Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
10831426
PubMed Central
PMC110561
DOI
10.1128/aem.66.6.2471-2478.2000
Knihovny.cz E-zdroje
- MeSH
- biodegradace MeSH
- kadmium farmakologie MeSH
- kultivační média MeSH
- látky znečišťující půdu metabolismus MeSH
- lignin metabolismus MeSH
- Pleurotus enzymologie růst a vývoj MeSH
- polycyklické aromatické uhlovodíky metabolismus MeSH
- půdní mikrobiologie * MeSH
- rtuť farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kadmium MeSH
- kultivační média MeSH
- látky znečišťující půdu MeSH
- lignin MeSH
- polycyklické aromatické uhlovodíky MeSH
- rtuť MeSH
The white-rot fungus Pleurotus ostreatus was able to degrade the polycyclic aromatic hydrocarbons (PAHs) benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, and benzo[ghi]perylene in nonsterile soil both in the presence and in the absence of cadmium and mercury. During 15 weeks of incubation, recovery of individual compounds was 16 to 69% in soil without additional metal. While soil microflora contributed mostly to degradation of pyrene (82%) and benzo[a]anthracene (41%), the fungus enhanced the disappearance of less-soluble polycyclic aromatic compounds containing five or six aromatic rings. Although the heavy metals in the soil affected the activity of ligninolytic enzymes produced by the fungus (laccase and Mn-dependent peroxidase), no decrease in PAH degradation was found in soil containing Cd or Hg at 10 to 100 ppm. In the presence of cadmium at 500 ppm in soil, degradation of PAHs by soil microflora was not affected whereas the contribution of fungus was negligible, probably due to the absence of Mn-dependent peroxidase activity. In the presence of Hg at 50 to 100 ppm or Cd at 100 to 500 ppm, the extent of soil colonization by the fungus was limited.
Zobrazit více v PubMed
Anderson T-H, Domsch K H. Effects of soil structure on microbial biomass. In: Hartger K H, Stewart B A, editors. Soil structure—its development and function. Boca Raton, Fla: Lewis Publishers; 1995. pp. 325–345.
Andersson B E, Henrysson T. Accumulation and degradation of dead-end metabolites during treatment of soil contaminated with polycyclic aromatic hydrocarbons with five strains of white-rot fungi. Appl Microbiol Biotechnol. 1996;46:647–652.
Baldrian P, Gabriel J. Effect of heavy metals on the growth of selected wood-rotting basidiomycetes. Folia Microbiol. 1997;42:521–523.
Baldrian P, Gabriel J, Nerud F. Effect of cadmium on the ligninolytic activity of Stereum hirsutum and Phanerochaete chrysosporium. Folia Microbiol. 1996;41:363–367.
Barr D P, Aust S D. Mechanisms white-rot fungi used to degrade pollutants. Environ Sci Technol. 1994;28:78–87. PubMed
Baud-Grasset F, Baud-Grasset S, Saffernan S I. Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests. Chemosphere. 1993;26:1365–1374.
Baud-Grasset S, Baud-Grasset F, Bifulco J M, Meier J R, Ma T-H. Reduction of genotoxicity of a creosote-contaminated soil after fungal treatment determined by the Tradescantia-micronucleus test. Mutat Res. 1993;303:77–82. PubMed
Bezalel L, Hadar Y, Cerniglia C E. Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol. 1996;62:292–295. PubMed PMC
Bezalel L, Hadar Y, Fu P P, Freeman J P, Cerniglia C E. Metabolism of phenanthrene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol. 1996;62:2547–2553. PubMed PMC
Bezalel L, Hadar Y, Fu P P, Freeman J P, Cerniglia C E. Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol. 1996;62:2554–2559. PubMed PMC
Bogan B W, Lamar R T. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl Environ Microbiol. 1996;62:1597–1603. PubMed PMC
Bogan B W, Lamar R T, Burgos W D, Tien M. Extent of humification of anthracene, fluoranthene, and benzo[a]pyrene by Pleurotus ostreatus during growth in PAH-contaminated soils. Lett Appl Microbiol. 1999;28:250–254.
Bogan B W, Schoenike B, Lamar R T, Cullen D. Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium. Appl Environ Microbiol. 1996;62:2381–2386. PubMed PMC
Boyle D, Wiesner C, Richardson A. Factors affecting the degradation of polyaromatic hydrocarbons in soil by white-rot fungi. Soil Biol Biochem. 1998;30:873–882.
Brown J A, Alic M, Gold M H. Manganese peroxidase gene transcription in Phanerochaete chrysosporium: activation by manganese. J Bacteriol. 1991;173:4101–4106. PubMed PMC
Bumpus J A, Tien M, Wright D, Aust S D. Oxidation of persistent environmental pollutants by a white-rot fungus. Science. 1985;228:1434–1436. PubMed
Burkhardt C, Insam H, Hutchinson T C, Reber H H. Impact of heavy metals on the degradative capabilities of soil bacterial communities. Biol Fertil Soils. 1993;16:154–156.
Buswell J A, Cai Y, Chang S. Effect of nutrient nitrogen and manganese on manganese peroxidase and laccase production by Lentinula (Lentinus) edodes. FEMS Microbiol Lett. 1995;128:81–88.
Cerniglia C E, Heitkamp M A. Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment. In: Varanasi U, editor. Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. Boca Raton, Fla: CRC Press, Inc.; 1989. pp. 41–68.
Collins P J, Dobson A D W. Regulation of laccase gene transcription in Trametes versicolor. Appl Environ Microbiol. 1997;63:3444–3450. PubMed PMC
Collins P J, Kotterman M J J, Field J A, Dobson A D W. Oxidation of anthracene and benzo[a]pyrene by laccases from Trametes versiocolor. Appl Environ Microbiol. 1996;62:4563–4567. PubMed PMC
Dhawale S W, Dhawale S S, Dean-Ross D. Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions. Appl Environ Microbiol. 1992;58:3000–3006. PubMed PMC
Dipple A, Cheng S C, Bigger C A H. Polycyclic aromatic hydrocarbon carcinogens. In: Pariza M W, Aeschbacher H U, Felton J S, Sato S, editors. Mutagens and carcinogens in the diet. New York, N.Y: Wiley-Liss; 1990. pp. 109–127.
Field J A, Vledder R H, van Zeist J G, Rulkens W H. The tolerance of lignin peroxidase and manganese-dependent peroxidase to miscible solvents and the in vitro oxidation of anthracene in solvent:water mixtures. Enzyme Microb Technol. 1996;18:300–308.
Froehner S C, Eriksson K-E. Induction of Neurospora crassa laccase with protein synthesis inhibitors. J Bacteriol. 1974;120:450–457. PubMed PMC
Giersig K, Schinner F. Abbau von polyzyklischen aromatischen Kohlenwasserstoffen in metallbelasteten Boden. In: Margesin R, Schneider M, Schinner F, editors. Praxis der mikrobiellen Bodensanierung. Berlin, Germany: Springer; 1995. pp. 107–117.
Glenn J K, Morgan M A, Mayfield M B, Kuwahara M, Gold M H. An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporium. Biochem Biophys Res Commun. 1983;114:1077–1083. PubMed
Gramss G, Voigt K D, Kirsche B. Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils. Biodegradation. 1999;10:51–62. PubMed
in der Wiesche C, Martens R, Zadrazil F. Two-step degradation of pyrene by white-rot fungi and soil microorganisms. Appl Microbiol Biotechnol. 1996;46:653–659. PubMed
Kästner M, Streibich S, Beyrer M, Richnow H H, Fritsche W. Formation of bound residues during microbial degradation of [14C]anthracene in soil. Appl Environ Microbiol. 1999;65:1834–1842. PubMed PMC
Koeleman M, van der Laak W J, Ietswaart H. Dispersion of PAH and heavy metals along motorways in The Netherlands—an overview. Sci Total Environ. 1999;235:347–349. PubMed
Kotterman M J J, Vis E H, Field J A. Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora. Appl Environ Microbiol. 1998;64:2853–2858. PubMed PMC
Kotterman M J J, Wasseveld R A, Field J A. Hydrogen peroxide production as a limiting factor in xenobiotic compound oxidation by nitrogen-sufficient cultures of Bjerkandera sp. strain BOS55 overproducing peroxidases. Appl Environ Microbiol. 1996;62:880–885. PubMed PMC
Lamar R T, Davis M W, Dietrich D M, Glaser J A. Treatment of pentachlorophenol- and creosote-contaminated soil using the lignin-degrading fungus Phanerochaete sordida: a field demonstration. Soil Biol Biochem. 1994;26:1603–1611.
Lang E, Eller G, Zadrazil F. Lignocellulose decomposition and production of ligninolytic enzymes during interaction of white rot fungi with soil microorganisms. Microb Ecol. 1997;34:1–10. PubMed
Lang E, Nerud F, Novotná E, Zadražil F, Martens R. Production of ligninolytic exoenzymes and C-14-pyrene mineralization by Pleurotus sp. in lignocellulose substrate. Folia Microbiol. 1996;41:489–493.
Lang E, Nerud F, Zadrazil F. Production of ligninolytic enzymes by Pleurotus sp. and Dichomitus squalens in soil and lignocellulose substrate as influenced by soil microorganisms. FEMS Microbiol Lett. 1998;167:239–244.
Lange B, Kremer S, Sterner O, Anke H. Metabolism of pyrene by basidiomycetous fungi of the genera Crinipellis, Marasmius and Marasmiellus. Can J Microbiol. 1996;42:1179–1183.
Loske D, Hüttermann A, Majerczyk A, Zadrazil F, Lorsen H, Waldinger P. Use of white rot fungi for the clean-up of contaminated sites. In: Coughlan M P, Collaco P, editors. Advances in biological treatment of lignocellulosic materials. London, United Kingdom: Elsevier; 1990. pp. 311–321.
Mandal T K, Baldrian P, Gabriel J, Nerud F, Zadražil F. Effect of mercury on the growth of wood-rotting basidiomycetes Pleurotus ostreatus, Pycnoporus cinnabarinus and Serpula lacrymans. Chemosphere. 1998;36:435–440.
Martens R, Wetzstein H G, Zadrazil F, Capelari M, Hoffmann P, Schmeer N. Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi. Appl Environ Microbiol. 1996;62:4206–4209. PubMed PMC
Martens R, Zadrazil F. Screening of white-rot fungi for their ability to mineralize polycyclic aromatic hydrocarbons in soil. Folia Microbiol. 1998;43:97–103. PubMed
Meschede T, Vogelsberger R. Remediation of a mercury contaminated site in Egypt. In: van den Brink W J, Bosman R, Arendt F, editors. Contaminated soil '95. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1995. pp. 237–238.
Moen M A, Hammel K E. Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl Environ Microbiol. 1994;60:1956–1961. PubMed PMC
Morgan P, Lee S A, Lewis S T, Sheppard A N, Watkinson R J. Growth and biodegradation by white-rot fungi inoculated into soil. Soil Biol Biochem. 1993;25:279–287.
Ngo T T, Lenhoff H M. A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions. Anal Biochem. 1980;105:389–397. PubMed
Niku-Paavola M L, Raaska L, Itävaara M. Detection of white-rot fungi by a non-toxic stain. Mycol Res. 1990;94:27–31.
Novotný Č, Erbanová P, Šašek V, Kubátová A, Cajthaml T, Lang E, Krahl J, Zadražil F. Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation. 1999;10:159–168. PubMed
Paszczynski A, Crawford R L. Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnol Prog. 1995;11:368–379.
Pickard M A, Roman R, Tinoco R, Vazquez-Duhalt R. Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl Environ Microbiol. 1999;65:3805–3809. PubMed PMC
Reber H H. Threshold levels of cadmium for soil respiration and growth of spring wheat (Triticum aestivum L.) and difficulties with their determination. Biol Fertil Soils. 1989;7:152–157.
Ruiz-Duenas F J, Guillén F, Camarero S, Pérez-Boada M, Martínez M J, Martínez A T. Regulation of peroxidase transcript levels in liquid cultures of the ligninolytic fungus Pleurotus eryngii. Appl Environ Microbiol. 1999;65:4458–4463. PubMed PMC
Sack U, Günther T. Metabolism of PAH by fungi and correlation with extracellular enzymatic activities. J Basic Microbiol. 1993;33:269–277. PubMed
Sack U, Heinze T M, Deck J, Cerniglia C E, Martens R, Zadrazil F, Fritsche W. Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl Environ Microbiol. 1997;63:3913–3925. PubMed PMC
Sack U, Hofrichter M, Fritsche W. Degradation of polycyclic aromatic hydrocarbons by manganese peroxidase of Nematoloma frowardii. FEMS Microbiol Lett. 1997;152:227–234. PubMed
Sims R C, Overcash M R. Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems. Residue Rev. 1983;88:1–68.
Stucki G, Alexander M. Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl Environ Microbiol. 1987;53:292–297. PubMed PMC
Sutherland J B, Rafii F, Khan A A, Cerniglia C E. Mechanism of polycyclic aromatic hydrocarbon degradation. In: Young L Y, Cerniglia C E, editors. Microbial transformation and degradation of toxic organic chemicals. New York, N.Y: Wiley-Liss; 1995. pp. 269–306.
Thurston C F. The structure and function of fungal laccases. Microbiology. 1994;140:19–26.
Tien M, Kirk T K. Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA. 1984;81:2280–2284. PubMed PMC
Volkering F, Breure A M, Sterkenburg A, van Andel J G. Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate bioavailability on bacterial growth kinetics. Appl Microbiol Biotechnol. 1992;36:548–552.
Waldner R, Leisola M S A, Fiechter A. Comparison of ligninolytic activities of selected white-rot fungi. Appl Microbiol Biotechnol. 1988;29:400–407.
Wilson S C, Jones K C. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut. 1993;81:681–696. PubMed
Wolter M, Zadrazil F, Martens R, Bahadir M. Degradation of eight highly condensed polycyclic aromatic hydrocarbons by Pleurotus sp. Florida in solid wheat straw substrate. Appl Microbiol Biotechnol. 1997;48:398–404.
Variability of laccase activity in the white-rot basidiomycete Pleurotus ostreatus