Do Spiders Ride on the Fear of Scorpions? A Cross-Cultural Eye Tracking Study

. 2022 Dec 08 ; 12 (24) : . [epub] 20221208

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36552386

Grantová podpora
20-21608S Czech Science Foundation

Deep fear of spiders is common in many countries, yet its origin remains unexplained. In this study, we tested a hypothesis based on recent studies suggesting that fear of spiders might stem from a generalized fear of chelicerates or fear of scorpions. To this end, we conducted an eye tracking experiment using a spontaneous gaze preference paradigm, with spiders and scorpions (previously neglected but crucial stimuli) as threatening stimuli and grasshoppers as control stimuli. In total, 67 participants from Somaliland and 67 participants from the Czech Republic were recruited and presented with a sequence of paired images. Both Somali and Czech people looked longer (total duration of the gaze) and more often (number of fixations) on the threatening stimuli (spiders and scorpions) when presented with a control (grasshopper). When both threatening stimuli were presented together, Somali participants focused significantly more on the scorpion, whereas in Czech participants, the effect was less pronounced, and in Czech women it was not significant. This supports the hypothesis that fear of spiders originated as a generalized fear of scorpions. Moreover, the importance of spiders as fear-eliciting stimuli may be enhanced in the absence of scorpions in the environment.

Zobrazit více v PubMed

Wilson E.O. Biophilia. Harvard Univesity Press; Cambridge, UK: 1984.

Ulrich R.S. Biophilia, biophobia, and natural landscapes. In: Kellert S.R., Wilson E.O., editors. The Biophilia Hypothesis. 1st ed. Island Press; Washington, DC, USA: 1993. pp. 73–137.

Patuano A. Biophobia and urban restorativeness. Sustainability. 2020;12:4312. doi: 10.3390/su12104312. DOI

Seligman M.E. Phobias and preparedness. Behav. Ther. 1971;2:307–320. doi: 10.1016/S0005-7894(71)80064-3. DOI

New J.J., German T.C. Spiders at the cocktail party: An ancestral threat that surmounts inattentional blindness. Evol. Hum. Behav. 2015;36:165–173. doi: 10.1016/j.evolhumbehav.2014.08.004. DOI

Gao H., Jia Z. Detection of threats under inattentional blindness and perceptual load. Curr. Psychol. 2017;36:733–739. doi: 10.1007/s12144-016-9460-0. DOI

Bannerman R.L., Milders M., De Gelder B., Sahraie A. Orienting to threat: Faster localization of fearful facial expressions and body postures revealed by saccadic eye movements. Proc. R. Soc. B Biol. Sci. 2009;276:1635–1641. doi: 10.1098/rspb.2008.1744. PubMed DOI PMC

Fox E., Russo R., Bowles R., Dutton K. Do threatening stimuli draw or hold visual attention in subclinical anxiety? J. Exp. Psychol. Gen. 2001;130:681–700. doi: 10.1037/0096-3445.130.4.681. PubMed DOI PMC

Bjärtå A., Flykt A., Sundin Ö. The effect of using different distractor sets in visual search with spiders and snakes on spider-sensitive and nonfearful participants. Swiss J. Psychol. 2013;72:171–179. doi: 10.1024/1421-0185/a000111. DOI

Calvillo D.P., Hawkins W.C. Animate objects are detected more frequently than inanimate objects in inattentional blindness tasks independently of threat. J. Gen. Psychol. 2016;143:101–115. doi: 10.1080/00221309.2016.1163249. PubMed DOI

Calvillo D.P., Jackson R.E. Animacy, perceptual load, and inattentional blindness. Psychon. B. Rev. 2014;21:670–675. doi: 10.3758/s13423-013-0543-8. PubMed DOI

Gerdes A.B., Alpers G.W., Pauli P. When spiders appear suddenly: Spider-phobic patients are distracted by task-irrelevant spiders. Behav. Res. Ther. 2008;46:174–187. doi: 10.1016/j.brat.2007.10.010. PubMed DOI

Yorzinski J.L., Penkunas M.J., Platt M.L., Coss R.G. Dangerous animals capture and maintain attention in humans. Evol. Psychol. 2014;12:534–548. doi: 10.1177/147470491401200304. PubMed DOI

Isbell L.A. Snakes as agents of evolutionary change in primate brains. J. Hum. Evol. 2006;51:1–35. doi: 10.1016/j.jhevol.2005.12.012. PubMed DOI

Jensen C.H., Caine N.G. Preferential snake detection in a simulated ecological experiment. Am. J. Phys. Anthropol. 2021;175:895–904. doi: 10.1002/ajpa.24224. PubMed DOI

Shibasaki M., Kawai N. Rapid detection of snakes by Japanese monkeys (Macaca fuscata): An evolutionarily predisposed visual system. J. Comp. Psychol. 2009;123:131–135. doi: 10.1037/a0015095. PubMed DOI

Soares S.C., Lindström B., Esteves F., Öhman A. The hidden snake in the grass: Superior detection of snakes in challenging attentional conditions. PLoS ONE. 2014;9:e114724. doi: 10.1371/journal.pone.0114724. PubMed DOI PMC

Van Strien J.W., Isbell L.A. Snake scales, partial exposure, and the Snake Detection Theory: A human event-related potentials study. Sci. Rep. 2017;7:46331. doi: 10.1038/srep46331. PubMed DOI PMC

Wombolt J.R., Caine N.G. Patterns on serpentine shapes elicit visual attention in marmosets (Callithrix jacchus) Am. J. Primatol. 2016;78:928–936. doi: 10.1002/ajp.22563. PubMed DOI

Bjerke T., Ødegårdstuen T.S., Kaltenborn B.P. Attitudes toward animals among Norwegian children and adolescents: Species preferences. Anthrozoös. 1998;11:227–235. doi: 10.2752/089279398787000544. DOI

Oosterink F.M., De Jongh A., Hoogstraten J. Prevalence of dental fear and phobia relative to other fear and phobia subtypes. Eur. J. Oral Sci. 2009;117:135–143. doi: 10.1111/j.1600-0722.2008.00602.x. PubMed DOI

Staňková H., Janovcová M., Peléšková Š., Sedláčková K., Landová E., Frynta D. The Ultimate List of the Most Frightening and Disgusting Animals: Negative Emotions Elicited by Animals in Central European Respondents. Animals. 2021;11:747. doi: 10.3390/ani11030747. PubMed DOI PMC

Shibasaki M., Kawai N. Visual searching for fear-relevant stimuli: Snakes draw our attention more strongly than spiders do. Cogn. Stud. B Jpn. Cogn. Sci. Soc. 2011;18:158–172.

Soares S.C., Esteves F. A glimpse of fear: Fast detection of threatening targets in visual search with brief stimulus durations. PsyCh J. 2013;2:11–16. doi: 10.1002/pchj.18. PubMed DOI

He H., Kubo K., Kawai N. Spider is not special comparing with other animals in human early visual attention: Evidence from event-related potentials. JCSS Jpn. Cong. Sci. Soc. 2014;31:187–190.

Van Strien J.W., Christiaans G., Franken I.H., Huijding J. Curvilinear shapes and the snake detection hypothesis: An ERP study. Psychophysiology. 2016;53:252–257. doi: 10.1111/psyp.12564. PubMed DOI

Kawai N., Koda H. Japanese monkeys (Macaca fuscata) quickly detect snakes but not spiders: Evolutionary origins of fear-relevant animals. J. Comp. Psychol. 2016;130:299–303. doi: 10.1037/com0000032. PubMed DOI

Kawai N. The Fear of Snakes. Springer; Singapore: 2019. Do Snakes Draw Attention More Strongly than Spiders or Other Animals? pp. 73–94. DOI

Polák J., Rádlová S., Janovcová M., Flegr J., Landová E., Frynta D. Scary and nasty beasts: Self-reported fear and disgust of common phobic animals. Br. J. Psychol. 2020;111:297–321. doi: 10.1111/bjop.12409. PubMed DOI

Hauke T.J., Herzig V. Dangerous arachnids—Fake news or reality? Toxicon. 2017;138:173–183. doi: 10.1016/j.toxicon.2017.08.024. PubMed DOI

Herman B.E., Skokan E.G. Bites that poison: A tale of spiders, snakes, and scorpions. Contemp. Pediatr. 1999;16:41.

Nentwig W. Human health impact by alien spiders and scorpions. In: Mazza G., Tricarico E., editors. Invasive Species and Human Health. CABI; Oxfordshire, UK: 2018. pp. 34–49.

World Health Organization Snakebite Envenoming. [(accessed on 15 February 2022)]; Available online: http://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming.

Askew C., Field A.P. Vicarious learning and the development of fears in childhood. Behav. Res. Ther. 2007;45:2616–2627. doi: 10.1016/j.brat.2007.06.008. PubMed DOI

Davey G.C. The “disgusting” spider: The role of disease and illness in the perpetuation of fear of spiders. Soc. Anim. 1994;2:17–25. doi: 10.1163/156853094X00045. DOI

Frynta D., Janovcová M., Štolhoferová I., Peléšková Š., Vobrubová B., Frýdlová P., Skalíková H., Šípek P., Landová E. Emotions triggered by live arthropods shed light on spider phobia. Sci. Rep. 2021;11:22268. doi: 10.1038/s41598-021-01325-z. PubMed DOI PMC

Vetter R.S., Draney M.L., Brown C.A., Trumble J.T., Gouge D.H., Hinkle N.C., Pace-Schott E.F. Spider Fear Versus Scorpion Fear in Undergraduate Students at Five American Universities. Am. Entomol. 2018;64:79–82. doi: 10.1093/ae/tmy030. DOI

Landová E., Janovcová M., Štolhoferová I., Rádlová S., Frýdlová P., Sedláčková K., Frynta D. Specificity of spiders among fear-and disgust-eliciting arthropods: Spiders are special, but phobics not so much. PLoS ONE. 2021;16:e0257726. doi: 10.1371/journal.pone.0257726. PubMed DOI PMC

Chippaux J.P. Emerging options for the management of scorpion stings. Drug Des. Dev. Ther. 2012;6:165–173. doi: 10.2147/DDDT.S24754. PubMed DOI PMC

Muris P., du Plessis M., Loxton H. Origins of common fears in South African children. J. Anxiety Disord. 2008;22:1510–1515. doi: 10.1016/j.janxdis.2008.03.004. PubMed DOI

Prokop P., Tolarovičová A., Camerik A.M., Peterková V. High school students’ attitudes towards spiders: A cross-cultural comparison. Int. J. Sci. Educ. 2010;32:1665–1688. doi: 10.1080/09500690903253908. DOI

Lemelin R.H., Yen A. Human-spider entanglements: Understanding and managing the good, the bad, and the venomous. Anthrozoös. 2015;28:215–228. doi: 10.1080/08927936.2015.11435398. DOI

Gerdes A.B., Pauli P., Alpers G.W. Toward and away from spiders: Eye-movements in spider-fearful participants. J. Neural Transm. 2009;116:725–733. doi: 10.1007/s00702-008-0167-8. PubMed DOI

Öhman A., Flykt A., Esteves F. Emotion drives attention: Detecting the snake in the grass. J. Exp. Psychol. Gen. 2001;130:466–478. doi: 10.1037/0096-3445.130.3.466. PubMed DOI

Wiemer J., Gerdes A.B., Pauli P. The effects of an unexpected spider stimulus on skin conductance responses and eye movements: An inattentional blindness study. Psychol. Res. 2013;77:155–166. doi: 10.1007/s00426-011-0407-7. PubMed DOI

Berger L.R., Hawks J., Dirks P.H., Elliott M., Roberts E.M. Homo naledi and Pleistocene hominin evolution in subequatorial Africa. eLife. 2017;6:e24234. doi: 10.7554/eLife.24234. PubMed DOI PMC

Hublin J.J., Ben-Ncer A., Bailey S.E., Freidline S.E., Neubauer S., Skinner M.M., Bergmann I., Le Cabec A., Benazzi S., Harvati K., et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature. 2017;546:289–292. doi: 10.1038/nature22336. PubMed DOI

Haile-Selassie Y., Gibert L., Melillo S.M., Ryan T.M., Alene M., Deino A., Levin N.E., Scott G., Saylor B.Z. New species from Ethiopia further expands Middle Pliocene hominin diversity. Nature. 2015;521:483–488. doi: 10.1038/nature14448. PubMed DOI

Leakey M.G., Spoor F., Dean M.C., Feibel C.S., Antón S.C., Kiarie C., Leakey L.N. New fossils from Koobi Fora in northern Kenya confirm taxonomic diversity in early Homo. Nature. 2012;488:201–204. doi: 10.1038/nature11322. PubMed DOI

Papac L., Ernée M., Dobeš M., Langová M., Rohrlach A.B., Aron F., Neumann G.U., Spyrou M.A., Rohland N., Velemínský P., et al. Dynamic changes in genomic and social structures in third millennium BCE central Europe. Sci. Adv. 2021;7:eabi6941. doi: 10.1126/sciadv.abi6941. PubMed DOI PMC

Orquin J.L., Holmqvist K. Threats to the validity of eye-movement research in psychology. Behav. Res. Methods. 2018;50:1645–1656. doi: 10.3758/s13428-017-0998-z. PubMed DOI

Faul F., Erdfelder E., Lang A.G., Buchner A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146. PubMed DOI

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 25 April 2020)]. Available online: https://www.R-project.org/

Pinheiro J., Bates D., DebRoy S., Sarkar D., R Core Team nlme: Linear and Nonlinear Mixed Effects Models. [(accessed on 23 January 2022)]. R Package Version 3.1-155. Available online: https://CRAN.R-project.org/package=nlme.

Bates D., Maechler M., Bolker B., Walker S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Lenth R. _emmeans: Estimated Marginal Means, Aka Least-Squares Means. [(accessed on 17 November 2022)]. R Package Version 1.8.2. Available online: https://CRAN.R-project.org/package=emmeans.

Armstrong T., Olatunji B.O. Eye tracking of attention in the affective disorders: A meta-analytic review and synthesis. Clin. Psychol. Rev. 2012;32:704–723. doi: 10.1016/j.cpr.2012.09.004. PubMed DOI PMC

Hermans D., Vansteenwegen D., Eelen P. Eye movement registration as a continuous index of attention deployment: Data from a group of spider anxious students. Cogn. Emot. 1999;13:419–434. doi: 10.1080/026999399379249. DOI

Nummenmaa L., Hyönä J., Calvo M.G. Eye movement assessment of selective attentional capture by emotional pictures. Emotion. 2006;6:257–268. doi: 10.1037/1528-3542.6.2.257. PubMed DOI

Andersen N.E., Dahmani L., Konishi K., Bohbot V.D. Eye tracking, strategies, and sex differences in virtual navigation. Neurobiol. Learn. Mem. 2012;97:81–89. doi: 10.1016/j.nlm.2011.09.007. PubMed DOI

Coutrot A., Binetti N., Harrison C., Mareschal I., Johnston A. Face exploration dynamics differentiate men and women. J. Vis. 2016;16:16. doi: 10.1167/16.14.16. PubMed DOI

Sargezeh B.A., Tavakoli N., Daliri M.R. Gender-based eye movement differences in passive indoor picture viewing: An eye-tracking study. Physiol. Behav. 2019;206:43–50. doi: 10.1016/j.physbeh.2019.03.023. PubMed DOI

McNally R.J. The legacy of Seligman’s “phobias and preparedness” (1971) Behav. Ther. 2016;47:585–594. doi: 10.1016/j.beth.2015.08.005. PubMed DOI

Åhs F., Rosén J., Kastrati G., Fredrikson M., Agren T., Lundström J.N. Biological preparedness and resistance to extinction of skin conductance responses conditioned to fear relevant animal pictures: A systematic review. Neurosci. Biobehav. Rev. 2018;95:430–437. doi: 10.1016/j.neubiorev.2018.10.017. PubMed DOI

Coelho C.M., Suttiwan P., Faiz A.M., Ferreira-Santos F., Zsido A.N. Are humans prepared to detect, fear, and avoid snakes? The mismatch between laboratory and ecological evidence. Front. Psychol. 2019;10:2094. doi: 10.3389/fpsyg.2019.02094. PubMed DOI PMC

Flykt A., Caldara R. Tracking fear in snake and spider fearful participants during visual search: A multi-response domain study. Cogn. Emot. 2006;20:1075–1091. doi: 10.1080/02699930500381405. DOI

Matchett G., Davey G.C. A test of a disease-avoidance model of animal phobias. Behav. Res. Ther. 1991;29:91–94. doi: 10.1016/S0005-7967(09)80011-9. PubMed DOI

Sulikowski D. Are natural threats superior threats? Evol. Hum. Behav. 2022;43:34–43. doi: 10.1016/j.evolhumbehav.2021.08.003. DOI

Wardenaar K.J., Lim C.C., Al-Hamzawi A.O., Alonso J., Andrade L.H., Benjet C.D., Bunting B., de Girolamo G., Demyttenaere K., Florescu S.E., et al. The cross-national epidemiology of specific phobia in the World Mental Health Surveys. Psychol. Med. 2017;47:1744–1760. doi: 10.1017/S0033291717000174. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...