Attentional, emotional, and behavioral response toward spiders, scorpions, crabs, and snakes provides no evidence for generalized fear between spiders and scorpions

. 2023 Nov 28 ; 13 (1) : 20972. [epub] 20231128

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38017048

Grantová podpora
19-07164S Grantová Agentura České Republiky

Odkazy

PubMed 38017048
PubMed Central PMC10684562
DOI 10.1038/s41598-023-48229-8
PII: 10.1038/s41598-023-48229-8
Knihovny.cz E-zdroje

Spiders are among the animals evoking the highest fear and disgust and such a complex response might have been formed throughout human evolution. Ironically, most spiders do not present a serious threat, so the evolutionary explanation remains questionable. We suggest that other chelicerates, such as scorpions, have been potentially important in the formation and fixation of the spider-like category. In this eye-tracking study, we focused on the attentional, behavioral, and emotional response to images of spiders, scorpions, snakes, and crabs used as task-irrelevant distractors. Results show that spider-fearful subjects were selectively distracted by images of spiders and crabs. Interestingly, these stimuli were not rated as eliciting high fear contrary to the other animals. We hypothesize that spider-fearful participants might have mistaken crabs for spiders based on their shared physical characteristics. In contrast, subjects with no fear of spiders were the most distracted by snakes and scorpions which supports the view that scorpions as well as snakes are prioritized evolutionary relevant stimuli. We also found that the reaction time increased systematically with increasing subjective fear of spiders only when using spiders (and crabs to some extent) but not snakes and scorpions as distractors. The maximal pupil response covered not only the attentional and cognitive response but was also tightly correlated with the fear ratings of the picture stimuli. However, participants' fear of spiders did not affect individual reactions to scorpions measured by the maximal pupil response. We conclude that scorpions are evolutionary fear-relevant stimuli, however, the generalization between scorpions and spiders was not supported in spider-fearful participants. This result might be important for a better understanding of the evolution of spider phobia.

Zobrazit více v PubMed

Yorzinski JL, Penkunas MJ, Platt ML, Coss RG. Dangerous animals capture and maintain attention in humans. Evol. Psychol. 2014;12:534–548. doi: 10.1177/147470491401200304. PubMed DOI

Öhman A, Flykt A, Esteves F. Emotion drives attention: Detecting the snake in the grass. J. Exp. Psychol. Gen. 2001;130:466–478. doi: 10.1037/0096-3445.130.3.466. PubMed DOI

Fox E, Russo R, Dutton K. Attentional bias for threat: Evidence for delayed disengagement from emotional faces. Cognit. Emot. 2002;16:355–379. doi: 10.1080/02699930143000527. PubMed DOI PMC

Öhman A, Mineka S. The malicious serpent: Snakes as a prototypical stimulus for an evolved module of fear. Curr. Dir. Psychol. Sci. 2003;12:5–9. doi: 10.1111/1467-8721.01211. DOI

Flykt A. Preparedness for action: Responding to the snake in the grass. Am. J. Psychol. 2006;119:29–43. doi: 10.2307/20445317. PubMed DOI

Öhman A, Mineka S. Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychol. Rev. 2001;108:483–522. doi: 10.1037/0033-295X.108.3.483. PubMed DOI

Seligman ME. Phobias and preparedness. Behav. Ther. 1971;2:307–320. doi: 10.1016/S0005-7894(71)80064-3. PubMed DOI

Mineka S, Öhman A. Phobias and preparedness: The selective, automatic, and encapsulated nature of fear. Biol. Psychiatry. 2002;52:927–937. doi: 10.1016/S0006-3223(02)01669-4. PubMed DOI

Prokop P, Tolarovičová A, Camerik AM, Peterková V. High school students’ attitudes towards spiders: A cross-cultural comparison. Int. J. Sci. Educ. 2010;32:1665–1688. doi: 10.1080/09500690903253908. DOI

Rádlová S, et al. Snakes represent emotionally salient stimuli that may evoke both fear and disgust. Front. Psychol. 2019;10:1085. doi: 10.3389/fpsyg.2019.01085. PubMed DOI PMC

Landová E, et al. Association between fear and beauty evaluation of snakes: Cross-cultural findings. Front. Psychol. 2018;9:333. doi: 10.3389/fpsyg.2018.00333. PubMed DOI PMC

Isbell LA. Snakes as agents of evolutionary change in primate brains. J. Hum. Evol. 2006;51:1–35. doi: 10.1016/j.jhevol.2005.12.012. PubMed DOI

Le V, et al. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proc. Natl. Acad. Sci. U.S.A. 2013;110:19000–19005. doi: 10.1073/pnas.1312648110. PubMed DOI PMC

Le Van, et al. Monkey pulvinar neurons fire differentially to snake postures. Plos One. 2014;9:e114258. doi: 10.1371/journal.pone.0114258. PubMed DOI PMC

Zhang B, Zhou ZG, Zhou Y, Chen YC. Increased attention to snake images in cynomolgus monkeys: An eye-tracking study. Zool. Res. 2020;41:32–38. doi: 10.24272/j.issn.2095-8137.2020.005. PubMed DOI PMC

Jensen CH, Caine NG. Preferential snake detection in a simulated ecological experiment. Am. J. Phys. Antropol. 2021;175:895–904. doi: 10.1002/ajpa.24224. PubMed DOI

Coelho CM, Suttiwan P, Faiz AM, Ferreira-Santos F, Zsido AN. Are humans prepared to detect, fear, and avoid snakes? The mismatch between laboratory and ecological evidence. Front. Psychol. 2019;10:2094. doi: 10.3389/fpsyg.2019.02094. PubMed DOI PMC

Van Strien JW, Franken IH, Huijding J. Testing the snake-detection hypothesis: Larger early posterior negativity in humans to pictures of snakes than to pictures of other reptiles, spiders and slugs. Front. Hum. Neurosci. 2014;8:691. doi: 10.3389/fnhum.2014.00691. PubMed DOI PMC

Van Strien JW, Christiaans G, Franken IHA, Huijding J. Curvilinear shapes and the snake detection hypothesis: An ERP study. Psychophysiology. 2016;53:252–257. doi: 10.1111/psyp.12564. PubMed DOI

Van Strien JW, Isbell LA. Snake scales, partial exposure, and the snake detection theory: A human event-related potentials study. Sci. Rep. 2017;7:46331. doi: 10.1038/srep46331. PubMed DOI PMC

Shibasaki M, Kawai N. Visual searching for fear-relevant stimuli: Snakes draw our attention more strongly than spiders do. Cogn. Stud. Bull. Jpn. Cogn. Sci. Soc. 2011;18:158–172.

Soares SC, Lindström B, Esteves F, Öhman A. The hidden snake in the grass: Superior detection of snakes in challenging attentional conditions. Plos One. 2014;9:e114724. doi: 10.1371/journal.pone.0114724. PubMed DOI PMC

Kawai N, He H. Breaking snake camouflage: Humans detect snakes more accurately than other animals under less discernible visual conditions. Plos One. 2016;11:e0164342. doi: 10.1371/journal.pone.0164342. PubMed DOI PMC

Landová E, et al. Venomous snakes elicit stronger fear than nonvenomous ones: Psychophysiological response to snake images. Plos One. 2020;15:e0236999. doi: 10.1371/journal.pone.0236999. PubMed DOI PMC

Harris RJ, Nekaris K, Fry BG. Monkeying around with venom: an increased resistance to α-neurotoxins supports an evolutionary arms race between Afro-Asian primates and sympatric cobras. BMC Biol. 2021;19:253. doi: 10.1186/s12915-021-01195-x. PubMed DOI PMC

Onyishi IE, Nwonyi SK, Pazda A, Prokop P. Attitudes and behaviour toward snakes on the part of Igbo people in southeastern Nigeria. Sci. Total Environ. 2021;763:143045. doi: 10.1016/j.scitotenv.2020.143045. PubMed DOI

Oosterink FM, de Jongh A, Hoogstraten J. Prevalence of dental fear and phobia relative to other fear and phobia subtypes. Eur. J. Oral Sci. 2009;117:135–143. doi: 10.1111/j.1600-0722.2008.00602.x. PubMed DOI

Polák J, et al. Measuring fear evoked by the scariest animal: Czech versions of the Spider Questionnaire and Spider Phobia Beliefs Questionnaire. BMC Psychiatry. 2022;22:18. doi: 10.1186/s12888-021-03672-7. PubMed DOI PMC

Hauke TJ, Herzig V. Dangerous arachnids—Fake news or reality? Toxicon. 2017;138:173–183. doi: 10.1016/j.toxicon.2017.08.024. PubMed DOI

Frynta D, et al. Emotions triggered by live arthropods shed light on spider phobia. Sci. Rep. 2021;11:22268. doi: 10.1038/s41598-021-01325-z. PubMed DOI PMC

Matchett G, Davey GC. A test of a disease-avoidance model of animal phobias. Behav. Res. Ther. 1991;29:91–94. doi: 10.1016/S0005-7967(09)80011-9. PubMed DOI

Gerdes AB, Uhl G, Alpers GW. Spiders are special: Fear and disgust evoked by pictures of arthropods. Evol. Hum. Behav. 2009;30:66–73. doi: 10.1016/j.evolhumbehav.2008.08.005. DOI

Landová E, et al. Specificity of spiders among fear-and disgust-eliciting arthropods: Spiders are special, but phobics not so much. Plos One. 2021;16:e0257726. doi: 10.1371/journal.pone.0257726. PubMed DOI PMC

Davey GC. The"disgusting" spider: The role of disease and illness in the perpetuation of fear of spiders. Soc. Anim. 1994;2:17–25. doi: 10.1163/156853094X00045. DOI

New JJ, German TC. Spiders at the cocktail party: An ancestral threat that surmounts inattentional blindness. Evol. Hum. Behav. 2015;36:165–173. doi: 10.1016/j.evolhumbehav.2014.08.004. DOI

Soares SC, et al. Exogenous attention to fear: Differential behavioral and neural responses to snakes and spiders. Neuropsychologia. 2017;99:139–147. doi: 10.1016/j.neuropsychologia.2017.03.007. PubMed DOI

He H, Kubo K, Kawai N. Spiders do not evoke greater early posterior negativity in the event-related potential as snakes. Neuroreport. 2014;25:1049–1053. doi: 10.1097/WNR.0000000000000227. PubMed DOI

Rudolfová V, et al. Do spiders ride on the fear of scorpions? A cross-cultural eye tracking study. Animals. 2022;12:3466. doi: 10.3390/ani12243466. PubMed DOI PMC

Landová E, et al. Toward a reliable detection of arachnophobia: Subjective, behavioral, and neurophysiological measures of fear response. Front. Psychiatry. 2023;14:1196785. doi: 10.3389/fpsyt.2023.1196785. PubMed DOI PMC

Dindo L, Fowles DC. The skin conductance orienting response to semantic stimuli: Significance can be independent of arousal. Psychophysiology. 2008;45:111–118. doi: 10.1111/j.1469-8986.2007.00604.x. PubMed DOI

Wang C-A, Baird T, Huang J, Coutinho JD, Brien DC, Munoz DP. Arousal effects on pupil size, heart rate, and skin conductance in an emotional face task. Front. Neurol. 2018;9:1029. doi: 10.3389/fneur.2018.01029. PubMed DOI PMC

Betancourt MA, Dethorne LS, Karahalios K, Kim JG. Skin conductance as an in situ marker for emotional arousal in children with neurodevelopmental communication impairments: Methodological considerations and clinical implications. ACM Trans. Access. Comput. 2017;9:1–29. doi: 10.1145/3035536. DOI

Evans KK, et al. Visual attention. Wires Cogn. Sci. 2011;2:503–514. doi: 10.1002/wcs.127. PubMed DOI

Zsido AN, Bali C, Kocsor F, Hout MC. Task-irrelevant threatening information is harder to ignore than other valences. Emotion. 2022;224:103523. PubMed

Zsidó AN, Stecina DT, Cseh R, Hout MC. The effects of task-irrelevant threatening stimuli on orienting-and executive attentional processes under cognitive load. Br. J. Psychol. 2022;113:412–433. doi: 10.1111/bjop.12540. PubMed DOI PMC

New J, Cosmides L, Tooby J. Category-specific attention for animals reflects ancestral priorities, not expertise. Proc. Natl. Acad. Sci. U.S.A. 2007;104:16598–16603. doi: 10.1073/pnas.0703913104. PubMed DOI PMC

Altman MN, Khislavsky AL, Coverdale ME, Gilger JW. Adaptive attention: How preference for animacy impacts change detection. Evol. Hum. Behav. 2016;37:303–314. doi: 10.1016/j.evolhumbehav.2016.01.006. DOI

Tatler B. The central fixation bias in scene viewing: Selecting an optimal viewing position independently of motor biases and image feature distributions. J. Vis. 2007;7:4. doi: 10.1167/7.14.4. PubMed DOI

Dorr M, Martinetz T, Gegenfurtner KR, Barth E. Variability of eye movements when viewing dynamic natural scenes. J. Vis. 2010;10:28. doi: 10.1167/10.10.28. PubMed DOI

Soares SC, Esteves F, Flykt A. Fear, but not fear-relevance, modulates reaction times in visual search with animal distractors. J. Anxiety Disord. 2009;23:136–144. doi: 10.1016/j.janxdis.2008.05.002. PubMed DOI

Soares SC, Esteves F, Lundqvist D. In the grip of fear: Dissociations in attentional processing of animal fearful individuals. Scand. J. Psychol. 2015;56:11–17. doi: 10.1111/sjop.12179. PubMed DOI

LoBue V, Matthews K, Harvey T, Stark SL. What accounts for the rapid detection of threat? Evidence for an advantage in perceptual and behavioral responding from eye movements. Emotion. 2014;14:816–823. doi: 10.1037/a0035869. PubMed DOI

Wermes R, Lincoln TM, Helbig-Lang S. How well can we measure visual attention? Psychometric properties of manual response times and first fixation latencies in a visual search paradigm. Cogn. Ther. Res. 2017;41:588–599. doi: 10.1007/s10608-016-9830-9. DOI

Zsido AN, et al. Does threat have an advantage after all? Proposing a novel experimental design to investigate the advantages of threat-relevant cues in visual processing. Front. Psychol. 2019;10:2217. doi: 10.3389/fpsyg.2019.02217. PubMed DOI PMC

Yang Y, et al. Assessing the allocation of attention during visual search using digit-tracking, a calibration-free alternative to eye tracking. Sci. Rep. 2023;13:2376. doi: 10.1038/s41598-023-29133-7. PubMed DOI PMC

Flykt A. Visual search with biological threat stimuli: Accuracy, reaction times, and heart rate changes. Emotion. 2005;5:349–353. doi: 10.1037/1528-3542.5.3.349. PubMed DOI

Blanchette I. Snakes, spiders, guns, and syringes: How specific are evolutionary constraints on the detection of threatening stimuli? Q. J. Exp. Psychol. 2006;59:1484–1504. doi: 10.1080/02724980543000204. PubMed DOI

Soares SC. The lurking snake in the grass: Interference of snake stimuli in visually taxing conditions. Evol. Psychol. 2012;10:187–197. doi: 10.1177/147470491201000202. PubMed DOI

Haberkamp A, Schmidt F, Schmidt T. Rapid visuomotor processing of phobic images in spider-and snake-fearful participants. Acta Psychol. 2013;144:232–242. doi: 10.1016/j.actpsy.2013.07.001. PubMed DOI

Sulikowski D. Are natural threats superior threats? Evol. Hum. Behav. 2022;43:34–43. doi: 10.1016/j.evolhumbehav.2021.08.003. DOI

Miltner WH, Krieschel S, Hecht H, Trippe R, Weiss T. Eye movements and behavioral responses to threatening and nonthreatening stimuli during visual search in phobic and nonphobic subjects. Emotion. 2004;4:323–339. doi: 10.1037/1528-3542.4.4.323. PubMed DOI

Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annu. Rev. Neurosci. 2005;28:403–450. doi: 10.1146/annurev.neuro.28.061604.135709. PubMed DOI

Gilzenrat MS, Nieuwenhuis S, Jepma M, Cohen JD. Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cogn. Affect. Behav. Neurosci. 2010;10:252–269. doi: 10.3758/CABN.10.2.252. PubMed DOI PMC

Hess EH, Polt JM. Pupil size in relation to mental activity during simple problem-solving. Science. 1964;143:1190–1192. doi: 10.1126/science.143.3611.1190. PubMed DOI

Privitera CM, Renninger LW, Carney T, Klein S, Aguilar M. Pupil dilation during visual target detection. J. Vis. 2010;1:3. doi: 10.1167/10.10.3. PubMed DOI

Sirois S, Brisson J. Pupillometry. WIRES Cogn. Sci. 2014;5:679–692. doi: 10.1002/wcs.1323. PubMed DOI

Einhäuser W. The pupil as marker of cognitive processes. In: Zhao Q, editor. Computational and Cognitive Neuroscience of Vision. Springer; 2017. pp. 141–169.

van der Wel P, Van Steenbergen H. Pupil dilation as an index of effort in cognitive control tasks: A review. Psychon. Bull. Rev. 2018;25:2005–2015. doi: 10.3758/s13423-018-1432-y. PubMed DOI PMC

Bradley MM, Miccoli L, Escrig MA, Lang PJ. The pupil as a measure of emotional arousal and autonomic activation. Psychophysiology. 2008;45:602–607. doi: 10.1111/j.1469-8986.2008.00654.x. PubMed DOI PMC

Henderson RR, Bradley MM, Lang PJ. Modulation of the initial light reflex during affective picture viewing. Psychophysiology. 2014;51:815–818. doi: 10.1111/psyp.12236. PubMed DOI PMC

Snowden RJ, et al. The pupil's response to affective pictures: Role of image duration, habituation, and viewing mode. Psychophysiology. 2016;53:1217–1223. doi: 10.1111/psyp.12668. PubMed DOI PMC

Kinner VL, et al. What our eyes tell us about feelings: Tracking pupillary responses during emotion regulation processes. Psychophysiology. 2017;54:508–518. doi: 10.1111/psyp.12816. PubMed DOI

Piquado T, Isaacowitz D, Wingfield A. Pupillometry as a measure of cognitive effort in younger and older adults. Psychophysiology. 2010;47:560–569. doi: 10.1111/j.1469-8986.2009.00947.x. PubMed DOI PMC

Porter G, Troscianko T, Gilchrist ID. Effort during visual search and counting: Insights from pupillometry. Q. J. Exp. Psychol. 2007;60:211–229. doi: 10.1080/17470210600673818. PubMed DOI

Siegle GJ, Steinhauer SR, Stenger VA, Konecky R, Carter CS. Use of concurrent pupil dilation assessment to inform interpretation and analysis of fMRI data. Neuroimage. 2003;20:114–124. doi: 10.1016/S1053-8119(03)00298-2. PubMed DOI

Mathôt S. Pupillometry: Psychology, physiology, and function. J. Cogn. 2018;1:16. doi: 10.5334/joc.18. PubMed DOI PMC

Mathôt S, Van der Stigchel S. New light on the mind’s eye: The pupillary light response as active vision. Curr. Dir. Psychol. Sci. 2015;24:374–378. doi: 10.1177/0963721415593725. PubMed DOI PMC

Lundqvist D, Ohman A. Emotion regulates attention: The relation between facial configurations, facial emotion, and visual attention. Vis. Cogn. 2005;12:51–84. doi: 10.1080/13506280444000085. DOI

Fox E, Russo R, Bowles R, Dutton K. Do threatening stimuli draw or hold visual attention in subclinical anxiety? J. Exp. Psychol. Gen. 2001;130:681–700. doi: 10.1037/0096-3445.130.4.681. PubMed DOI PMC

Gerdes AB, Alpers GW, Pauli P. When spiders appear suddenly: Spider-phobic patients are distracted by task-irrelevant spiders. Behav. Res. Ther. 2008;46:174–187. doi: 10.1016/j.brat.2007.10.010. PubMed DOI

Clauss K, Gorday JY, Bardeen JR. Eye tracking evidence of threat-related attentional bias in anxiety-and fear-related disorders: A systematic review and meta-analysis. Clin. Psychol. Rev. 2022;93:102142. doi: 10.1016/j.cpr.2022.102142. PubMed DOI

Flykt A, Lindeberg S, Derakshan N. Fear makes you stronger: Responding to feared animal targets in visual search. Atten. Percept. Psychophys. 2012;74:1437–1445. doi: 10.3758/s13414-012-0336-6. PubMed DOI

Miltner WHR, Krieschel S, Hecht H, Trippe R, Weiss T. Eye movements and behavioral responses to threatenting and nonthreatening stimuli during visual search in phobic and nonphobic subjects. Emotion. 2004;4:323–339. doi: 10.1037/1528-3542.4.4.323. PubMed DOI

Devue C, Belopolsky AV, Theeuwes J. The role of fear and expectancies in capture of covert attention by spiders. Emotion. 2011;11:768–775. doi: 10.1037/a0023418. PubMed DOI

Bjärtå A, Flykt A, Sundin Ö. The effect of using different distractor sets in visual search with spiders and snakes on spider-sensitive and nonfearful participants. Swiss J. Psychol. 2013;72:171–179. doi: 10.1024/1421-0185/a000111. DOI

Boyd R. Mistakes allow evolutionary stability in the repeated prisoner's dilemma game. J. Theor. Biol. 1989;136:47–56. doi: 10.1016/S0022-5193(89)80188-2. PubMed DOI

Henderson RR, Bradley MM, Lang PJ. Emotional imagery and pupil diameter. Psychophysiology. 2018;55:e13050. doi: 10.1111/psyp.13050. PubMed DOI PMC

Santos SM, Fernandes NL, Pandeirada JN. Same but different: The influence of context framing on subjective disgust, eye movements and pupillary responses. Conscious. Cogn. 2023;108:103462. doi: 10.1016/j.concog.2022.103462. PubMed DOI

de Jong PJ, van Overveld M, Peters ML. Sympathetic and parasympathetic responses to a core disgust video clip as a function of disgust propensity and disgust sensitivity. Biol. Psychol. 2011;88:174–179. doi: 10.1016/j.biopsycho.2011.07.009. PubMed DOI

Levenson RW. Autonomic nervous system differences among emotions. Psychol. Sci. 1992;3:23–27. doi: 10.1111/j.1467-9280.1992.tb00251.x. DOI

Bayer M, Sommer W, Schacht A. Emotional words impact the mind but not the body: Evidence from pupillary responses. Psychophysiology. 2011;48:1554–1562. doi: 10.1111/j.1469-8986.2011.01219.x. PubMed DOI

Rádlová S, et al. Emotional reaction to fear-and disgust-evoking snakes: Sensitivity and propensity in snake-fearful respondents. Front. Psychol. 2020;11:31. doi: 10.3389/fpsyg.2020.00031. PubMed DOI PMC

Arrindell WA, Mulkens S, Kok J, Vollenbroek J. Disgust sensitivity and the sex difference in fears to common indigenous animals. Behav. Res. Ther. 1999;37:273–280. doi: 10.1016/S0005-7967(98)00129-6. PubMed DOI

Klorman R, Weerts TC, Hastings JE, Melamed BG, Lang PJ. Psychometric description of some specific-fear questionnaires. Behav. Ther. 1974;5:401–409. doi: 10.1016/S0005-7894(74)80008-0. DOI

Polák J, Landová E, Frynta D. Undisguised disgust: A psychometric evaluation of a disgust propensity measure. Curr. Psychol. 2019;38:608–617. doi: 10.1007/s12144-018-9925-4. DOI

Skaramagkas V, et al. Review of eye tracking metrics involved in emotional and cognitive processes. IEEE Rev. Biomed. Eng. 2021;16:260–277. doi: 10.1109/RBME.2021.3066072. PubMed DOI

Rinck M, Becker ES. Spider fearful individuals attend to threat, then quickly avoid it: Evidence from eye movements. J. Abnorm. Psychol. 2006;115:231–238. doi: 10.1037/0021-843X.115.2.231. PubMed DOI

LoBue V, Buss KA, Taber-Thomas BC, Pérez-Edgar K. Developmental differences in infants' attention to social and nonsocial threats. Infancy. 2017;22:403–415. doi: 10.1111/infa.12167. PubMed DOI PMC

Malcolm GL, Henderson JM. The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. J. Vis. 2009;9:8. doi: 10.1167/9.11.8. PubMed DOI

Tsukahara JS, Harrison TL, Engle RW. The relationship between baseline pupil size and intelligence. Cogn. Psychol. 2016;91:109–123. doi: 10.1016/j.cogpsych.2016.10.001. PubMed DOI

Craske MG. Origins of Phobias and Anxiety Disorders: Why More Women than Men? Elsevier; 2003.

LeBeau RT, et al. Specific phobia: A review of DSM-IV specific phobia and preliminary recommendations for DSM-V. Depress. Anxiety. 2010;27:148–167. doi: 10.1002/da.20655. PubMed DOI

Rakison DH. Does women’s greater fear of snakes and spiders originate in infancy? Evol. Hum. Behav. 2009;30:438–444. doi: 10.1016/j.evolhumbehav.2009.06.002. PubMed DOI PMC

Polák J, Sedláčková K, Nácar D, Landová E, Frynta D. Fear the serpent: A psychometric study of snake phobia. Psychiatry Res. 2016;242:163–168. doi: 10.1016/j.psychres.2016.05.024. PubMed DOI

Polák J, Sedláčková K, Landová E, Frynta D. Faster detection of snake and spider phobia: Revisited. Heliyon. 2020;6:e03968. doi: 10.1016/j.heliyon.2020.e03968. PubMed DOI PMC

Polák J, Rádlová S, Janovcová M, Flegr J, Landová E, Frynta D. Scary and nasty beasts: Self-reported fear and disgust of common phobic animals. Br. J. Psychol. 2020;111:297–321. doi: 10.1111/bjop.12409. PubMed DOI

Posit team RStudio. Integrated development environment for R. Posit Software, PBC. http://www.posit.co/ (2022).

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).

Pinheiro J, Bates D, R Core Team. _nlme: Linear and Nonlinear Mixed Effects Models_. R package version 3.1–160. https://CRAN.R-project.org/package=nlme (2022).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...