Do Spiders Ride on the Fear of Scorpions? A Cross-Cultural Eye Tracking Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-21608S
Czech Science Foundation
PubMed
36552386
PubMed Central
PMC9774548
DOI
10.3390/ani12243466
PII: ani12243466
Knihovny.cz E-zdroje
- Klíčová slova
- Africa, EEA, arachnophobia, attention, emotion, fixation, generalization, spontaneous gaze, threat,
- Publikační typ
- časopisecké články MeSH
Deep fear of spiders is common in many countries, yet its origin remains unexplained. In this study, we tested a hypothesis based on recent studies suggesting that fear of spiders might stem from a generalized fear of chelicerates or fear of scorpions. To this end, we conducted an eye tracking experiment using a spontaneous gaze preference paradigm, with spiders and scorpions (previously neglected but crucial stimuli) as threatening stimuli and grasshoppers as control stimuli. In total, 67 participants from Somaliland and 67 participants from the Czech Republic were recruited and presented with a sequence of paired images. Both Somali and Czech people looked longer (total duration of the gaze) and more often (number of fixations) on the threatening stimuli (spiders and scorpions) when presented with a control (grasshopper). When both threatening stimuli were presented together, Somali participants focused significantly more on the scorpion, whereas in Czech participants, the effect was less pronounced, and in Czech women it was not significant. This supports the hypothesis that fear of spiders originated as a generalized fear of scorpions. Moreover, the importance of spiders as fear-eliciting stimuli may be enhanced in the absence of scorpions in the environment.
Department of Biology Faculty of Education Amoud University Borama Somaliland
Department of Zoology Faculty of Science Charles University Viničná 7 128 43 Prague Czech Republic
Zobrazit více v PubMed
Wilson E.O. Biophilia. Harvard Univesity Press; Cambridge, UK: 1984.
Ulrich R.S. Biophilia, biophobia, and natural landscapes. In: Kellert S.R., Wilson E.O., editors. The Biophilia Hypothesis. 1st ed. Island Press; Washington, DC, USA: 1993. pp. 73–137.
Patuano A. Biophobia and urban restorativeness. Sustainability. 2020;12:4312. doi: 10.3390/su12104312. DOI
Seligman M.E. Phobias and preparedness. Behav. Ther. 1971;2:307–320. doi: 10.1016/S0005-7894(71)80064-3. DOI
New J.J., German T.C. Spiders at the cocktail party: An ancestral threat that surmounts inattentional blindness. Evol. Hum. Behav. 2015;36:165–173. doi: 10.1016/j.evolhumbehav.2014.08.004. DOI
Gao H., Jia Z. Detection of threats under inattentional blindness and perceptual load. Curr. Psychol. 2017;36:733–739. doi: 10.1007/s12144-016-9460-0. DOI
Bannerman R.L., Milders M., De Gelder B., Sahraie A. Orienting to threat: Faster localization of fearful facial expressions and body postures revealed by saccadic eye movements. Proc. R. Soc. B Biol. Sci. 2009;276:1635–1641. doi: 10.1098/rspb.2008.1744. PubMed DOI PMC
Fox E., Russo R., Bowles R., Dutton K. Do threatening stimuli draw or hold visual attention in subclinical anxiety? J. Exp. Psychol. Gen. 2001;130:681–700. doi: 10.1037/0096-3445.130.4.681. PubMed DOI PMC
Bjärtå A., Flykt A., Sundin Ö. The effect of using different distractor sets in visual search with spiders and snakes on spider-sensitive and nonfearful participants. Swiss J. Psychol. 2013;72:171–179. doi: 10.1024/1421-0185/a000111. DOI
Calvillo D.P., Hawkins W.C. Animate objects are detected more frequently than inanimate objects in inattentional blindness tasks independently of threat. J. Gen. Psychol. 2016;143:101–115. doi: 10.1080/00221309.2016.1163249. PubMed DOI
Calvillo D.P., Jackson R.E. Animacy, perceptual load, and inattentional blindness. Psychon. B. Rev. 2014;21:670–675. doi: 10.3758/s13423-013-0543-8. PubMed DOI
Gerdes A.B., Alpers G.W., Pauli P. When spiders appear suddenly: Spider-phobic patients are distracted by task-irrelevant spiders. Behav. Res. Ther. 2008;46:174–187. doi: 10.1016/j.brat.2007.10.010. PubMed DOI
Yorzinski J.L., Penkunas M.J., Platt M.L., Coss R.G. Dangerous animals capture and maintain attention in humans. Evol. Psychol. 2014;12:534–548. doi: 10.1177/147470491401200304. PubMed DOI
Isbell L.A. Snakes as agents of evolutionary change in primate brains. J. Hum. Evol. 2006;51:1–35. doi: 10.1016/j.jhevol.2005.12.012. PubMed DOI
Jensen C.H., Caine N.G. Preferential snake detection in a simulated ecological experiment. Am. J. Phys. Anthropol. 2021;175:895–904. doi: 10.1002/ajpa.24224. PubMed DOI
Shibasaki M., Kawai N. Rapid detection of snakes by Japanese monkeys (Macaca fuscata): An evolutionarily predisposed visual system. J. Comp. Psychol. 2009;123:131–135. doi: 10.1037/a0015095. PubMed DOI
Soares S.C., Lindström B., Esteves F., Öhman A. The hidden snake in the grass: Superior detection of snakes in challenging attentional conditions. PLoS ONE. 2014;9:e114724. doi: 10.1371/journal.pone.0114724. PubMed DOI PMC
Van Strien J.W., Isbell L.A. Snake scales, partial exposure, and the Snake Detection Theory: A human event-related potentials study. Sci. Rep. 2017;7:46331. doi: 10.1038/srep46331. PubMed DOI PMC
Wombolt J.R., Caine N.G. Patterns on serpentine shapes elicit visual attention in marmosets (Callithrix jacchus) Am. J. Primatol. 2016;78:928–936. doi: 10.1002/ajp.22563. PubMed DOI
Bjerke T., Ødegårdstuen T.S., Kaltenborn B.P. Attitudes toward animals among Norwegian children and adolescents: Species preferences. Anthrozoös. 1998;11:227–235. doi: 10.2752/089279398787000544. DOI
Oosterink F.M., De Jongh A., Hoogstraten J. Prevalence of dental fear and phobia relative to other fear and phobia subtypes. Eur. J. Oral Sci. 2009;117:135–143. doi: 10.1111/j.1600-0722.2008.00602.x. PubMed DOI
Staňková H., Janovcová M., Peléšková Š., Sedláčková K., Landová E., Frynta D. The Ultimate List of the Most Frightening and Disgusting Animals: Negative Emotions Elicited by Animals in Central European Respondents. Animals. 2021;11:747. doi: 10.3390/ani11030747. PubMed DOI PMC
Shibasaki M., Kawai N. Visual searching for fear-relevant stimuli: Snakes draw our attention more strongly than spiders do. Cogn. Stud. B Jpn. Cogn. Sci. Soc. 2011;18:158–172.
Soares S.C., Esteves F. A glimpse of fear: Fast detection of threatening targets in visual search with brief stimulus durations. PsyCh J. 2013;2:11–16. doi: 10.1002/pchj.18. PubMed DOI
He H., Kubo K., Kawai N. Spider is not special comparing with other animals in human early visual attention: Evidence from event-related potentials. JCSS Jpn. Cong. Sci. Soc. 2014;31:187–190.
Van Strien J.W., Christiaans G., Franken I.H., Huijding J. Curvilinear shapes and the snake detection hypothesis: An ERP study. Psychophysiology. 2016;53:252–257. doi: 10.1111/psyp.12564. PubMed DOI
Kawai N., Koda H. Japanese monkeys (Macaca fuscata) quickly detect snakes but not spiders: Evolutionary origins of fear-relevant animals. J. Comp. Psychol. 2016;130:299–303. doi: 10.1037/com0000032. PubMed DOI
Kawai N. The Fear of Snakes. Springer; Singapore: 2019. Do Snakes Draw Attention More Strongly than Spiders or Other Animals? pp. 73–94. DOI
Polák J., Rádlová S., Janovcová M., Flegr J., Landová E., Frynta D. Scary and nasty beasts: Self-reported fear and disgust of common phobic animals. Br. J. Psychol. 2020;111:297–321. doi: 10.1111/bjop.12409. PubMed DOI
Hauke T.J., Herzig V. Dangerous arachnids—Fake news or reality? Toxicon. 2017;138:173–183. doi: 10.1016/j.toxicon.2017.08.024. PubMed DOI
Herman B.E., Skokan E.G. Bites that poison: A tale of spiders, snakes, and scorpions. Contemp. Pediatr. 1999;16:41.
Nentwig W. Human health impact by alien spiders and scorpions. In: Mazza G., Tricarico E., editors. Invasive Species and Human Health. CABI; Oxfordshire, UK: 2018. pp. 34–49.
World Health Organization Snakebite Envenoming. [(accessed on 15 February 2022)]; Available online: http://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming.
Askew C., Field A.P. Vicarious learning and the development of fears in childhood. Behav. Res. Ther. 2007;45:2616–2627. doi: 10.1016/j.brat.2007.06.008. PubMed DOI
Davey G.C. The “disgusting” spider: The role of disease and illness in the perpetuation of fear of spiders. Soc. Anim. 1994;2:17–25. doi: 10.1163/156853094X00045. DOI
Frynta D., Janovcová M., Štolhoferová I., Peléšková Š., Vobrubová B., Frýdlová P., Skalíková H., Šípek P., Landová E. Emotions triggered by live arthropods shed light on spider phobia. Sci. Rep. 2021;11:22268. doi: 10.1038/s41598-021-01325-z. PubMed DOI PMC
Vetter R.S., Draney M.L., Brown C.A., Trumble J.T., Gouge D.H., Hinkle N.C., Pace-Schott E.F. Spider Fear Versus Scorpion Fear in Undergraduate Students at Five American Universities. Am. Entomol. 2018;64:79–82. doi: 10.1093/ae/tmy030. DOI
Landová E., Janovcová M., Štolhoferová I., Rádlová S., Frýdlová P., Sedláčková K., Frynta D. Specificity of spiders among fear-and disgust-eliciting arthropods: Spiders are special, but phobics not so much. PLoS ONE. 2021;16:e0257726. doi: 10.1371/journal.pone.0257726. PubMed DOI PMC
Chippaux J.P. Emerging options for the management of scorpion stings. Drug Des. Dev. Ther. 2012;6:165–173. doi: 10.2147/DDDT.S24754. PubMed DOI PMC
Muris P., du Plessis M., Loxton H. Origins of common fears in South African children. J. Anxiety Disord. 2008;22:1510–1515. doi: 10.1016/j.janxdis.2008.03.004. PubMed DOI
Prokop P., Tolarovičová A., Camerik A.M., Peterková V. High school students’ attitudes towards spiders: A cross-cultural comparison. Int. J. Sci. Educ. 2010;32:1665–1688. doi: 10.1080/09500690903253908. DOI
Lemelin R.H., Yen A. Human-spider entanglements: Understanding and managing the good, the bad, and the venomous. Anthrozoös. 2015;28:215–228. doi: 10.1080/08927936.2015.11435398. DOI
Gerdes A.B., Pauli P., Alpers G.W. Toward and away from spiders: Eye-movements in spider-fearful participants. J. Neural Transm. 2009;116:725–733. doi: 10.1007/s00702-008-0167-8. PubMed DOI
Öhman A., Flykt A., Esteves F. Emotion drives attention: Detecting the snake in the grass. J. Exp. Psychol. Gen. 2001;130:466–478. doi: 10.1037/0096-3445.130.3.466. PubMed DOI
Wiemer J., Gerdes A.B., Pauli P. The effects of an unexpected spider stimulus on skin conductance responses and eye movements: An inattentional blindness study. Psychol. Res. 2013;77:155–166. doi: 10.1007/s00426-011-0407-7. PubMed DOI
Berger L.R., Hawks J., Dirks P.H., Elliott M., Roberts E.M. Homo naledi and Pleistocene hominin evolution in subequatorial Africa. eLife. 2017;6:e24234. doi: 10.7554/eLife.24234. PubMed DOI PMC
Hublin J.J., Ben-Ncer A., Bailey S.E., Freidline S.E., Neubauer S., Skinner M.M., Bergmann I., Le Cabec A., Benazzi S., Harvati K., et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature. 2017;546:289–292. doi: 10.1038/nature22336. PubMed DOI
Haile-Selassie Y., Gibert L., Melillo S.M., Ryan T.M., Alene M., Deino A., Levin N.E., Scott G., Saylor B.Z. New species from Ethiopia further expands Middle Pliocene hominin diversity. Nature. 2015;521:483–488. doi: 10.1038/nature14448. PubMed DOI
Leakey M.G., Spoor F., Dean M.C., Feibel C.S., Antón S.C., Kiarie C., Leakey L.N. New fossils from Koobi Fora in northern Kenya confirm taxonomic diversity in early Homo. Nature. 2012;488:201–204. doi: 10.1038/nature11322. PubMed DOI
Papac L., Ernée M., Dobeš M., Langová M., Rohrlach A.B., Aron F., Neumann G.U., Spyrou M.A., Rohland N., Velemínský P., et al. Dynamic changes in genomic and social structures in third millennium BCE central Europe. Sci. Adv. 2021;7:eabi6941. doi: 10.1126/sciadv.abi6941. PubMed DOI PMC
Orquin J.L., Holmqvist K. Threats to the validity of eye-movement research in psychology. Behav. Res. Methods. 2018;50:1645–1656. doi: 10.3758/s13428-017-0998-z. PubMed DOI
Faul F., Erdfelder E., Lang A.G., Buchner A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146. PubMed DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 25 April 2020)]. Available online: https://www.R-project.org/
Pinheiro J., Bates D., DebRoy S., Sarkar D., R Core Team nlme: Linear and Nonlinear Mixed Effects Models. [(accessed on 23 January 2022)]. R Package Version 3.1-155. Available online: https://CRAN.R-project.org/package=nlme.
Bates D., Maechler M., Bolker B., Walker S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Lenth R. _emmeans: Estimated Marginal Means, Aka Least-Squares Means. [(accessed on 17 November 2022)]. R Package Version 1.8.2. Available online: https://CRAN.R-project.org/package=emmeans.
Armstrong T., Olatunji B.O. Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clin. Psychol. Rev. 2012;32:704–723. doi: 10.1016/j.cpr.2012.09.004. PubMed DOI PMC
Hermans D., Vansteenwegen D., Eelen P. Eye movement registration as a continuous index of attention deployment: Data from a group of spider anxious students. Cogn. Emot. 1999;13:419–434. doi: 10.1080/026999399379249. DOI
Nummenmaa L., Hyönä J., Calvo M.G. Eye movement assessment of selective attentional capture by emotional pictures. Emotion. 2006;6:257–268. doi: 10.1037/1528-3542.6.2.257. PubMed DOI
Andersen N.E., Dahmani L., Konishi K., Bohbot V.D. Eye tracking, strategies, and sex differences in virtual navigation. Neurobiol. Learn. Mem. 2012;97:81–89. doi: 10.1016/j.nlm.2011.09.007. PubMed DOI
Coutrot A., Binetti N., Harrison C., Mareschal I., Johnston A. Face exploration dynamics differentiate men and women. J. Vis. 2016;16:16. doi: 10.1167/16.14.16. PubMed DOI
Sargezeh B.A., Tavakoli N., Daliri M.R. Gender-based eye movement differences in passive indoor picture viewing: An eye-tracking study. Physiol. Behav. 2019;206:43–50. doi: 10.1016/j.physbeh.2019.03.023. PubMed DOI
McNally R.J. The legacy of Seligman’s “phobias and preparedness” (1971) Behav. Ther. 2016;47:585–594. doi: 10.1016/j.beth.2015.08.005. PubMed DOI
Åhs F., Rosén J., Kastrati G., Fredrikson M., Agren T., Lundström J.N. Biological preparedness and resistance to extinction of skin conductance responses conditioned to fear relevant animal pictures: A systematic review. Neurosci. Biobehav. Rev. 2018;95:430–437. doi: 10.1016/j.neubiorev.2018.10.017. PubMed DOI
Coelho C.M., Suttiwan P., Faiz A.M., Ferreira-Santos F., Zsido A.N. Are humans prepared to detect, fear, and avoid snakes? The mismatch between laboratory and ecological evidence. Front. Psychol. 2019;10:2094. doi: 10.3389/fpsyg.2019.02094. PubMed DOI PMC
Flykt A., Caldara R. Tracking fear in snake and spider fearful participants during visual search: A multi-response domain study. Cogn. Emot. 2006;20:1075–1091. doi: 10.1080/02699930500381405. DOI
Matchett G., Davey G.C. A test of a disease-avoidance model of animal phobias. Behav. Res. Ther. 1991;29:91–94. doi: 10.1016/S0005-7967(09)80011-9. PubMed DOI
Sulikowski D. Are natural threats superior threats? Evol. Hum. Behav. 2022;43:34–43. doi: 10.1016/j.evolhumbehav.2021.08.003. DOI
Wardenaar K.J., Lim C.C., Al-Hamzawi A.O., Alonso J., Andrade L.H., Benjet C.D., Bunting B., de Girolamo G., Demyttenaere K., Florescu S.E., et al. The cross-national epidemiology of specific phobia in the World Mental Health Surveys. Psychol. Med. 2017;47:1744–1760. doi: 10.1017/S0033291717000174. PubMed DOI PMC
Possible Differences in Visual Attention to Faces in the Context of Mate Choice and Competition
Hooding cobras can get ahead of other snakes in the ability to evoke human fear
The bigger the threat, the longer the gaze? A cross-cultural study of Somalis and Czechs
Animals evoking fear in the Cradle of Humankind: snakes, scorpions, and large carnivores
Human emotional evaluation of ancestral and modern threats: fear, disgust, and anger