Ankara Turkey

Moscow Institute of Physics and Technology Moscow Russia

MTA ELTE Lendület CMS Particle and Nuclear Physics Group Eötvös Loránd University Budapest Hungary

National and Kapodistrian University of Athens Athens Greece

National Central University Chung Li Taiwan

National Centre for Nuclear Research Swierk Poland

National Centre for Particle and High Energy Physics Minsk Belarus

National Centre for Particle Physics Universiti Malaya Kuala Lumpur Malaysia

National Centre for Physics Quaid 1 Azam University Islamabad Pakistan

National Institute of Chemical Physics and Biophysics Tallinn Estonia

National Institute of Science Education and Research Bhubaneswar India

National Research Nuclear University 'Moscow Engineering Physics Institute' Moscow Russia

National Scientific Center Kharkov Institute of Physics and Technology Kharkov Ukraine

National Taiwan University Taipei Taiwan

Northeastern University Boston USA

Northwestern University Evanston USA

Novosibirsk State University Novosibirsk Russia

P N Lebedev Physical Institute Moscow Russia

Panjab University Chandigarh India

Paul Scherrer Institut Villigen Switzerland

Petersburg Nuclear Physics Institute Gatchina Russia

Physics Department Science and Art Faculty Cukurova University Adana Turkey

Princeton University Princeton USA

Purdue University Northwest Hammond USA

Purdue University West Lafayette USA

Rice University Houston USA

Rutgers The State University of New Jersey Piscataway USA

Rutherford Appleton Laboratory Didcot UK

RWTH Aachen University 1 Physikalisches Institut Aachen Germany

RWTH Aachen University 3 Physikalisches Institut A Aachen Germany

RWTH Aachen University 3 Physikalisches Institut B Aachen Germany

Saha Institute of Nuclear Physics Kolkata India

Seoul National University Seoul Korea

Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University Moscow Russia

State Key Laboratory of Nuclear Physics and Technology Peking University Beijing China

State Research Center of Russian Federation Institute for High Energy Physics Protvino Russia

State University of New York at Buffalo Buffalo USA

Sungkyunkwan University Suwon Korea

Tata Institute of Fundamental Research A Mumbai India

Tata Institute of Fundamental Research B Mumbai India

Tbilisi State University Tbilisi Georgia

Texas A and M University College Station USA

Texas Tech University Lubbock USA

The Ohio State University Columbus USA

The University of Alabama Tuscaloosa USA

The University of Iowa Iowa City USA

The University of Kansas Lawrence USA

Universidad Autónoma de Madrid Madrid Spain

Universidad Autónoma de San Luis Potosí San Luis Potosí Mexico

Universidad de Los Andes Bogota Colombia

Universidad de Oviedo Oviedo Spain

Universidad Iberoamericana Mexico City Mexico

Universidad San Francisco de Quito Quito Ecuador

Universidade do Estado do Rio de Janeiro Rio de Janeiro Brazil

Universidade Estadual Paulista Universidade Federal do ABC São Paulo Brazil

Universität Zürich Zurich Switzerland

Université Catholique de Louvain Louvain la Neuve Belgium

Université de Lyon Université Claude Bernard Lyon 1 CNRS IN2P3 Institut de Physique Nucléaire de Lyon Villeurbanne France

Université de Mons Mons Belgium

Université Libre de Bruxelles Bruxelles Belgium

Universiteit Antwerpen Antwerpen Belgium

University College Dublin Dublin Ireland

University of Auckland Auckland New Zealand

University of Belgrade Faculty of Physics and Vinca Institute of Nuclear Sciences Belgrade Serbia

University of Bristol Bristol UK

University of California Davis Davis USA

University of California Los Angeles USA

University of California Riverside Riverside USA

University of California San Diego La Jolla USA

University of California Santa Barbara Department of Physics Santa Barbara USA

University of Canterbury Christchurch New Zealand

University of Colorado Boulder Boulder USA

University of Cyprus Nicosia Cyprus

University of Delhi Delhi India

University of Florida Gainesville USA

University of Hamburg Hamburg Germany

University of Illinois at Chicago Chicago USA

University of Ioánnina Ioánnina Greece

University of Maryland College Park USA

University of Minnesota Minneapolis USA

University of Mississippi Oxford USA

University of Nebraska Lincoln Lincoln USA

University of Notre Dame Notre Dame USA

University of Puerto Rico Mayaguez USA

University of Rochester Rochester USA

University of Seoul Seoul Korea

University of Sofia Sofia Bulgaria

University of Split Faculty of Electrical Engineering Mechanical Engineering and Naval Architecture Split Croatia

University of Split Faculty of Science Split Croatia

University of Tennessee Knoxville USA

University of Virginia Charlottesville USA

University of Wisconsin Madison Madison WI USA

Vanderbilt University Nashville USA

Vilnius University Vilnius Lithuania

Vrije Universiteit Brussel Brussel Belgium

Wayne State University Detroit USA

Wigner Research Centre for Physics Budapest Hungary

Yerevan Physics Institute Yerevan Armenia

Zobrazit více v PubMed

C.T. Hill, E.H. Simmons, Strong dynamics and electroweak symmetry breaking. Phys. Rept. 381, 235 (2003). doi:10.1016/S0370-1573(03)00140-6. arXiv: hep-ph/0203079. (Erratum: Phys. Rept. 390, 553 (2004))

Degrassi G, et al. Higgs mass and vacuum stability in the Standard Model at NNLO. JHEP. 2012;08:098. doi: 10.1007/JHEP08(2012)098. DOI

Buckley A, et al. Global fit of top quark effective theory to data. Phys. Rev. D. 2015;92:091501. doi: 10.1103/PhysRevD.92.091501. DOI

Buckley A, et al. Constraining top quark effective theory in the LHC run II era. JHEP. 2016;04:015.

CMS Collaboration, Determination of the top-quark pole mass and strong coupling constant from the

CMS Collaboration, Measurement of the

D0 Collaboration, Dependence of the

CMS Collaboration, Measurement of differential top-quark-pair production cross sections in pp colisions at

CDF Collaboration, Measurement of the differential cross section PubMed

D0 Collaboration, Measurement of differential

ATLAS Collaboration, Measurements of normalized differential cross sections for

ATLAS Collaboration, Differential top–antitop cross-section measurements as a function of observables constructed from final-state particles using pp collisions at

CMS Collaboration, Measurement of the differential cross section for top quark pair production in pp collisions at PubMed PMC

CMS Collaboration, Measurement of the PubMed PMC

ATLAS Collaboration, Measurement of top quark pair differential cross-sections in the dilepton channel in pp collisions at

ATLAS Collaboration, Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in

CMS Collaboration, Measurement of the integrated and differential

CMS Collaboration, Search for anomalous

ATLAS Collaboration, A search for

ATLAS Collaboration, Search for resonances decaying into top-quark pairs using fully hadronic decays in pp collisions with ATLAS at

ATLAS Collaboration, Search for

CMS Collaboration, Searches for new physics using the PubMed

ATLAS Collaboration, Search for PubMed

CMS Collaboration, Search for vector-like T quarks decaying to top quarks and Higgs bosons in the all-hadronic channel using jet substructure. JHEP 06, 080 (2015). doi:10.1007/JHEP06(2015)080. arXiv:1503.01952

ATLAS Collaboration, A search for

CMS Collaboration, Search for resonant

CMS Collaboration, Search for the production of an excited bottom quark decaying to tW in proton-proton collisions at

ATLAS Collaboration, Search for the production of single vector-like and excited quarks in the

ATLAS Collaboration, Jet mass and substructure of inclusive jets in

CMS Collaboration, Studies of jet mass in dijet and W/Z + jet events. JHEP 05, 090 (2013). doi:10.1007/JHEP05(2013)090. arXiv:1303.4811

Hoang AH, Stewart IW. Top mass measurements from jets and the Tevatron top-quark mass. Nucl. Phys. Proc. Suppl. 2008;185:220. doi: 10.1016/j.nuclphysbps.2008.10.028. DOI

CDF and D0 Collaborations, Combination of the top-quark mass measurements from the Tevatron collider. Phys. Rev. D 86, 092003 (2012). doi:10.1103/PhysRevD.86.092003. arXiv:1207.1069

ATLAS Collaboration, Measurement of the top quark mass in the PubMed

ATLAS Collaboration, Determination of the top-quark pole mass using

CMS Collaboration, Measurement of the top quark mass using proton-proton data at

CMS Collaboration, Measurement of the top quark mass using charged particles in

ATLAS Collaboration, Measurement of the top quark mass in the

Bauer CW, Fleming S, Luke ME. Summing Sudakov logarithms in DOI

Bauer CW, Fleming S, Pirjol D, Stewart IW. An effective field theory for collinear and soft gluons: heavy to light decays. Phys. Rev. D. 2001;63:114020. doi: 10.1103/PhysRevD.63.114020. DOI

Bauer CW, Stewart IW. Invariant operators in collinear effective theory. Phys. Lett. B. 2001;516:134. doi: 10.1016/S0370-2693(01)00902-9. DOI

Bauer CW, Pirjol D, Stewart IW. Soft-collinear factorization in effective field theory. Phys. Rev. D. 2002;65:054022. doi: 10.1103/PhysRevD.65.054022. DOI

Fleming S, Hoang AH, Mantry S, Stewart IW. Jets from massive unstable particles: top-mass determination. Phys. Rev. D. 2008;77:074010. doi: 10.1103/PhysRevD.77.074010. DOI

Fleming S, Hoang AH, Mantry S, Stewart IW. Top jets in the peak region: factorization analysis with next-to-leading-log resummation. Phys. Rev. D. 2008;77:114003. doi: 10.1103/PhysRevD.77.114003. DOI

Hoang AH, Pathak A, Pietrulewicz P, Stewart IW. Hard matching for boosted tops at two loops. JHEP. 2015;12:059.

Butenschoen M, et al. Top quark mass calibration for Monte Carlo event generators. Phys. Rev. Lett. 2016;117:232001. doi: 10.1103/PhysRevLett.117.232001. PubMed DOI

S. Moch et al., High precision fundamental constants at the TeV scale. Proceedings of the Mainz Institute for Theoretical Physics (MITP) Scientific Program on High Precision Fundamental Constants at the TeV Scale, March 10–21. 2014. arXiv:1405.4781

A.H. Hoang, The top mass: interpretation and theoretical uncertainties. 7th International Workshop on Top Quark Physics (TOP2014) Cannes, France. 2014. arXiv: 1412.3649

G. Corcella, Interpretation of the top-quark mass measurements: a theory overview. 8th International Workshop on Top Quark Physics (TOP2015) Ischia, Italy. 2015. arXiv: 1511.08429

Dokshitzer YL, Leder GD, Moretti S, Webber BR. Better jet clustering algorithms. JHEP. 1997;08:001. doi: 10.1088/1126-6708/1997/08/001. DOI

M. Wobisch, T. Wengler, in Hadronization Corrections to Jet Cross Sections in Deep-Inelastic Scattering. Monte Carlo Generators for HERA Physics (Hamburg, Germany, 1998). arXiv:hep-ph/9907280

CMS Collaboration, The CMS trigger system. JINST 12, P01020 (2017). doi:10.1088/1748-0221/12/01/P01020. arXiv:1609.02366

CMS Collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). doi:10.1088/1748-0221/3/08/S08004

CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and

CMS Collaboration, Commissioning of the particle-flow event reconstruction with the first LHC collisions recorded in the CMS detector. CMS Physics Analysis Summary CMS-PAS-PFT-10-001 (2010)

CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker. JINST 9, P10009 (2014). doi:10.1088/1748-0221/9/10/P10009. arXiv:1405.6569

CMS Collaboration, Performance of CMS muon reconstruction in pp collision events at

CMS Collaboration, The performance of the CMS muon detector in proton-proton collisions at sqrt(s) = 7 TeV at the LHC. JINST 8, P11002 (2013). doi:10.1088/1748-0221/8/11/P11002. arXiv:1306.6905

CMS Collaboration, Performance of electron reconstruction and selection with the CMS detector in proton–proton collisions at

CMS Collaboration, Energy calibration and resolution of the CMS electromagnetic calorimeter in pp collisions at

Cacciari M, Salam GP, Soyez G. FastJet user manual. Eur. Phys. J. C. 2012;72:1896. doi: 10.1140/epjc/s10052-012-1896-2. DOI

Cacciari M, Salam GP, Soyez G. The anti- DOI

Cacciari M, Salam GP, Soyez G. The catchment area of jets. JHEP. 2008;04:005. doi: 10.1088/1126-6708/2008/04/005. DOI

CMS Collaboration, Determination of jet energy calibration and transverse momentum resolution in CMS. JINST 6, P11002 (2011). doi:10.1088/1748-0221/6/11/P11002. arXiv:1107.4277

CMS Collaboration, Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV. JINST (2016). arXiv: 1607.03663. (Submitted)

CMS Collaboration, Identification of b-quark jets with the CMS experiment. JINST 8, P04013 (2013). doi:10.1088/1748-0221/8/04/P04013. arXiv:1211.4462

CMS Collaboration, Jet performance in pp collisions at 7 tev. CMS Physics Analysis Summary CMS-PAS-JME-10-003 (2010)

CMS Collaboration, Missing transverse energy performance of the CMS detector. JINST 6, P09001 (2011). doi:10.1088/1748-0221/6/09/P09001. arXiv:1106.5048

Nason P. A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP. 2004;11:040. doi: 10.1088/1126-6708/2004/11/040. DOI

Frixione S, Nason P, Oleari C. Matching NLO QCD computations with parton shower simulations: the POWHEG method. JHEP. 2007;11:070. doi: 10.1088/1126-6708/2007/11/070. DOI

Alioli S, Nason P, Oleari C, Re E. A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP. 2010;06:043. doi: 10.1007/JHEP06(2010)043. DOI

S. Alioli, P. Nason, C. Oleari, E. Re, NLO single-top production matched with shower in POWHEG:

Re E. Single-top Wt-channel production matched with parton showers using the POWHEG method. Eur. Phys. J. C. 2011;71:1547. doi: 10.1140/epjc/s10052-011-1547-z. DOI

Alwall J, et al. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP. 2014;07:079. doi: 10.1007/JHEP07(2014)079. DOI

Artoisenet P, Frederix R, Mattelaer O, Rietkerk R. Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations. JHEP. 2013;03:015. doi: 10.1007/JHEP03(2013)015. DOI

Sjöstrand T, Mrenna S, Skands P. PYTHIA 6.4 physics and manual. JHEP. 2006;05:026. doi: 10.1088/1126-6708/2006/05/026. DOI

Frixione S, Webber BR. Matching NLO QCD computations and parton shower simulations. JHEP. 2002;06:029. doi: 10.1088/1126-6708/2002/06/029. DOI

Mangano ML, Moretti M, Piccinini F, Treccani M. Matching matrix elements and shower evolution for top-quark production in hadronic collisions. JHEP. 2007;01:013. doi: 10.1088/1126-6708/2007/01/013. DOI

Nadolsky PM, et al. Implications of CTEQ global analysis for collider observables. Phys. Rev. D. 2008;78:013004. doi: 10.1103/PhysRevD.78.013004. DOI

Lai H-L, et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. DOI

Pumplin J, et al. New generation of parton distributions with uncertainties from global QCD analysis. JHEP. 2002;07:012. doi: 10.1088/1126-6708/2002/07/012. DOI

CMS Collaboration, Study of the underlying event at forward rapidity in pp collisions at

CMS Collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements. Eur. Phys. J. C 76, 155 (2016). doi:10.1140/epjc/s10052-016-3988-x. arXiv:1512.00815 PubMed PMC

Corcella G, et al. HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes) JHEP. 2001;01:010. doi: 10.1088/1126-6708/2001/01/010. DOI

Kidonakis N. NNLL threshold resummation for top-pair and single-top production. Phys. Part. Nucl. 2014;45:714. doi: 10.1134/S1063779614040091. DOI

Gavin R, Li Y, Petriello F, Quackenbush S. FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order. Comput. Phys. Commun. 2011;182:2388. doi: 10.1016/j.cpc.2011.06.008. DOI

Gavin R, Li Y, Petriello F, Quackenbush S. W physics at the LHC with FEWZ 2.1. Comput. Phys. Commun. 2013;184:208.

Li Y, Petriello F. Combining QCD and electroweak corrections to dilepton production in the framework of the FEWZ simulation code. Phys. Rev. D. 2012;86:094034. doi: 10.1103/PhysRevD.86.094034. DOI

Campbell JM, Ellis RK, Williams K. Vector boson pair production at the LHC. JHEP. 2011;07:018. doi: 10.1007/JHEP07(2011)018. DOI

Beneke M, Falgari P, Klein S, Schwinn C. Hadronic top-quark pair production with NNLL threshold resummation. Nucl. Phys. B. 2012;855:695. doi: 10.1016/j.nuclphysb.2011.10.021. DOI

Cacciari M, et al. Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation. Phys. Lett. B. 2012;710:612. doi: 10.1016/j.physletb.2012.03.013. DOI

Bärnreuther P, Czakon M, Mitov A. Percent-level-precision physics at the tevatron: next-to-leading order QCD corrections to PubMed DOI

Czakon M, Mitov A. NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels. JHEP. 2012;12:054. doi: 10.1007/JHEP12(2012)054. DOI

Czakon M, Mitov A. NNLO corrections to top pair production at hadron colliders: the quark–gluon reaction. JHEP. 2013;01:080. doi: 10.1007/JHEP01(2013)080. DOI

Czakon M, Fiedler P, Mitov A. Total top-quark pair-production cross section at hadron colliders through PubMed DOI

Czakon M, Mitov A. Top++: a program for the calculation of the top-pair cross-section at hadron colliders. Comput. Phys. Commun. 2014;185:2930. doi: 10.1016/j.cpc.2014.06.021. DOI

GEANT4 Collaboration, GEANT4—a simulation toolkit. Nucl. Instrum. Meth. A 506, 250 (2003). doi:10.1016/S0168-9002(03)01368-8

CMS Collaboration, Performance of the CMS missing transverse momentum reconstruction in pp data at

Thaler J, Van Tilburg K. Identifying boosted objects with DOI

Thaler J, Van Tilburg K. Maximizing boosted top identification by minimizing DOI

Kaplan DE, Rehermann K, Schwartz MD, Tweedie B. Top tagging: a method for identifying boosted hadronically decaying top quarks. Phys. Rev. Lett. 2008;101:142001. doi: 10.1103/PhysRevLett.101.142001. PubMed DOI

CMS Collaboration, A Cambridge-Aachen (C-A) based jet algorithm for boosted top-jet tagging. CMS Physics Analysis Summary CMS-PAS-JME-09-001 (2009)

Plehn T, Salam GP, Spannowsky M. Fat jets for a light Higgs boson. Phys. Rev. Lett. 2010;104:111801. doi: 10.1103/PhysRevLett.104.111801. PubMed DOI

Plehn T, Spannowsky M, Takeuchi M, Zerwas D. Stop reconstruction with tagged tops. JHEP. 2010;10:078. doi: 10.1007/JHEP10(2010)078. DOI

Lapsien T, Kogler R, Haller J. A new tagger for hadronically decaying heavy particles at the LHC. Eur. Phys. J. C. 2016;76:600. doi: 10.1140/epjc/s10052-016-4443-8. DOI

Chien Y-T, Kelley R, Schwartz MD, Zhu HX. Resummation of jet mass at hadron colliders. Phys. Rev. D. 2013;87:014010. doi: 10.1103/PhysRevD.87.014010. DOI

Dasgupta M, Salam GP. Resummation of non-global QCD observables. Phys. Lett. B. 2001;512:323. doi: 10.1016/S0370-2693(01)00725-0. DOI

Schmitt S. TUnfold: an algorithm for correcting migration effects in high energy physics. JINST. 2012;7:T10003. doi: 10.1088/1748-0221/7/10/T10003. DOI

S. Schmitt, in Data Unfolding Methods in High Energy Physics. 12th Conference on Quark Confinement and the Hadron Spectrum (Confinement XII) (Thessaloniki, Greece, 2016). arXiv:1611.01927

Antchev G, et al. First measurement of the total proton-proton cross section at the LHC energy of DOI

CMS Collaboration, Measurement of the production cross section of the W boson in association with two b jets in pp collisions at

CMS Collaboration, Observation of the associated production of a single top quark and a W boson in pp collisions at PubMed

CMS Collaboration, CMS luminosity based on pixel cluster counting—summer 2013 update. CMS Physics Analysis Summary CMS-PAS-LUM-13-001 (2013)

Czakon M, Heymes D, Mitov A. High-precision differential predictions for top-quark pairs at the LHC. Phys. Rev. Lett. 2016;116:082003. doi: 10.1103/PhysRevLett.116.082003. PubMed DOI

ATLAS Collaboration, Measurement of the PubMed PMC

Gfitter Group, The global electroweak fit at NNLO and prospects for the LHC and ILC. Eur. Phys. J. C 74, 3046 (2014). doi:10.1140/epjc/s10052-014-3046-5. arXiv:1407.3792

ATLAS, CDF, CMS and D0 Collaborations, First combination of tevatron and LHC measurements of the top-quark mass (2014). arXiv:1403.4427

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...