Comparative Study of Water and Milk Kefir Grains as Biopolymeric Adsorbents for Copper(II) and Arsenic(V) Removal from Aqueous Solutions

. 2024 Nov 28 ; 16 (23) : . [epub] 20241128

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39684085

Grantová podpora
1/0139/22 Scientific Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
SP2024/005 Faculty of Mining and Geology of VSB - Technical University of Ostrava
1/0175/22 Scientific Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
FCH-S-24-8526 Ministry of Education, Youth and Sports of the Czech Republic
FCH-S-24-8597 Ministry of Education, Youth and Sports of the Czech Republic

This study investigates the biosorption capabilities of kefir grains, a polysaccharide-based byproduct of the fermentation process, for removing copper(II) and arsenic(V) from contaminated water. Unlike traditional heavy-metal removal methods, which are typically expensive and involve environmentally harmful chemicals, biopolymeric materials such as kefir grains provide a sustainable and cost-effective alternative for adsorbing hazardous inorganic pollutants from aqueous solutions. Our experimental results revealed significant differences in the sorption capacities of two types of kefir grains. Grains of milk kefir outperformed water kefir, particularly in copper(II) removal, achieving up to 95% efficiency at low copper concentrations (0.16 mmol·L-1) and demonstrating a maximum sorption capacity of 49 µmol·g-1. In contrast, water kefir grains achieved only 35.5% maximum removal efficiency and exhibited lower sorption capacity. For arsenic(V) removal, milk kefir grains also showed superior performance, removing up to 56% of arsenic in diluted solution with experimental sorption capacities reaching up to 20 µmol·g-1, whereas water kefir grains achieved a maximum removal efficiency of 34.5%. However, these findings also suggest that while kefir grains show potential as low-cost biosorbents, further modifications are needed to enhance their competitiveness for large-scale water treatment applications.

Zobrazit více v PubMed

Karić N., Maia A.S., Teodorović A., Atanasova N., Langergraber G., Crini G., Ribeiro A.R.L., Đolić M. Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment. Chem. Eng. J. Adv. 2022;9:100239. doi: 10.1016/j.ceja.2021.100239. DOI

Karnwal A. Unveiling the promise of biosorption for heavy metal removal from water sources. Desalination Water Treat. 2024;319:100523. doi: 10.1016/j.dwt.2024.100523. DOI

Gao X., Li B. Chemical and microbiological characteristics of kefir grains and their fermented dairy products: A review. Cogent Food Agric. 2016;2:1272152. doi: 10.1080/23311932.2016.1272152. DOI

Asadi Touranlou F., Noori S.M.A., Salari A., Afshari A., Hashemi M. Application of kefir for reduction of contaminants in the food industry: A systematic review. Int. Dairy J. 2023;146:105748. doi: 10.1016/j.idairyj.2023.105748. DOI

Volpi G., Ginepro M., Tafur-Marinos J., Zelano V. Pollution Abatement of Heavy Metals in Different Conditions by Water Kefir Grains as a Protective Tool against Toxicity. J. Chem. 2019;2019:8763902. doi: 10.1155/2019/8763902. DOI

Li Y., Qi X., Li G., Wang H. Efficient removal of arsenic from copper smelting wastewater via a synergy of steel-making slag and KMnO4. J. Clean. Prod. 2021;287:125578. doi: 10.1016/j.jclepro.2020.125578. DOI

Rehman M., Liu L., Wang Q., Saleem M.H., Bashir S., Ullah S., Peng D. Copper environmental toxicology, recent advances, and future outlook: A review. Environ. Sci. Pollut. Res. 2019;26:18003–18016. doi: 10.1007/s11356-019-05073-6. PubMed DOI

Hughes M.F., Beck B.D., Chen Y., Lewis A.S., Thomas D.J. Arsenic Exposure and Toxicology: A Historical Perspective. Toxicol. Sci. 2011;123:305–332. doi: 10.1093/toxsci/kfr184. PubMed DOI PMC

Hagarová I. Speciation of arsenic in waters by AAS techniques. Chem. Listy. 2007;101:768–775.

Hagarová I., Kubová J. Speciation of antimony in waters using separation coupled with atomic spectrometry. Chem. Listy. 2008;102:782–790.

Hagarová I., Nemček L. Recent advances in speciation analysis of trace antimony in environmental and biological samples based on cloud point extraction and spectrometric methods. In: Lichtfouse E., editor. Sustainable Agriculture Reviews. Volume 52. Springer; Berlin/Heidelberg, Germany: 2021. pp. 49–77.

Bozdogan H. Model selection and Akaike’s Information Criterion (AIC): The general theory and its analytical extensions. Psychometrika. 1987;52:345–370. doi: 10.1007/BF02294361. DOI

Piermaria J., Bosch A., Pinotti A., Yantorno O., Garcia M.A., Abraham A.G. Kefiran films plasticized with sugars and polyols: Water vapor barrier and mechanical properties in relation to their microstructure analyzed by ATR/FT-IR spectroscopy. Food Hydrocoll. 2011;25:1261–1269. doi: 10.1016/j.foodhyd.2010.11.024. DOI

Ramírez Tapias Y.A., Rezzani G.D., Delgado J.F., Peltzer M.A., Salvay A.G. New Materials from the Integral Milk Kefir Grain Biomass and the Purified Kefiran: The Role of Glycerol Content on the Film’s Properties. Polymers. 2024;16:3106. doi: 10.3390/polym16223106. PubMed DOI PMC

Fels L., Jakob F., Vogel R.F., Wefers D. Structural characterization of the exopolysaccharides from water kefir. Carbohydr. Polym. 2018;189:296–303. doi: 10.1016/j.carbpol.2018.02.037. PubMed DOI

Dziuba B., Babuchowski A., Nałęcz D., Niklewicz M. Identification of lactic acid bacteria using FTIR spectroscopy and cluster analysis. Int. Dairy J. 2007;17:183–189. doi: 10.1016/j.idairyj.2006.02.013. DOI

Rutten M.J.M., Bovenhuis H., Hettinga K.A., van Valenberg H.J.F., van Arendonk J.A.M. Predicting bovine milk fat composition using infrared spectroscopy based on milk samples collected in winter and summer. J. Dairy Sci. 2009;92:6202–6209. doi: 10.3168/jds.2009-2456. PubMed DOI

Alves E., Ntungwe E.N., Gregório J., Rodrigues L.M., Pereira-Leite C., Caleja C., Pereira E., Barros L., Aguilar-Vilas M.V., Rosado C., et al. Characterization of Kefir Produced in Household Conditions: Physicochemical and Nutritional Profile, and Storage Stability. Foods. 2021;10:1057. doi: 10.3390/foods10051057. PubMed DOI PMC

Zhang L., Liu J., Kong S., Chen N., Hung W.-L., Zhao W., Zeng Z., Zhang J., Yang Z. Lipoteichoic acid obtained from Lactobacillus paracasei via low-temperature pasteurization alleviates the macrophage inflammatory response by downregulating the NF-κB signaling pathway. J. Funct. Foods. 2023;107:105673. doi: 10.1016/j.jff.2023.105673. DOI

Coma M.E., Peltzer M.A., Delgado J.F., Salvay A.G. Water kefir grains as an innovative source of materials: Study of plasticiser content on film properties. Eur. Polym. J. 2019;120:109234. doi: 10.1016/j.eurpolymj.2019.109234. DOI

Prado M.R., Blandón L.M., Vandenberghe L.P.S., Rodrigues C., Castro G.R., Thomaz-Soccol V., Soccol C.R. Milk kefir: Composition, microbial cultures, biological activities, and related products. Front. Microbiol. 2015;6:1177. doi: 10.3389/fmicb.2015.01177. PubMed DOI PMC

Han X., Yi H., Zhao S., Sun J., Wang Y. Prospects of Artificial Kefir Grains Prepared by Cheese and Encapsulated Vectors to Mimic Natural Kefir Grains. J. Food Qual. 2020;2020:8839135. doi: 10.1155/2020/8839135. DOI

Naveed S., Li C., Zhang J., Zhang C., Ge Y. Sorption and transformation of arsenic by extracellular polymeric substances extracted from Synechocystis sp. PCC6803. Ecotoxicol. Environ. Saf. 2020;206:111200. doi: 10.1016/j.ecoenv.2020.111200. PubMed DOI

Zanetti R., Zecchin S., Colombo M., Borgonovo G., Mazzini S., Scaglioni L., Facchetti G., Gandolfi R., Rimoldi I., Cavalca L. Ni2+ and Cu2+ Biosorption by EPS-Producing Serratia plymuthica Strains and Potential Bio-Catalysis of the Organo–Metal Complexes. Water. 2022;14:3410. doi: 10.3390/w14213410. DOI

Naveed S., Yu Q., Zhang C., Ge Y. Extracellular polymeric substances alter cell surface properties, toxicity, and accumulation of arsenic in Synechocystis PCC6803. Environ. Pollut. 2020;261:114233. doi: 10.1016/j.envpol.2020.114233. PubMed DOI

Exarhopoulos S., Raphaelides S.N., Kontominas M.G. Conformational studies and molecular characterization of the polysaccharide kefiran. Food Hydrocoll. 2018;77:347–356. doi: 10.1016/j.foodhyd.2017.10.011. DOI

Yang L., Chen Z., Zhang Y., Lu F., Liu Y., Cao M., He N. Hyperproduction of extracellular polymeric substance in Pseudomonas fluorescens for efficient chromium (VI) absorption. Bioresour. Bioprocess. 2023;10:17. doi: 10.1186/s40643-023-00638-3. PubMed DOI PMC

Smedley P.L., Kinniburgh D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002;17:517–568. doi: 10.1016/S0883-2927(02)00018-5. DOI

Fang L., Yang S., Huang Q., Xue A., Cai P. Biosorption mechanisms of Cu(II) by extracellular polymeric substances from Bacillus subtilis. Chem. Geol. 2014;386:143–151. doi: 10.1016/j.chemgeo.2014.08.017. DOI

Zhang J., Zhou F., Liu Y., Huang F., Zhang C. Effect of extracellular polymeric substances on arsenic accumulation in Chlorella pyrenoidosa. Sci. Total Environ. 2020;704:135368. doi: 10.1016/j.scitotenv.2019.135368. PubMed DOI

Giles C.H., Smith D., Huitson A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci. 1974;47:755–765. doi: 10.1016/0021-9797(74)90252-5. DOI

Ho Y.S., McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451–465. doi: 10.1016/S0032-9592(98)00112-5. DOI

Carneiro M.A., Pintor A.M.A., Boaventura R.A.R., Botelho C.M.S. Efficient removal of arsenic from aqueous solution by continuous adsorption onto iron-coated cork granulates. J. Hazard. Mater. 2022;432:128657. doi: 10.1016/j.jhazmat.2022.128657. PubMed DOI

Niazi N.K., Bibi I., Shahid M., Ok Y.S., Shaheen S.M., Rinklebe J., Wang H., Murtaza B., Islam E., Farrakh Nawaz M., et al. Arsenic removal by Japanese oak wood biochar in aqueous solutions and well water: Investigating arsenic fate using integrated spectroscopic and microscopic techniques. Sci. Total Environ. 2018;621:1642–1651. doi: 10.1016/j.scitotenv.2017.10.063. PubMed DOI

Ahmad M., Usman A.R.A., Hussain Q., Al-Farraj A.S.F., Tsang Y.F., Bundschuh J., Al-Wabel M.I. Fabrication and evaluation of silica embedded and zerovalent iron composited biochars for arsenate removal from water. Environ. Pollut. 2020;266:115256. doi: 10.1016/j.envpol.2020.115256. PubMed DOI

Cruz G.J.F., Mondal D., Rimaycuna J., Soukup K., Gómez M.M., Solis J.L., Lang J. Agrowaste derived biochars impregnated with ZnO for removal of arsenic and lead in water. J. Environ. Chem. Eng. 2020;8:103800. doi: 10.1016/j.jece.2020.103800. DOI

Rahaman M.S., Basu A., Islam M.R. The removal of As(III) and As(V) from aqueous solutions by waste materials. Bioresour. Technol. 2008;99:2815–2823. doi: 10.1016/j.biortech.2007.06.038. PubMed DOI

Ebrahimi R., Maleki A., Shahmoradi B., Daraei H., Mahvi A.H., Barati A.H., Eslami A. Elimination of arsenic contamination from water using chemically modified wheat straw. Desalination Water Treat. 2013;51:2306–2316. doi: 10.1080/19443994.2012.734675. DOI

Ranjan D., Talat M., Hasan S.H. Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J. Hazard. Mater. 2009;166:1050–1059. doi: 10.1016/j.jhazmat.2008.12.013. PubMed DOI

Chowdhury M.R.I., Mulligan C.N. Biosorption of arsenic from contaminated water by anaerobic biomass. J. Hazard. Mater. 2011;190:486–492. doi: 10.1016/j.jhazmat.2011.03.070. PubMed DOI

Kamsonlian S., Suresh S., Majumder C.B., Chand S. Biosorption Of As(V) From Contaminated Water Onto Tea Waste Biomass: Sorption Parameters Optimization, Equilibrium and Thermodynamic Studies. J. Future Eng. Technol. 2011;7:34–41. doi: 10.26634/jfet.7.1.1711. DOI

Leal M.A.L., Martínez R.C., Villanueva R.A.C., Flores H.E.M., Penagos C.D.C. Arsenate Biosorption by Iron-Modified Pine Sawdust in Batch Systems: Kinetics and Equilibrium Studies. Bioresources. 2012;7:1389–1404.

Ali S., Rizwan M., Shakoor M.B., Jilani A., Anjum R. High sorption efficiency for As(III) and As(V) from aqueous solutions using novel almond shell biochar. Chemosphere. 2020;243:125330. doi: 10.1016/j.chemosphere.2019.125330. PubMed DOI

Demirbas E., Dizge N., Sulak M.T., Kobya M. Adsorption kinetics and equilibrium of copper from aqueous solutions using hazelnut shell activated carbon. Chem. Eng. J. 2009;148:480–487. doi: 10.1016/j.cej.2008.09.027. DOI

Demiral H., Güngör C. Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J. Clean. Prod. 2016;124:103–113. doi: 10.1016/j.jclepro.2016.02.084. DOI

Singh S., Kumar V., Datta S., Dhanjal D.S., Sharma K., Samuel J., Singh J. Current advancement and future prospect of biosorbents for bioremediation. Sci. Total Environ. 2020;709:135895. doi: 10.1016/j.scitotenv.2019.135895. PubMed DOI

Kayalvizhi K., Alhaji N.M.I., Saravanakkumar D., Mohamed S.B., Kaviyarasu K., Ayeshamariam A., Al-Mohaimeed A.M., AbdelGawwad M.R., Elshikh M.S. Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads—A kinetic and thermodynamic study. Environ. Res. 2022;203:111814. doi: 10.1016/j.envres.2021.111814. PubMed DOI

Eldeeb T.M., El-Nemr A., Khedr M.H., El-Dek S.I. Novel bio-nanocomposite for efficient copper removal. Egypt. J. Aquat. Res. 2021;47:261–267. doi: 10.1016/j.ejar.2021.07.002. DOI

Orozco C.I., Freire M.S., Gómez-Díaz D., González-Álvarez J. Removal of copper from aqueous solutions by biosorption onto pine sawdust. Sustain. Chem. Pharm. 2023;32:101016. doi: 10.1016/j.scp.2023.101016. DOI

Aslan S., Yldiz S., Ozturk M. Biosorption of Cu2+ and Ni2+ Ions From Aqueous Solutions Using Waste Dried Activated Sludge Biomass. Pol. J. Chem. Technol. 2018;20:20–28. doi: 10.2478/pjct-2018-0034. DOI

Buasri A., Chaiyut N., Tapang K., Jaroensin S., Panphrom S. Removal of Cu2+ from Aqueous Solution by Biosorption on Rice Straw—An Agricultural Waste Biomass. Int. J. Environ. Sci. Dev. 2012;3:10–14. doi: 10.7763/IJESD.2012.V3.179. DOI

Nuhoglu Y., Oguz E. Removal of copper(II) from aqueous solutions by biosorption on the cone biomass of Thuja orientalis. Process Biochem. 2003;38:1627–1631. doi: 10.1016/S0032-9592(03)00055-4. DOI

Młynarczykowska A., Orlof-Naturalna M. Biosorption of Copper (II) Ions Using Coffee Grounds—A Case Study. Sustainability. 2024;16:7693. doi: 10.3390/su16177693. DOI

Shah G.M., Nasir M., Imran M., Bakhat H.F., Rabbani F., Sajjad M., Umer Farooq A.B., Ahmad S., Song L. Biosorption potential of natural, pyrolysed and acid-assisted pyrolysed sugarcane bagasse for the removal of lead from contaminated water. PeerJ. 2018;6:e5672. doi: 10.7717/peerj.5672. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...