The bigger the threat, the longer the gaze? A cross-cultural study of Somalis and Czechs

. 2023 ; 14 () : 1234593. [epub] 20230927

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37829068

High fear reaction, preferential attention, or fast detection are only a few of the specific responses which snakes evoke in humans. Previous research has shown that these responses are shared amongst several distinct cultures suggesting the evolutionary origin of the response. However, populations from sub-Saharan Africa have been largely missing in experimental research focused on this issue. In this paper, we focus on the effect of snake threat display on human spontaneous attention. We performed an eye-tracking experiment with participants from Somaliland and the Czechia and investigated whether human attention is swayed towards snakes in a threatening posture. Seventy-one Somalis and 71 Czechs were tested; the samples were matched for gender and comparable in age structure and education level. We also investigated the effect of snake morphotype as snakes differ in their threat display. We found that snakes in a threatening posture were indeed gazed upon more than snakes in a relaxed (non-threatening) posture. Further, we found a large effect of snake morphotype as this was especially prominent in cobras, less in vipers, and mostly non-significant in other morphotypes. Finally, despite highly different cultural and environmental backgrounds, the overall pattern of reaction towards snakes was similar in Somalis and Czechs supporting the evolutionary origin of the phenomenon. We concluded that human attention is preferentially directed towards snakes, especially cobras and vipers, in threatening postures.

Zobrazit více v PubMed

Alves R., Silva V. N., Trovão D. M., Oliveira J. V., Mourão J. S., Dias T. L., et al. . (2014). Students’ attitudes toward and knowledge about snakes in the semiarid region of Northeastern Brazil. J. Ethnobiol. Ethnomed. 10, 1–8. doi: 10.1186/1746-4269-10-30 PubMed DOI PMC

Barlow A., Wüster W., Kelly C. M. R., Branch W. R., Phelps T., Tolley K. A. (2019). Ancient habitat shifts and organismal diversification are decoupled in the African viper genus Bitis (Serpentes: Viperidae). J. Biogeogr. 46, 1234–1248. doi: 10.1111/jbi.13578 DOI

Bennie M., Loaring C., Trim S. (2011). Laboratory husbandry of arboreal tarantulas (Theraphosidae) and evaluation of environmental enrichment. Anim. Tech. Welf. 10, 163–169.

Bertels J., Bourguignon M., De Heering A., Chetail F., De Tiège X., Cleeremans A., et al. . (2020). Snakes elicit specific neural responses in the human infant brain. Sci. Rep. 10:7443. doi: 10.1038/s41598-020-63619-y PubMed DOI PMC

Borgi M., Cirulli F. (2015). Attitudes toward animals amongst kindergarten children: species preferences. Anthrozoös 28, 45–59. doi: 10.2752/089279315X14129350721939 DOI

Coelho C. M., Suttiwan P., Faiz A. M., Ferreira-Santos F., Zsido A. N. (2019). Are humans prepared to detect, fear, and avoid snakes? The mismatch between laboratory and ecological evidence. Front. Psychol. 10:2094. doi: 10.3389/fpsyg.2019.02094 PubMed DOI PMC

Coss R. G., Charles E. P. (2021). The saliency of snake scales and leopard rosettes to infants: its relevance to graphical patterns portrayed in prehistoric art. Front. Psychol. 12:763436. doi: 10.3389/fpsyg.2021.763436 PubMed DOI PMC

Cui Y., Hondzinski J. M. (2006). Gaze tracking accuracy in humans: two eyes are better than one. Neurosci. Lett. 396, 257–262. doi: 10.1016/j.neulet.2005.11.071 PubMed DOI

DeLoache J. S., LoBue V. (2009). The narrow fellow in the grass: human infants associate snakes and fear. Develop. Sci. 12, 201–207. doi: 10.1111/j.1467-7687.2008.00753.x PubMed DOI

Eberle M., Kappeler P. M. (2008). Mutualism, reciprocity, or kin selection? Cooperative rescue of a conspecific from a boa in a nocturnal solitary forager the gray mouse lemur. Am. J. Primatol. 70, 410–414. doi: 10.1002/ajp.20496 PubMed DOI

Etting S. F., Isbell L. A. (2014). Rhesus macaques (Macaca mulatta) use posture to assess level of threat from snakes. Ethology 120, 1177–1184. doi: 10.1111/eth.12293 DOI

Etting S. F., Isbell L. A., Grote M. N. (2014). Factors increasing snake detection and perceived threat in captive rhesus macaques (Macaca mulatta). Am. J. Primatol. 76, 135–145. doi: 10.1002/ajp.22216 PubMed DOI

Falótico T., Verderane M. P., Mendonça-Furtado O., Spagnoletti N., Ottoni E. B., Visalberghi E., et al. . (2018). Food or threat? Wild capuchin monkeys (Sapajus libidinosus) as both predators and prey of snakes. Primates 59, 99–106. doi: 10.1007/s10329-017-0631-x PubMed DOI

Fančovičová J., Prokop P., Szikhart M., Pazda A. (2020). Snake coloration does not influence children’s detection time. Hum. Dimens. Wildl. 25, 489–497. doi: 10.1080/10871209.2020.1758252 DOI

Faul F., Erdfelder E., Lang A. G., Buchner A. (2007). G* power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191. doi: 10.3758/BF03193146 PubMed DOI

Fox E., Griggs L., Mouchlianitis E. (2007). The detection of fear-relevant stimuli: are guns noticed as quickly as snakes? Emotion 7, 691–696. doi: 10.1037/1528-3542.7.4.691 PubMed DOI PMC

Frynta D., Elmi H. S. A., Rexová K., Janovcová M., Rudolfová V., Štolhoferová I., et al. . (2023). Animals evoking fear in the cradle of humankind: snakes, scorpions, and large carnivores. Sci. Nat. 110:33. doi: 10.1007/s00114-023-01859-4 PubMed DOI PMC

Gerdes A. B. M., Pauli P., Alpers G. W. (2009). Toward and away from spiders: eye-movements in spider-fearful participants. J. Neur. Tr. 116, 725–733. doi: 10.1007/s00702-008-0167-8 PubMed DOI

Gibbons A. (2017). Oldest members of our species discovered in Morocco. Science 356, 993–994. doi: 10.1126/science.356.6342.993 PubMed DOI

Gokula V. (2011). An ethogram of spot-billed pelican (Pelecanus philippensis). Chinese Birds 2, 183–192. doi: 10.5122/cbirds.2011.0030 DOI

Grassini S., Holm S. K., Railo H., Koivisto M. (2016). Who is afraid of the invisible snake? Subjective visual awareness modulates posterior brain activity for evolutionarily threatening stimuli. Biol. Psychol. 121, 53–61. doi: 10.1016/j.biopsycho.2016.10.007 PubMed DOI

Greene H. W. (1988). “Antipredator mechanisms in reptiles” in Biology of the Reptilia. eds. Gans C., Huey R. B. (New York: John Wiley and Sons; ), 152.

Harris R. J., Nekaris K. A. I., Fry B. G. (2021). Monkeying around with venom: an increased resistance to α-neurotoxins supports an evolutionary arms race between afro-Asian primates and sympatric cobras. BMC Biol. 19:253. doi: 10.1186/s12915-021-01195-x PubMed DOI PMC

Hayakawa S., Kawai N., Masataka N. (2011). The influence of color on snake detection in visual search in human children. Sci. Rep. 1, 1–4. doi: 10.1038/srep00080 PubMed DOI PMC

He H., Kubo K., Kawai N. (2014). Spiders do not evoke greater early posterior negativity in the event-related potential as snakes. Neuroreport 25, 1049–1053. doi: 10.1097/WNR.0000000000000227 PubMed DOI

Headland T. N., Greene H. W. (2011). Hunter–gatherers and other primates as prey, predators, and competitors of snakes. PNAS 108, E1470–E1474. doi: 10.1073/pnas.1115116108 PubMed DOI PMC

Isbell L. A. (2006). Snakes as agents of evolutionary change in primate brains. J. Hum. Evol. 51, 1–35. doi: 10.1016/j.jhevol.2005.12.012 PubMed DOI

Isbell L. A. (2009). The fruit, the tree, and the serpent: Why we see so well. Great Britain: Harvard University Press.

Isbell L. A., Etting S. F. (2017). Scales drive detection, attention, and memory of snakes in wild vervet monkeys (Chlorocebus pygerythrus). Primates 58, 121–129. doi: 10.1007/s10329-016-0562-y PubMed DOI

Janovcová M., Rádlová S., Polák J., Sedláčková K., Peléšková Š., Žampachová B., et al. . (2019). Human attitude toward reptiles: a relationship between fear, disgust, and aesthetic preferences. Animals 9:238. doi: 10.3390/ani9050238 PubMed DOI PMC

Jensen C. H., Caine N. G. (2021). Preferential snake detection in a simulated ecological experiment. Am. J. Phys. Anthropol. 175, 895–904. doi: 10.1002/ajpa.24224 PubMed DOI

Kawai N. (2019). “Searching for the critical features of snakes” in The fear of snakes: Evolutionary and psychobiological perspectives on our innate fear. ed. Kawai N. (Singapore: Springer; ), 121–153.

Kawai N., He H. (2016). Breaking snake camouflage: humans detect snakes more accurately than other animals under less discernible visual conditions. PlosOne 11:e0164342. doi: 10.1371/journal.pone.0164342 PubMed DOI PMC

Kawai N., Koda H. (2016). Japanese monkeys (Macaca fuscata) quickly detect snakes but not spiders: evolutionary origins of fear-relevant animals. J. Comp. Psychol. 130, 299–303. doi: 10.1037/com0000032 PubMed DOI

Kawai N., Qiu H. (2020). Humans detect snakes more accurately and quickly than other animals under natural visual scenes: a flicker paradigm study. Cognition Emotion 34, 614–620. doi: 10.1080/02699931.2019.1657799 PubMed DOI

Kelly C. M. R., Barker N. P., Villet M. H., Broadley D. G. (2009). Phylogeny, biogeography and classification of the snake superfamily Elapoidea: a rapid radiation in the late Eocene. Cladistics 25, 38–63. doi: 10.1111/j.1096-0031.2008.00237.x PubMed DOI

Landová E., Bakhshaliyeva N., Janovcová M., Peléšková Š., Suleymanova M., Polák J., et al. . (2018). Association between fear and beauty evaluation of snakes: cross-cultural findings. Front. Psychol. 9:333. doi: 10.3389/fpsyg.2018.00333 PubMed DOI PMC

Landová E., Peléšková Š., Sedláčková K., Janovcová M., Polák J., Rádlová S., et al. . (2020). Venomous snakes elicit stronger fear than nonvenomous ones: psychophysiological response to snake images. PlosOne 15:e0236999. doi: 10.1371/journal.pone.0236999 PubMed DOI PMC

Langridge K. V., Broom M., Osorio D. (2007). Selective signalling by cuttlefish to predators. Curr. Biol. 17, R1044–R1045. doi: 10.1016/j.cub.2007.10.028 PubMed DOI

Lenth R. (2022). Emmeans: Estimated marginal means, aka least-squares means. Available at: https://github.com/rvlenth/emmeans

Lipp O. V., Waters A. M. (2007). When danger lurks in the background: attentional capture by animal fear-relevant distracters is specific and selectively enhanced by animal fear. Emotion 7, 192–200. doi: 10.1037/1528-3542.7.1.192 PubMed DOI

LoBue V. (2014). Deconstructing the snake: the relative roles of perception, cognition, and emotion on threat detection. Emotion 14, 701–711. doi: 10.1037/a0035898 PubMed DOI

Lobue V., DeLoache J. S. (2008). Detecting the snake in the grass: attention to fear-relevant stimuli by adults and young children. Psychol. Sci. 19, 284–289. doi: 10.1111/j.1467-9280.2008.02081.x PubMed DOI

Lobue V., DeLoache J. S. (2011). What's so special about slithering serpents? Children and adults rapidly detect snakes based on their simple features. Vis. Cogn. 19, 129–143. doi: 10.1080/13506285.2010.522216 DOI

Masataka N., Hayakawa S., Kawai N. (2010). Human young children as well as adults demonstrate ‘superior’ rapid Snake detection when typical striking posture is displayed by the Snake. PlosOne 5:e15122. doi: 10.1371/journal.pone.0015122 PubMed DOI PMC

Miltner W. H. R., Krieschel S., Hecht H., Trippe R., Weiss T. (2004). Eye movement and behavioral responses to threatenting and nonthreatening stimuli during visual search in phobic and nonphobic subjects. Emotion 4, 323–339. doi: 10.1037/1528-3542.4.4.323 PubMed DOI

Murray S. G., King J. E. (1973). Snake avoidance in feral and laboratory reared squirrel monkeys. Behaviour 47, 281–288. doi: 10.1163/156853973X00120 DOI

Nishida T., Kano T., Goodall J., McGrew W. C., Nakamura M. (1999). Ethogram and ethnography of Mahale chimpanzees. Anthropol. Sci. 107, 141–188. doi: 10.1537/ase.107.141 DOI

Öhman A., Flykt A., Esteves F. (2001). Emotion drives attention: detecting the snake in the grass. J. Exp. Psychol. Gen. 130, 466–478. doi: 10.1037/0096-3445.130.3.466 PubMed DOI

Öhman A., Mineka S. (2001). Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychol. Rev. 108, 483–522. doi: 10.1037/0033-295x.108.3.483 PubMed DOI

Öhman A., Mineka S. (2003). The malicious serpent: snakes as a prototypical stimulus for an evolved module of fear. Curr. Dir. Psychol. Sci. 12, 5–9. doi: 10.1111/1467-8721.01211 DOI

Okon-Singer H., Alyagon U., Kofman O., Tzelgov J., Henik A. (2011). Fear-related pictures deteriorate the performance of university students with high fear of snakes or spiders. Stress 14, 185–193. doi: 10.3109/10253890.2010.527401 PubMed DOI

Onyishi I. E., Nwonyi S. K., Pazda A., Prokop P. (2021). Attitudes and behaviour toward snakes on the part of Igbo people in southeastern Nigeria. Sci. Total Environ. 763:143045. doi: 10.1016/j.scitotenv.2020.143045 PubMed DOI

Orquin J. L., Holmqvist K. (2018). Threats to the validity of eye-movement research in psychology. Behav. Res. Methods 50, 1645–1656. doi: 10.3758/s13428-017-0998-z PubMed DOI

Pandey D. P., Subedi Pandey G., Devkota K., Goode M. (2016). Public perceptions of snakes and snakebite management: implications for conservation and human health in southern Nepal. J. Ethnobiol. Ethnomed. 12, 1–25. doi: 10.1186/s13002-016-0092-0 PubMed DOI PMC

Penkunas M. J., Coss R. G. (2013). A comparison of rural and urban Indian children's visual detection of threatening and nonthreatening animals. Develop. Sci. 16, 463–475. doi: 10.1111/desc.12043 PubMed DOI

Perry S., Manson J. H., Dower G., Wikberg E. (2003). White-faced capuchins cooperate to rescue a groupmate from a Boa constrictor. Folia Primatol. 74, 109–111. doi: 10.1159/000070008 PubMed DOI

Pinheiro J., Bates D., R Core Team (2022). Nlme: Linear and nonlinear mixed effects models. R package. Available at: https://svn.r-project.org/R-packages/trunk/nlme/

Prokop P., Fančovičová J., Kučerová A. (2018). Aposematic colouration does not explain fear of snakes in humans. J. Ethol. 36, 35–41. doi: 10.1007/s10164-017-0533-9 DOI

Prokop P., Zvaríková M., Zvarík M., Pazda A., Fedor P. (2021). The effect of animal bipedal posture on perceived cuteness, fear, and willingness to protect them. Front. Ecol. Evol. 9:681241. doi: 10.3389/fevo.2021.681241 DOI

Prüfer K., Posth C., Yu H., Stoessel A., Spyrou M. A., Deviese T., et al. . (2021). A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nat. Ecol. Evol. 5, 820–825. doi: 10.1038/s41559-021-01443-x PubMed DOI PMC

R Development Core Team (2022). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing

Rádlová S., Janovcová M., Sedláčková K., Polák J., Nácar D., Peléšková Š., et al. . (2019). Snakes represent emotionally salient stimuli that may evoke both fear and disgust. Front. Psychol. 10:1085. doi: 10.3389/fpsyg.2019.01085 PubMed DOI PMC

Rudolfová V., Štolhoferová I., Elmi H. S. A., Rádlová S., Rexová K., Berti D. A., et al. . (2022). Do spiders ride on the fear of scorpions? A cross-cultural eye tracking study. Animals 12:3466. doi: 10.3390/ani12243466 PubMed DOI PMC

Seligman M. E. P. (1971). Phobias and preparedness. Behav. Ther. 2, 307–320. doi: 10.1016/S0005-7894(71)80064-3 PubMed DOI

Seyfarth R. M., Cheney D. L., Marler P. (1980). Monkey responses to three different alarm calls: evidence of predator classification and semantic communication. Science 210, 801–803. doi: 10.1126/science.7433999 PubMed DOI

Shibasaki M., Kawai N. (2009). Rapid detection of snakes by Japanese monkeys (Macaca fuscata): an evolutionarily predisposed visual system. J. Comp. Psychol. 123:131. doi: 10.1037/a0015095 PubMed DOI

Shibasaki M., Kawai N. (2011). Visual searching for fear-relevant stimuli: snakes draw our attention more strongly than spiders do. Cogn. Stud. Bull. Jap. Cogn. Sci. Soc. 18, 158–172.

Shine R. (1990). Function and evolution of the frill of the frillneck lizard, Chlamydosaurus kingii (Sauria: Agamidae). Biol. J. Linn. Soc. 40, 11–20. doi: 10.1111/j.1095-8312.1990.tb00531.x DOI

Šmíd J., Tolley K. A. (2019). Calibrating the tree of vipers under the fossilized birth-death model. Sci. Rep. 9:5510. doi: 10.1038/s41598-019-41290-2 PubMed DOI PMC

Soares S. C., Esteves F., Flykt A. (2009). Fear, but not fear-relevance, modulates reaction times in visual search with animal distractors. J. Anxiety Disord. 23, 136–144. doi: 10.1016/j.janxdis.2008.05.002 PubMed DOI

Soares S. C., Esteves F. (2013). A glimpse of fear: Fast detection of threatening targets in visual search with brief stimulus durations. PsyCh J. 2, 11–16. doi: 10.1002/pchj.18 PubMed DOI

Soares S. C., Lindström B., Esteves F., Öhman A. (2014). The hidden snake in the grass: superior detection of snakes in challenging attentional conditions. PLoS One 9:e114724. doi: 10.1371/journal.pone.0114724 PubMed DOI PMC

Stringer C. (2016). The origin and evolution of Homo sapiens. Philos. T. Roy. Soc. B 371:20150237. doi: 10.1098/rstb.2015.0237 PubMed DOI PMC

Subra B., Muller D., Fourgassie L., Chauvin A., Alexopoulos T. (2018). Of guns and snakes: testing a modern threat superiority effect. Cognition Emotion 32, 81–91. doi: 10.1080/02699931.2017.1284044 PubMed DOI

Teixeira D. S., dos Santos E., Leal S. G., de Jesus A. K., Vargas W. P., Dutra I., et al. . (2016). Fatal attack on black-tufted-ear marmosets (Callithrix penicillata) by a Boa constrictor: a simultaneous assault on two juvenile monkeys. Primates 57, 123–127. doi: 10.1007/s10329-015-0495-x PubMed DOI

Tierney K. J., Connolly M. K. (2013). A review of the evidence for a biological basis for snake fears in humans. Psychol. Rec. 63, 919–928. doi: 10.11133/j.tpr.2013.63.4.012 DOI

Van Le Q., Isbell L. A., Matsumoto J., Le V. Q., Hori E., Tran A. H., et al. . (2014). Monkey pulvinar neurons fire differentially to snake postures. PlosOne 9:e114258. doi: 10.1371/journal.pone.0114258 PubMed DOI PMC

Van Le Q., Isbell L. A., Matsumoto J., Nguyen M., Hori E., Maior R. S., et al. . (2013). Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. PNAS 110, 19000–19005. doi: 10.1073/pnas.1312648110 PubMed DOI PMC

Van Strien J. W., Christiaans G., Franken I. H. A., Huijding J. (2016). Curvilinear shapes and the snake detection hypothesis: an ERP study. Psychophysiology 53, 252–257. doi: 10.1111/psyp.12564 PubMed DOI

Van Strien J. W., Isbell L. A. (2017). Snake scales, partial exposure, and the Snake detection theory: a human event-related potentials study. Sci. Rep. 7:46331. doi: 10.1038/srep46331 PubMed DOI PMC

Vuilleumier P. (2005). How brains beware: neural mechanisms of emotional attention. Trends Cogn. Sci. 9, 585–594. doi: 10.1016/j.tics.2005.10.011 PubMed DOI

Weiss L., Brandl P., Frynta D. (2015). Fear reactions to snakes in naïve mouse lemurs and pig-tailed macaques. Primates 56, 279–284. doi: 10.1007/s10329-015-0473-3 PubMed DOI

Wolfe J. M., Yee A., Friedman-Hill S. R. (1992). Curvature is a basic feature for visual search tasks. Perception 21, 465–480. doi: 10.1068/p210465 PubMed DOI

Wombolt J. R., Caine N. G. (2016). Patterns on serpentine shapes elicit visual attention in marmosets (Callithrix jacchus). Am. J. Primatol. 78, 928–936. doi: 10.1002/ajp.22563 PubMed DOI

Zaher H., Murphy R. W., Arredondo J. C., Graboski R., Machado-Filho P. R., Mahlow K., et al. . (2019). Large-scale molecular phylogeny, morphology, divergence-time estimation, and the fossil record of advanced caenophidian snakes (Squamata: Serpentes). PlosOne 14:e0216148. doi: 10.1371/journal.pone.0216148 PubMed DOI PMC

Zhang B., Zhou Z.-G., Zhou Y., Chen Y.-C. (2020). Increased attention to snake images in cynomolgus monkeys: an eye-tracking study. Zool. Res. 41, 32–38. doi: 10.24272/j.issn.2095-8137.2020.005 PubMed DOI PMC

Zsido A. N. (2023). The effect of emotional arousal on visual attentional performance: a systematic review. Psychol. Res. 2023, 1–24. doi: 10.1007/s00426-023-01852-6 PubMed DOI PMC

Zsido A. N., Csatho A., Matuz A., Stecina D., Arato A., Inhof O., et al. . (2019a). Does threat have an advantage after all? Proposing a novel experimental design to investigate the advantages of threat-relevant cues in visual processing. Front. Psychol. 10:2217. doi: 10.3389/fpsyg.2019.02217 PubMed DOI PMC

Zsido A. N., Deak A., Bernath L. (2019b). Is a snake scarier than a gun? The ontogenetic–phylogenetic dispute from a new perspective: the role of arousal. Emotion 19, 726–732. doi: 10.1037/emo0000478 PubMed DOI

Zsido A. N., Stecina D. T., Hout M. C. (2022). Task demands determine whether shape or arousal of a stimulus modulates competition for visual working memory resources. Acta Psychol. 224:103523. doi: 10.1016/j.actpsy.2022.103523 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...