Pathophysiology of NAFLD and NASH in Experimental Models: The Role of Food Intake Regulating Peptides

. 2020 ; 11 () : 597583. [epub] 20201126

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33324348

Obesity, diabetes, insulin resistance, sedentary lifestyle, and Western diet are the key factors underlying non-alcoholic fatty liver disease (NAFLD), one of the most common liver diseases in developed countries. In many cases, NAFLD further progresses to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and to hepatocellular carcinoma. The hepatic lipotoxicity and non-liver factors, such as adipose tissue inflammation and gastrointestinal imbalances were linked to evolution of NAFLD. Nowadays, the degree of adipose tissue inflammation was shown to directly correlate with the severity of NAFLD. Consumption of higher caloric intake is increasingly emerging as a fuel of metabolic inflammation not only in obesity-related disorders but also NAFLD. However, multiple causes of NAFLD are the reason why the mechanisms of NAFLD progression to NASH are still not well understood. In this review, we explore the role of food intake regulating peptides in NAFLD and NASH mouse models. Leptin, an anorexigenic peptide, is involved in hepatic metabolism, and has an effect on NAFLD experimental models. Glucagon-like peptide-1 (GLP-1), another anorexigenic peptide, and GLP-1 receptor agonists (GLP-1R), represent potential therapeutic agents to prevent NAFLD progression to NASH. On the other hand, the deletion of ghrelin, an orexigenic peptide, prevents age-associated hepatic steatosis in mice. Because of the increasing incidence of NAFLD and NASH worldwide, the selection of appropriate animal models is important to clarify aspects of pathogenesis and progression in this field.

Zobrazit více v PubMed

Marcellin P, Kutala BK. Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int (2018) 38 Suppl 1:2–6.  10.1111/liv.13682 PubMed DOI

Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, et al. Global burden of nafld and nash: Trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol (2018) 15:11–20.  10.1038/nrgastro.2017.109 PubMed DOI

Younossi ZM. Review article: Current management of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Aliment Pharmacol Ther (2008) 28:2–12.  10.1111/j.1365-2036.2008.03710.x PubMed DOI

Schuppan D, Schattenberg JM. Non-alcoholic steatohepatitis: Pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol (2013) 28 Suppl 1:68–76.  10.1111/jgh.12212 PubMed DOI

Del Ben M, Polimeni L, Baratta F, Pastori D, Loffredo L, Angelico F. Modern approach to the clinical management of non-alcoholic fatty liver disease. World J Gastroenterol (2014) 20:8341–50.  10.3748/wjg.v20.i26.8341 PubMed DOI PMC

Finelli C, Tarantino G. Is there any consensus as to what diet or lifestyle approach is the right one for nafld patients? J Gastrointestin Liver Dis (2012) 21:293–302. PubMed

Jordão Candido C, Silva Figueiredo P, Del Ciampo Silva R, Candeloro Portugal L, Augusto Dos Santos Jaques J, Alves de Almeida J, et al. Protective effect of α-linolenic acid on non-alcoholic hepatic steatosis and interleukin-6 and -10 in wistar rats. Nutrients (2019) 12:1–15.  10.3390/nu12010009 PubMed DOI PMC

Brandt SJ, Kleinert M, Tschop MH, Muller TD. Are peptide conjugates the golden therapy against obesity? J Endocrinol (2018) 238:R109–R19.  10.1530/JOE-18-0264 PubMed DOI PMC

Mikulaskova B, Maletinska L, Zicha J, Kunes J. The role of food intake regulating peptides in cardiovascular regulation. Mol Cell Endocrinol (2016) 436:78–92.  10.1016/j.mce.2016.07.021 PubMed DOI

Müller TD, Clemmensen C, Finan B, DiMarchi RD, Tschöp MH. Anti-obesity therapy: From rainbow pills to polyagonists. Pharmacol Rev (2018) 70:712–46.  10.1124/pr.117.014803 PubMed DOI

Williams DM, Nawaz A, Evans M. Drug therapy in obesity: A review of current and emerging treatments. Diabetes Ther (2020) 11:1199–216.  10.1007/s13300-020-00816-y PubMed DOI PMC

Febbraio MA, Reibe S, Shalapour S, Ooi GJ, Watt MJ, Karin M. Preclinical models for studying nash-driven hcc: How useful are they? Cell Metab (2019) 29:18–26.  10.1016/j.cmet.2018.10.012 PubMed DOI PMC

Imajo K, Yoneda M, Kessoku T, Ogawa Y, Maeda S, Sumida Y, et al. Rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Int J Mol Sci (2013) 14:21833–57.  10.3390/ijms141121833 PubMed DOI PMC

Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease - a practical approach for translational research. J Hepatol (2020) 73:423–40.  10.1016/j.jhep.2020.04.011 PubMed DOI

Sanches SC, Ramalho LN, Augusto MJ, da Silva DM, Ramalho FS. Nonalcoholic steatohepatitis: A search for factual animal models. BioMed Res Int (2015) 2015:574832.  10.1155/2015/574832 PubMed DOI PMC

Eslam M, Valenti L, Romeo S. Genetics and epigenetics of nafld and nash: Clinical impact. J Hepatol (2018) 68:268–79.  10.1016/j.jhep.2017.09.003 PubMed DOI

Tolbol KS, Kristiansen MN, Hansen HH, Veidal SS, Rigbolt KT, Gillum MP, et al. Metabolic and hepatic effects of liraglutide, obeticholic acid and elafibranor in diet-induced obese mouse models of biopsy-confirmed nonalcoholic steatohepatitis. World J Gastroenterol (2018) 24:179–94.  10.3748/wjg.v24.i2.179 PubMed DOI PMC

Neuman MG, Cohen LB, Nanau RM. Biomarkers in nonalcoholic fatty liver disease. Can J Gastroenterol Hepatol (2014) 28:607–18.  10.1155/2014/757929 PubMed DOI PMC

Roth JD, Feigh M, Veidal SS, Fensholdt LK, Rigbolt KT, Hansen HH, et al. Int-767 improves histopathological features in a diet-induced ob/ob mouse model of biopsy-confirmed non-alcoholic steatohepatitis. World J Gastroenterol (2018) 24:195–210.  10.3748/wjg.v24.i2.195 PubMed DOI PMC

Schuppan D, Surabattula R, Wang XY. Determinants of fibrosis progression and regression in nash. J Hepatol (2018) 68:238–50.  10.1016/j.jhep.2017.11.012 PubMed DOI

Kim MY, Cho MY, Baik SK, Park HJ, Jeon HK, Im CK, et al. Histological subclassification of cirrhosis using the laennec fibrosis scoring system correlates with clinical stage and grade of portal hypertension. J Hepatol (2011) 55:1004–09.  10.1016/j.jhep.2011.02.012 PubMed DOI

Szczepaniak LS, Nurenberg P, Leonard D, Browning JD, Reingold JS, Grundy S, et al. Magnetic resonance spectroscopy to measure hepatic triglyceride content: Prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab (2005) 288:E462–E68.  10.1152/ajpendo.00064.2004 PubMed DOI

Hansen HH, Feigh M, Veidal SS, Rigbolt KT, Vrang N, Fosgerau K. Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discovery Today (2017) 22:1707–18.  10.1016/j.drudis.2017.06.007 PubMed DOI

Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology (2005) 41:1313–21.  10.1002/hep.20701 PubMed DOI

Radhakrishnan S, Ke JY, Pellizzon MA. Targeted nutrient modifications in purified diets differentially affect nonalcoholic fatty liver disease and metabolic disease development in rodent models. Curr Dev Nutr (2020) 4:nzaa078.  10.1093/cdn/nzaa078 PubMed DOI PMC

Lo L, McLennan SV, Williams PF, Bonner J, Chowdhury S, McCaughan GW, et al. Diabetes is a progression factor for hepatic fibrosis in a high fat fed mouse obesity model of non-alcoholic steatohepatitis. J Hepatol (2011) 55:435–44.  10.1016/j.jhep.2010.10.039 PubMed DOI

Lanthier N, Molendi-Coste O, Cani PD, van Rooijen N, Horsmans Y, Leclercq IA. Kupffer cell depletion prevents but has no therapeutic effect on metabolic and inflammatory changes induced by a high-fat diet. FASEB J (2011) 25:4301–11.  10.1096/fj.11-189472 PubMed DOI

Charlton M, Krishnan A, Viker K, Sanderson S, Cazanave S, McConico A, et al. Fast food diet mouse: Novel small animal model of nash with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am J Physiol Gastrointest Liver Physiol (2011) 301:G825–34.  10.1152/ajpgi.00145.2011 PubMed DOI PMC

Abdelmalek MF, Suzuki A, Guy C, Unalp-Arida A, Colvin R, Johnson RJ, et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology (2010) 51:1961–71.  10.1002/hep.23535 PubMed DOI PMC

Schultz A, Neil D, Aguila MB, Mandarim-de-Lacerda CA. Hepatic adverse effects of fructose consumption independent of overweight/obesity. Int J Mol Sci (2013) 14:21873–86.  10.3390/ijms141121873 PubMed DOI PMC

Kohli R, Kirby M, Xanthakos SA, Softic S, Feldstein AE, Saxena V, et al. High-fructose, medium chain trans fat diet induces liver fibrosis and elevates plasma coenzyme q9 in a novel murine model of obesity and nonalcoholic steatohepatitis. Hepatology (2010) 52:934–44.  10.1002/hep.23797 PubMed DOI PMC

Ishimoto T, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, Orlicky DJ, Cicerchi C, et al. High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology (2013) 58:1632–43.  10.1002/hep.26594 PubMed DOI PMC

Kristiansen MN, Veidal SS, Rigbolt KT, Tolbol KS, Roth JD, Jelsing J, et al. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy. World J Hepatol (2016) 8:673–84.  10.4254/wjh.v8.i16.673 PubMed DOI PMC

Kawashita E, Ishihara K, Nomoto M, Taniguchi M, Akiba S. A comparative analysis of hepatic pathological phenotypes in c57bl/6j and c57bl/6n mouse strains in non-alcoholic steatohepatitis models. Sci Rep (2019) 9:204.  10.1038/s41598-018-36862-7 PubMed DOI PMC

Trevaskis JL, Griffin PS, Wittmer C, Neuschwander-Tetri BA, Brunt EM, Dolman CS, et al. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol (2012) 302:G762–72.  10.1152/ajpgi.00476.2011 PubMed DOI

Jeong WI, Jeong DH, Do SH, Kim YK, Park HY, Kwon OD, et al. Mild hepatic fibrosis in cholesterol and sodium cholate diet-fed rats. J Vet Med Sci (2005) 67:235–42.  10.1292/jvms.67.235 PubMed DOI

Matsuzawa N, Takamura T, Kurita S, Misu H, Ota T, Ando H, et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology (2007) 46:1392–403.  10.1002/hep.21874 PubMed DOI

Rinella ME, Green RM. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J Hepatol (2004) 40:47–51.  10.1016/j.jhep.2003.09.020 PubMed DOI

Leclercq IA, Lebrun VA, Starkel P, Horsmans YJ. Intrahepatic insulin resistance in a murine model of steatohepatitis: Effect of ppargamma agonist pioglitazone. Lab Invest (2007) 87:56–65.  10.1038/labinvest.3700489 PubMed DOI

Sahai A, Malladi P, Pan X, Paul R, Melin-Aldana H, Green RM, et al. Obese and diabetic db/db mice develop marked liver fibrosis in a model of nonalcoholic steatohepatitis: Role of short-form leptin receptors and osteopontin. Am J Physiol Gastrointest Liver Physiol (2004) 287:G1035–43.  10.1152/ajpgi.00199.2004 PubMed DOI

Kim KE, Jung Y, Min S, Nam M, Heo RW, Jeon BT, et al. Caloric restriction of db/db mice reverts hepatic steatosis and body weight with divergent hepatic metabolism. Sci Rep (2016) 6:30111.  10.1038/srep30111 PubMed DOI PMC

Kuwajima M, Kono N, Horiuchi M, Imamura Y, Ono A, Inui Y, et al. Animal model of systemic carnitine deficiency: Analysis in c3h-h-2 degrees strain of mouse associated with juvenile visceral steatosis. Biochem Biophys Res Commun (1991) 174:1090–4.  10.1016/0006-291x(91)91532-h PubMed DOI

Abdelmegeed MA, Yoo SH, Henderson LE, Gonzalez FJ, Woodcroft KJ, Song BJ. Pparalpha expression protects male mice from high fat-induced nonalcoholic fatty liver. J Nutr (2011) 141:603–10.  10.3945/jn.110.135210 PubMed DOI PMC

Shan W, Palkar PS, Murray IA, McDevitt EI, Kennett MJ, Kang BH, et al. Ligand activation of peroxisome proliferator-activated receptor beta/delta (pparbeta/delta) attenuates carbon tetrachloride hepatotoxicity by downregulating proinflammatory gene expression. Toxicol Sci (2008) 105:418–28.  10.1093/toxsci/kfn142 PubMed DOI PMC

Moran-Salvador E, Lopez-Parra M, Garcia-Alonso V, Titos E, Martinez-Clemente M, Gonzalez-Periz A, et al. Role for ppargamma in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB J (2011) 25:2538–50.  10.1096/fj.10-173716 PubMed DOI

Loranger A, Duclos S, Grenier A, Price J, Wilson-Heiner M, Baribault H, et al. Simple epithelium keratins are required for maintenance of hepatocyte integrity. Am J Pathol (1997) 151:1673–83. PubMed PMC

Bettermann K, Mehta AK, Hofer EM, Wohlrab C, Golob-Schwarzl N, Svendova V, et al. Keratin 18-deficiency results in steatohepatitis and liver tumors in old mice: A model of steatohepatitis-associated liver carcinogenesis. Oncotarget (2016) 7:73309–22.  10.18632/oncotarget.12325 PubMed DOI PMC

Liang G, Yang J, Horton JD, Hammer RE, Goldstein JL, Brown MS. Diminished hepatic response to fasting/refeeding and liver x receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J Biol Chem (2002) 277:9520–8.  10.1074/jbc.M111421200 PubMed DOI

Knebel B, Haas J, Hartwig S, Jacob S, Kollmer C, Nitzgen U, et al. Liver-specific expression of transcriptionally active srebp-1c is associated with fatty liver and increased visceral fat mass. PloS One (2012) 7:e31812.  10.1371/journal.pone.0031812 PubMed DOI PMC

Zhu W, Chen S, Li Z, Zhao X, Li W, Sun Y, et al. Effects and mechanisms of resveratrol on the amelioration of oxidative stress and hepatic steatosis in kkay mice. Nutr Metab (Lond) (2014) 11:35.  10.1186/1743-7075-11-35 PubMed DOI PMC

Febbraio M, Abumrad NA, Hajjar DP, Sharma K, Cheng W, Pearce SF, et al. A null mutation in murine cd36 reveals an important role in fatty acid and lipoprotein metabolism. J Biol Chem (1999) 274:19055–62.  10.1074/jbc.274.27.19055 PubMed DOI

Garbacz WG, Lu P, Miller TM, Poloyac SM, Eyre NS, Mayrhofer G, et al. Hepatic overexpression of cd36 improves glycogen homeostasis and attenuates high-fat diet-induced hepatic steatosis and insulin resistance. Mol Cell Biol (2016) 36:2715–27.  10.1128/MCB.00138-16 PubMed DOI PMC

Peyrou M, Bourgoin L, Poher AL, Altirriba J, Maeder C, Caillon A, et al. Hepatic pten deficiency improves muscle insulin sensitivity and decreases adiposity in mice. J Hepatol (2015) 62:421–9.  10.1016/j.jhep.2014.09.012 PubMed DOI

Kume E, Ohmachi Y, Itagaki S, Tamura K, Doi K. Hepatic changes of mice in the subacute phase of streptozotocin (sz)-induced diabetes. Exp Toxicol Pathol (1994) 46:368–74.  10.1016/s0940-2993(11)80119-3 PubMed DOI

Fujii M, Shibazaki Y, Wakamatsu K, Honda Y, Kawauchi Y, Suzuki K, et al. A murine model for non-alcoholic steatohepatitis showing evidence of association between diabetes and hepatocellular carcinoma. Med Mol Morphol (2013) 46:141–52.  10.1007/s00795-013-0016-1 PubMed DOI

Akai H, Kiryu S, Ohta Y, Yasaka K, Nakano Y, Inoue Y, et al. The natural history of streptozotocin-stimulated non-alcoholic steatohepatitis mice followed by gd-eob-dtpa-enhanced mri: Comparison with simple steatosis mice. Magn Reson Imaging (2017) 38:123–28.  10.1016/j.mri.2016.12.027 PubMed DOI

Nagata M, Suzuki W, Iizuka S, Tabuchi M, Maruyama H, Takeda S, et al. Type 2 diabetes mellitus in obese mouse model induced by monosodium glutamate. Exp Anim (2006) 55:109–15.  10.1538/expanim.55.109 PubMed DOI

Tsuneyama K, Nishida T, Baba H, Taira S, Fujimoto M, Nomoto K, et al. Neonatal monosodium glutamate treatment causes obesity, diabetes, and macrovesicular steatohepatitis with liver nodules in diar mice. J Gastroenterol Hepatol (2014) 29:1736–43.  10.1111/jgh.12610 PubMed DOI

Coelho CFF, Franca LM, Nascimento JR, Dos Santos AM, Azevedo-Santos APS, Nascimento FRF, et al. Early onset and progression of non-alcoholic fatty liver disease in young monosodium l-glutamate-induced obese mice. J Dev Orig Health Dis (2019) 10:188–95.  10.1017/S2040174418000284 PubMed DOI

Fickert P, Stoger U, Fuchsbichler A, Moustafa T, Marschall HU, Weiglein AH, et al. A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol (2007) 171:525–36.  10.2353/ajpath.2007.061133 PubMed DOI PMC

Stumptner C, Fuchsbichler A, Lehner M, Zatloukal K, Denk H. Sequence of events in the assembly of mallory body components in mouse liver: Clues to the pathogenesis and significance of mallory body formation. J Hepatol (2001) 34:665–75.  10.1016/s0168-8278(00)00099-4 PubMed DOI

Speakman JR. Use of high-fat diets to study rodent obesity as a model of human obesity. Int J Obes (Lond) (2019) 43:1491–92.  10.1038/s41366-019-0363-7 PubMed DOI

Maletinska L, Nagelova V, Ticha A, Zemenova J, Pirnik Z, Holubova M, et al. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int J Obes (Lond) (2015) 39:986–93.  10.1038/ijo.2015.28 PubMed DOI

Shi H, Akunuru S, Bierman JC, Hodge KM, Mitchell MC, Foster MT, et al. Diet-induced obese mice are leptin insufficient after weight reduction. Obesity (Silver Spring) (2009) 17:1702–9.  10.1038/oby.2009.106 PubMed DOI PMC

Lustig RH, Schmidt LA, Brindis CD. Public health: The toxic truth about sugar. Nature (2012) 482:27–9.  10.1038/482027a PubMed DOI

Nomura K, Yamanouchi T. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. J Nutr Biochem (2012) 23:203–8.  10.1016/j.jnutbio.2011.09.006 PubMed DOI

Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr (2004) 79:537–43.  10.1093/ajcn/79.4.537 PubMed DOI

Ouyang X, Cirillo P, Sautin Y, McCall S, Bruchette JL, Diehl AM, et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol (2008) 48:993–9.  10.1016/j.jhep.2008.02.011 PubMed DOI PMC

Clapper JR, Hendricks MD, Gu G, Wittmer C, Dolman CS, Herich J, et al. Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. Am J Physiol Gastrointest Liver Physiol (2013) 305:G483–95.  10.1152/ajpgi.00079.2013 PubMed DOI

Weltman MD, Farrell GC, Liddle C. Increased hepatocyte cyp2e1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology (1996) 111:1645–53.  10.1016/s0016-5085(96)70028-8 PubMed DOI

Leclercq IA, Farrell GC, Field J, Bell DR, Gonzalez FJ, Robertson GR. Cyp2e1 and cyp4a as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest (2000) 105:1067–75.  10.1172/JCI8814 PubMed DOI PMC

Kirsch R, Clarkson V, Shephard EG, Marais DA, Jaffer MA, Woodburne VE, et al. Rodent nutritional model of non-alcoholic steatohepatitis: Species, strain and sex difference studies. J Gastroenterol Hepatol (2003) 18:1272–82.  10.1046/j.1440-1746.2003.03198.x PubMed DOI

Takahashi Y, Soejima Y, Fukusato T. Animal models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol (2012) 18:2300–8.  10.3748/wjg.v18.i19.2300 PubMed DOI PMC

Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science (1995) 269:540–3.  10.1126/science.7624776 PubMed DOI

Wang B, Chandrasekera PC, Pippin JJ. Leptin- and leptin receptor-deficient rodent models: Relevance for human type 2 diabetes. Curr Diabetes Rev (2014) 10:131–45.  10.2174/1573399810666140508121012 PubMed DOI PMC

Lindstrom P. The physiology of obese-hyperglycemic mice [ob/ob mice]. ScientificWorldJournal (2007) 7:666–85.  10.1100/tsw.2007.117 PubMed DOI PMC

Leclercq IA, Farrell GC, Schriemer R, Robertson GR. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J Hepatol (2002) 37:206–13.  10.1016/S0168-8278(02)00102-2 PubMed DOI

Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, et al. Evidence that the diabetes gene encodes the leptin receptor: Identification of a mutation in the leptin receptor gene in db/db mice. Cell (1996) 84:491–5.  10.1016/s0092-8674(00)81294-5 PubMed DOI

Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI, et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature (1996) 379:632–5.  10.1038/379632a0 PubMed DOI

Campfield LA, Smith FJ, Burn P. The ob protein (leptin) pathway–a link between adipose tissue mass and central neural networks. Horm Metab Res (1996) 28:619–32.  10.1055/s-2007-979867 PubMed DOI

Roesler WJ, Pugazhenthi S, Khandelwal RL. Hepatic glycogen metabolism in the db/db mouse. Mol Cell Biochem (1990) 92:99–106.  10.1007/BF00218127 PubMed DOI

Rao MS, Reddy JK. Peroxisomal beta-oxidation and steatohepatitis. Semin Liver Dis (2001) 21:43–55.  10.1055/s-2001-12928 PubMed DOI

Koizumi T, Nikaido H, Hayakawa J, Nonomura A, Yoneda T. Infantile disease with microvesicular fatty infiltration of viscera spontaneously occurring in the c3h-h-2(0) strain of mouse with similarities to reye’s syndrome. Lab Anim (1988) 22:83–7.  10.1258/002367788780746511 PubMed DOI

Narama I, Ozaki K, Matsuura T, Ono A, Sei M, Shima K, et al. Heterogeneity of histopathologic features in the congenitally carnitine-deficient juvenile visceral steatosis (jvs) mouse. Biomed Res (1997) 18:247–55.  10.2220/biomedres.18.247 DOI

Liss KH, Finck BN. Ppars and nonalcoholic fatty liver disease. Biochimie (2017) 136:65–74.  10.1016/j.biochi.2016.11.009 PubMed DOI PMC

Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, et al. Nuclear receptors and nonalcoholic fatty liver disease. Biochim Biophys Acta (2016) 1859:1083–99.  10.1016/j.bbagrm.2016.03.002 PubMed DOI PMC

Shan W, Nicol CJ, Ito S, Bility MT, Kennett MJ, Ward JM, et al. Peroxisome proliferator-activated receptor-beta/delta protects against chemically induced liver toxicity in mice. Hepatology (2008) 47:225–35.  10.1002/hep.21925 PubMed DOI

He W, Barak Y, Hevener A, Olson P, Liao D, Le J, et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A (2003) 100:15712–7.  10.1073/pnas.2536828100 PubMed DOI PMC

Matsusue K, Haluzik M, Lambert G, Yim SH, Gavrilova O, Ward JM, et al. Liver-specific disruption of ppargamma in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest (2003) 111:737–47.  10.1172/JCI17223 PubMed DOI PMC

Ku NO, Strnad P, Zhong BH, Tao GZ, Omary MB. Keratins let liver live: Mutations predispose to liver disease and crosslinking generates mallory-denk bodies. Hepatology (2007) 46:1639–49.  10.1002/hep.21976 PubMed DOI

Ku NO, Strnad P, Bantel H, Omary MB. Keratins: Biomarkers and modulators of apoptotic and necrotic cell death in the liver. Hepatology (2016) 64:966–76.  10.1002/hep.28493 PubMed DOI PMC

Omary MB, Ku NO, Strnad P, Hanada S. Toward unraveling the complexity of simple epithelial keratins in human disease. J Clin Invest (2009) 119:1794–805.  10.1172/JCI37762 PubMed DOI PMC

Baribault H, Penner J, Iozzo RV, Wilson-Heiner M. Colorectal hyperplasia and inflammation in keratin 8-deficient fvb/n mice. Genes Dev (1994) 8:2964–73.  10.1101/gad.8.24.2964 PubMed DOI

Li R, Liao XH, Ye JZ, Li MR, Wu YQ, Hu X, et al. Association of keratin 8/18 variants with non-alcoholic fatty liver disease and insulin resistance in chinese patients: A case-control study. World J Gastroenterol (2017) 23:4047–53.  10.3748/wjg.v23.i22.4047 PubMed DOI PMC

Ku NO, Toivola DM, Strnad P, Omary MB. Cytoskeletal keratin glycosylation protects epithelial tissue from injury. Nat Cell Biol (2010) 12:876–85.  10.1038/ncb2091 PubMed DOI PMC

Moslehi A, Hamidi-Zad Z. Role of srebps in liver diseases: A mini-review. J Clin Transl Hepatol (2018) 6:332–38.  10.14218/JCTH.2017.00061 PubMed DOI PMC

Horton JD, Goldstein JL, Brown MS. Srebps: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest (2002) 109:1125–31.  10.1172/JCI15593 PubMed DOI PMC

Ferre P, Foufelle F. Hepatic steatosis: A role for de novo lipogenesis and the transcription factor srebp-1c. Diabetes Obes Metab (2010) 12 Suppl 2:83–92.  10.1111/j.1463-1326.2010.01275.x PubMed DOI

Foretz M, Guichard C, Ferre P, Foufelle F. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci U S A (1999) 96:12737–42.  10.1073/pnas.96.22.12737 PubMed DOI PMC

Hasty AH, Shimano H, Yahagi N, Amemiya-Kudo M, Perrey S, Yoshikawa T, et al. Sterol regulatory element-binding protein-1 is regulated by glucose at the transcriptional level. J Biol Chem (2000) 275:31069–77.  10.1074/jbc.M003335200 PubMed DOI

Kohjima M, Higuchi N, Kato M, Kotoh K, Yoshimoto T, Fujino T, et al. Srebp-1c, regulated by the insulin and ampk signaling pathways, plays a role in nonalcoholic fatty liver disease. Int J Mol Med (2008) 21:507–11. 10.3892/ijmm.21.4.507 PubMed DOI

Eberle D, Clement K, Meyre D, Sahbatou M, Vaxillaire M, Le Gall A, et al. Srebf-1 gene polymorphisms are associated with obesity and type 2 diabetes in french obese and diabetic cohorts. Diabetes (2004) 53:2153–7.  10.2337/diabetes.53.8.2153 PubMed DOI

Iwatsuka H, Shino A, Suzuoki Z. General survey of diabetic features of yellow kk mice. Endocrinol Jpn (1970) 17:23–35.  10.1507/endocrj1954.17.23 PubMed DOI

Liu P, Feng T, Zuo X, Wang X, Luo J, Li N, et al. A novel sirt1 activator e6155 improves insulin sensitivity in type 2 diabetic kkay mice. Biochem Biophys Res Commun (2018) 498:633–39.  10.1016/j.bbrc.2018.03.034 PubMed DOI PMC

Park YM. Cd36, a scavenger receptor implicated in atherosclerosis. Exp Mol Med (2014) 46:e99.  10.1038/emm.2014.38 PubMed DOI PMC

Heeboll S, Poulsen MK, Ornstrup MJ, Kjaer TN, Pedersen SB, Nielsen S, et al. Circulating scd36 levels in patients with non-alcoholic fatty liver disease and controls. Int J Obes (Lond) (2017) 41:262–67.  10.1038/ijo.2016.223 PubMed DOI

Garcia-Monzon C, Lo Iacono O, Crespo J, Romero-Gomez M, Garcia-Samaniego J, Fernandez-Bermejo M, et al. Increased soluble cd36 is linked to advanced steatosis in nonalcoholic fatty liver disease. Eur J Clin Invest (2014) 44:65–73.  10.1111/eci.12192 PubMed DOI

Clugston RD, Yuen JJ, Hu Y, Abumrad NA, Berk PD, Goldberg IJ, et al. Cd36-deficient mice are resistant to alcohol- and high-carbohydrate-induced hepatic steatosis. J Lipid Res (2014) 55:239–46.  10.1194/jlr.M041863 PubMed DOI PMC

Peyrou M, Bourgoin L, Foti M. Pten in non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and cancer. Dig Dis (2010) 28:236–46.  10.1159/000282095 PubMed DOI

Vinciguerra M, Foti M. Pten at the crossroad of metabolic diseases and cancer in the liver. Ann Hepatol (2008) 7:192–9. 10.1016/S1665-2681(19)31848-4 PubMed DOI

Wu KK, Huan Y. Streptozotocin-induced diabetic models in mice and rats. Curr Protoc Pharmacol (2008). Chapter 5Unit 5 47. 10.1002/0471141755.ph0547s40. 10.1002/0471141755.ph0547s40 PubMed DOI

Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: New model of diabetes mellitus. Science (1976) 193:415–7.  10.1126/science.180605 PubMed DOI

Kolb H. Mouse models of insulin dependent diabetes: Low-dose streptozocin-induced diabetes and nonobese diabetic (nod) mice. Diabetes Metab Rev (1987) 3:751–78.  10.1002/dmr.5610030308 PubMed DOI

Kume E, Fujimura H, Matsuki N, Ito M, Aruga C, Toriumi W, et al. Hepatic changes in the acute phase of streptozotocin (sz)-induced diabetes in mice. Exp Toxicol Pathol (2004) 55:467–80.  10.1078/0940-2993-00351 PubMed DOI

Tamura H, Kamegai J, Shimizu T, Ishii S, Sugihara H, Oikawa S. Ghrelin stimulates gh but not food intake in arcuate nucleus ablated rats. Endocrinology (2002) 143:3268–75.  10.1210/en.2002-220268 PubMed DOI

Olney JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science (1969) 164:719–21.  10.1126/science.164.3880.719 PubMed DOI

Matyskova R, Maletinska L, Maixnerova J, Pirnik Z, Kiss A, Zelezna B. Comparison of the obesity phenotypes related to monosodium glutamate effect on arcuate nucleus and/or the high fat diet feeding in c57bl/6 and nmri mice. Physiol Res (2008) 57:727–34. PubMed

Pelantova H, Bartova S, Anyz J, Holubova M, Zelezna B, Maletinska L, et al. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity. Anal Bioanal Chem (2016) 408:567–78.  10.1007/s00216-015-9133-0 PubMed DOI

Yamamoto T, Matsuo S, Ueshima Y, Inoue F, Kinugasa A, Sawada T. Plasma levels of insulin-like growth factor-i are reduced at one week of age in monosodium l-glutamate-treated mice. Endocr J (1993) 40:461–5.  10.1507/endocrj.40.461 PubMed DOI

Maletínská L, Toma RS, Pirnik Z, Kiss A, Slaninová J, Haluzík M, et al. Effect of cholecystokinin on feeding is attenuated in monosodium glutamate obese mice. Regul Pept (2006) 136:58–63.  10.1016/j.regpep.2006.04.020 PubMed DOI

Nakanishi Y, Tsuneyama K, Fujimoto M, Salunga TL, Nomoto K, An JL, et al. Monosodium glutamate (msg): A villain and promoter of liver inflammation and dysplasia. J Autoimmun (2008) 30:42–50.  10.1016/j.jaut.2007.11.016 PubMed DOI

Sobrino Crespo C, Perianes Cachero A, Puebla Jiménez L, Barrios V, Arilla Ferreiro E. Peptides and food intake. Front Endocrinol (2014) 5:58.  10.3389/fendo.2014.00058 PubMed DOI PMC

Tarantino G, Balsano C. Gastrointestinal peptides and nonalcoholic fatty liver disease. Curr Opin Endocrinol Diabetes Obes (2020) 27:11–5.  10.1097/MED.0000000000000514 PubMed DOI

Clement K, Garner C, Hager J, Philippi A, LeDuc C, Carey A, et al. Indication for linkage of the human ob gene region with extreme obesity. Diabetes (1996) 45:687–90.  10.2337/diab.45.5.687 PubMed DOI

Reed DR, Ding Y, Xu W, Cather C, Green ED, Price RA. Extreme obesity may be linked to markers flanking the human <em<ob</em< gene. Diabetes (1996) 45:691.  10.2337/diab.45.5.691 PubMed DOI

Zhang F, Chen Y, Heiman M, Dimarchi R. Leptin: Structure, function and biology. Vitam Horm (2005) 71:345–72.  10.1016/S0083-6729(05)71012-8 PubMed DOI

Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature (1994) 372:425–32.  10.1038/372425a0 PubMed DOI

Enriori PJ, Evans AE, Sinnayah P, Cowley MA. Leptin resistance and obesity. Obesity (Silver Spring) (2006) 14 Suppl 5:254S–58S.  10.1038/oby.2006.319 PubMed DOI

Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology (2010) 52:1836–46.  10.1002/hep.24001 PubMed DOI

Tilg H, Adolph TE, Moschen AR. Multiple parallel hits hypothesis in nafld – revisited after a decade. Hepatology (2020).  10.1002/hep.31518 PubMed DOI PMC

Procaccini C, Galgani M, De Rosa V, Carbone F, La Rocca C, Ranucci G, et al. Leptin: The prototypic adipocytokine and its role in nafld. Curr Pharm Des (2010) 16:1902–12.  10.2174/138161210791208884 PubMed DOI

Chandrashekaran V, Das S, Seth RK, Dattaroy D, Alhasson F, Michelotti G, et al. Purinergic receptor x7 mediates leptin induced glut4 function in stellate cells in nonalcoholic steatohepatitis. Biochim Biophys Acta (2016) 1862:32–45.  10.1016/j.bbadis.2015.10.009 PubMed DOI PMC

Polyzos SA, Kountouras J, Mantzoros CS. Leptin in nonalcoholic fatty liver disease: A narrative review. Metabolism (2015) 64:60–78.  10.1016/j.metabol.2014.10.012 PubMed DOI

Unger RH, Zhou YT, Orci L. Regulation of fatty acid homeostasis in cells: Novel role of leptin. Proc Natl Acad Sci U S A (1999) 96:2327–32.  10.1073/pnas.96.5.2327 PubMed DOI PMC

Moon HS, Dalamaga M, Kim SY, Polyzos SA, Hamnvik OP, Magkos F, et al. Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocr Rev (2013) 34:377–412.  10.1210/er.2012-1053 PubMed DOI PMC

Rodriguez A, Moreno NR, Balaguer I, Mendez-Gimenez L, Becerril S, Catalan V, et al. Leptin administration restores the altered adipose and hepatic expression of aquaglyceroporins improving the non-alcoholic fatty liver of ob/ob mice. Sci Rep (2015) 5:12067.  10.1038/srep12067 PubMed DOI PMC

Cohen SM, Werrmann JG, Tota MR. 13c nmr study of the effects of leptin treatment on kinetics of hepatic intermediary metabolism. Proc Natl Acad Sci (1998) 95:7385–90.  10.1073/pnas.95.13.7385 PubMed DOI PMC

Lee Y, Yu X, Gonzales F, Mangelsdorf DJ, Wang M-Y, Richardson C, et al. Pparα is necessary for the lipopenic action of hyperleptinemia on white adipose and liver tissue. Proc Natl Acad Sci (2002) 99:11848–53.  10.1073/pnas.182420899 PubMed DOI PMC

Ikejima K, Okumura K, Kon K, Takei Y, Sato N. Role of adipocytokines in hepatic fibrogenesis. J Gastroenterol Hepatol (2007) 22:S87–92.  10.1111/j.1440-1746.2007.04961.x PubMed DOI

Imajo K, Fujita K, Yoneda M, Nozaki Y, Ogawa Y, Shinohara Y, et al. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab (2012) 16:44–54.  10.1016/j.cmet.2012.05.012 PubMed DOI

Saxena NK, Ikeda K, Rockey DC, Friedman SL, Anania FA. Leptin in hepatic fibrosis: Evidence for increased collagen production in stellate cells and lean littermates of ob/ob mice. Hepatology (2002) 35:762–71.  10.1053/jhep.2002.32029 PubMed DOI PMC

Herrmann C, Goke R, Richter G, Fehmann HC, Arnold R, Goke B. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion (1995) 56:117–26.  10.1159/000201231 PubMed DOI

Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: A physiological incretin in man. Lancet (1987) 2:1300–4.  10.1016/s0140-6736(87)91194-9 PubMed DOI

Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest (1998) 101:515–20.  10.1172/JCI990 PubMed DOI

Stoffers DA, Kieffer TJ, Hussain MA, Drucker DJ, Bonner-Weir S, Habener JF, et al. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein idx-1 and increase islet size in mouse pancreas. Diabetes (2000) 49:741–8.  10.2337/diabetes.49.5.741 PubMed DOI

Bullock BP, Heller RS, Habener JF. Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology (1996) 137:2968–78.  10.1210/endo.137.7.8770921 PubMed DOI

Hällbrink M, Holmqvist T, Olsson M, Östenson C-G, Efendic S, Langel Ü. Different domains in the third intracellular loop of the glp-1 receptor are responsible for gαs and gαi/gαo activation. Biochim Biophys Acta (BBA) - Protein Struct Molecular Enzymol (2001) 1546:79–86.  10.1016/S0167-4838(00)00270-3 PubMed DOI

Baggio LL, Drucker DJ. Biology of incretins: Glp-1 and gip. Gastroenterology (2007) 132:2131–57.  10.1053/j.gastro.2007.03.054 PubMed DOI

Buteau J. Glp-1 receptor signaling: Effects on pancreatic beta-cell proliferation and survival. Diabetes Metab (2008) 34 Suppl 2:S73–7.  10.1016/S1262-3636(08)73398-6 PubMed DOI

Graaf C, Donnelly D, Wootten D, Lau J, Sexton PM, Miller LJ, et al. Glucagon-like peptide-1 and its class b g protein-coupled receptors: A long march to therapeutic successes. Pharmacol Rev (2016) 68:954–1013.  10.1124/pr.115.011395 PubMed DOI PMC

Ben-Shlomo S, Zvibel I, Shnell M, Shlomai A, Chepurko E, Halpern Z, et al. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of amp-activated protein kinase. J Hepatol (2011) 54:1214–23.  10.1016/j.jhep.2010.09.032 PubMed DOI

Bifari F, Manfrini R, Dei Cas M, Berra C, Siano M, Zuin M, et al. Multiple target tissue effects of glp-1 analogues on non-alcoholic fatty liver disease (nafld) and non-alcoholic steatohepatitis (nash). Pharmacol Res (2018) 137:219–29.  10.1016/j.phrs.2018.09.025 PubMed DOI

Lee J, Hong SW, Rhee EJ, Lee WY. Glp-1 receptor agonist and non-alcoholic fatty liver disease. Diabetes Metab J (2012) 36:262–7.  10.4093/dmj.2012.36.4.262 PubMed DOI PMC

Rui L. Energy metabolism in the liver. Compr Physiol (2014) 4:177–97.  10.1002/cphy.c130024 PubMed DOI PMC

Lee YS, Jun HS. Anti-inflammatory effects of glp-1-based therapies beyond glucose control. Mediators Inflammation (2016) 2016:3094642.  10.1155/2016/3094642 PubMed DOI PMC

Seghieri M, Christensen AS, Andersen A, Solini A, Knop FK, Vilsboll T. Future perspectives on glp-1 receptor agonists and glp-1/glucagon receptor co-agonists in the treatment of nafld. Front Endocrinol (Lausanne) (2018) 9:649.  10.3389/fendo.2018.00649 PubMed DOI PMC

Ding X, Saxena NK, Lin S, Gupta NA, Anania FA. Exendin-4, a glucagon-like protein-1 (glp-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology (2006) 43:173–81.  10.1002/hep.21006 PubMed DOI PMC

Kawakubo M, Tanaka M, Ochi K, Watanabe A, Saka-Tanaka M, Kanamori Y, et al. Dipeptidyl peptidase-4 inhibition prevents nonalcoholic steatohepatitis-associated liver fibrosis and tumor development in mice independently of its anti-diabetic effects. Sci Rep (2020) 10:983.  10.1038/s41598-020-57935-6 PubMed DOI PMC

Patel V, Joharapurkar A, Kshirsagar S, Sutariya B, Patel M, Patel H, et al. Coagonist of glp-1 and glucagon receptor ameliorates development of non-alcoholic fatty liver disease. Cardiovasc Hematol Agents Med Chem (2018) 16:35–43.  10.2174/1871525716666180118152158 PubMed DOI

Rahman K, Liu Y, Kumar P, Smith T, Thorn NE, Farris AB, et al. C/ebp homologous protein modulates liraglutide-mediated attenuation of non-alcoholic steatohepatitis. Lab Invest (2016) 96:895–908.  10.1038/labinvest.2016.61 PubMed DOI PMC

Zhu W, Feng PP, He K, Li SW, Gong JP. Liraglutide protects non-alcoholic fatty liver disease via inhibiting nlrp3 inflammasome activation in a mouse model induced by high-fat diet. Biochem Biophys Res Commun (2018) 505:523–29.  10.1016/j.bbrc.2018.09.134 PubMed DOI

Petit JM, Verges B. Glp-1 receptor agonists in nafld. Diabetes Metab (2017) 43 Suppl 1:2S28–33.  10.1016/S1262-3636(17)30070-8 PubMed DOI

Choi SH, Leem J, Park S, Lee CK, Park KG, Lee IK. Gemigliptin ameliorates western-diet-induced metabolic syndrome in mice. Can J Physiol Pharmacol (2017) 95:129–39.  10.1139/cjpp-2016-0026 PubMed DOI

Insel PA, Murray F, Yokoyama U, Romano S, Yun H, Brown L, et al. Camp and epac in the regulation of tissue fibrosis. Br J Pharmacol (2012) 166:447–56.  10.1111/j.1476-5381.2012.01847.x PubMed DOI PMC

Wahlang B, McClain C, Barve S, Gobejishvili L. Role of camp and phosphodiesterase signaling in liver health and disease. Cell Signal (2018) 49:105–15.  10.1016/j.cellsig.2018.06.005 PubMed DOI PMC

Yamamoto T, Nakade Y, Yamauchi T, Kobayashi Y, Ishii N, Ohashi T, et al. Glucagon-like peptide-1 analogue prevents nonalcoholic steatohepatitis in non-obese mice. World J Gastroenterol (2016) 22:2512–23.  10.3748/wjg.v22.i8.2512 PubMed DOI PMC

Mells JE, Fu PP, Sharma S, Olson D, Cheng L, Handy JA, et al. Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in c57bl/6j mice fed a western diet. Am J Physiol Gastrointest Liver Physiol (2012) 302:G225–35.  10.1152/ajpgi.00274.2011 PubMed DOI PMC

Moreira GV, Azevedo FF, Ribeiro LM, Santos A, Guadagnini D, Gama P, et al. Liraglutide modulates gut microbiota and reduces nafld in obese mice. J Nutr Biochem (2018) 62:143–54.  10.1016/j.jnutbio.2018.07.009 PubMed DOI

Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes (2009) 58:2258–66.  10.2337/db09-0278 PubMed DOI PMC

Kannt A, Madsen AN, Kammermeier C, Elvert R, Klöckener T, Bossart M, et al. Incretin combination therapy for the treatment of non-alcoholic steatohepatitis. Diabetes Obesity Metab (2020).  10.1111/dom.14035 PubMed DOI

Patel CA, Acharya SR. Energy homeostasis and obesity: The therapeutic role of anorexigenic and orexigenic peptide. Int J Pept Res Ther (2018) 25:919–32.  10.1007/s10989-018-9740-7 DOI

Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans**this work was supported in part by grants-in-aid from the ministry of education, science, sports, and culture, japan, and the ministry of health and welfare, japan (to m.N.). Endocrinology (2000) 141:4255–61.  10.1210/endo.141.11.7757 PubMed DOI

Muller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J, et al. Ghrelin. Mol Metab (2015) 4:437–60.  10.1016/j.molmet.2015.03.005 PubMed DOI PMC

Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature (2000) 407:908–13.  10.1038/35038090 PubMed DOI

Sato T, Nakamura Y, Shiimura Y, Ohgusu H, Kangawa K, Kojima M. Structure, regulation and function of ghrelin. J Biochem (2012) 151:119–28.  10.1093/jb/mvr134 PubMed DOI

Maletinska L, Pychova M, Holubova M, Blechova M, Demianova Z, Elbert T, et al. Characterization of new stable ghrelin analogs with prolonged orexigenic potency. J Pharmacol Exp Ther (2012) 340:781–6.  10.1124/jpet.111.185371 PubMed DOI

Sato T, Ida T, Nakamura Y, Shiimura Y, Kangawa K, Kojima M. Physiological roles of ghrelin on obesity. Obes Res Clin Pract (2014) 8:e405–13.  10.1016/j.orcp.2013.10.002 PubMed DOI

Quinones M, Ferno J, Al-Massadi O. Ghrelin and liver disease. Rev Endocr Metab Disord (2020) 21:45–56.  10.1007/s11154-019-09528-6 PubMed DOI

Sangiao-Alvarellos S, Vazquez MJ, Varela L, Nogueiras R, Saha AK, Cordido F, et al. Central ghrelin regulates peripheral lipid metabolism in a growth hormone-independent fashion. Endocrinology (2009) 150:4562–74.  10.1210/en.2009-0482 PubMed DOI PMC

Li Z, Xu G, Qin Y, Zhang C, Tang H, Yin Y, et al. Ghrelin promotes hepatic lipogenesis by activation of mtor-ppargamma signaling pathway. Proc Natl Acad Sci U S A (2014) 111:13163–8.  10.1073/pnas.1411571111 PubMed DOI PMC

Kola B, Hubina E, Tucci SA, Kirkham TC, Garcia EA, Mitchell SE, et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via amp-activated protein kinase. J Biol Chem (2005) 280:25196–201.  10.1074/jbc.C500175200 PubMed DOI

Porteiro B, Diaz-Ruiz A, Martinez G, Senra A, Vidal A, Serrano M, et al. Ghrelin requires p53 to stimulate lipid storage in fat and liver. Endocrinology (2013) 154:3671–9.  10.1210/en.2013-1176 PubMed DOI

Waseem T, Duxbury M, Ito H, Ashley SW, Robinson MK. Exogenous ghrelin modulates release of pro-inflammatory and anti-inflammatory cytokines in lps-stimulated macrophages through distinct signaling pathways. Surgery (2008) 143:334–42.  10.1016/j.surg.2007.09.039 PubMed DOI PMC

Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R, et al. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and t cells. J Clin Invest (2004) 114:57–66.  10.1172/JCI21134 PubMed DOI PMC

Kim MS, Yoon CY, Jang PG, Park YJ, Shin CS, Park HS, et al. The mitogenic and antiapoptotic actions of ghrelin in 3t3-l1 adipocytes. Mol Endocrinol (2004) 18:2291–301.  10.1210/me.2003-0459 PubMed DOI

Nanzer AM, Khalaf S, Mozid AM, Fowkes RC, Patel MV, Burrin JM, et al. Ghrelin exerts a proliferative effect on a rat pituitary somatotroph cell line via the mitogen-activated protein kinase pathway. Eur J Endocrinol (2004) 151:233–40.  10.1530/eje.0.1510233 PubMed DOI

Nagoya T, Kamimura K, Inoue R, Ko M, Owaki T, Niwa Y, et al. Ghrelin-insulin-like growth factor-1 axis is activated via autonomic neural circuits in the non-alcoholic fatty liver disease. Neurogastroenterol Motil (2020) 32:e13799.  10.1111/nmo.13799 PubMed DOI

Sajjad A, Mottershead M, Syn WK, Jones R, Smith S, Nwokolo CU. Ciprofloxacin suppresses bacterial overgrowth, increases fasting insulin but does not correct low acylated ghrelin concentration in non-alcoholic steatohepatitis. Aliment Pharmacol Ther (2005) 22:291–9.  10.1111/j.1365-2036.2005.02562.x PubMed DOI

Yalniz M, Bahcecioglu IH, Ataseven H, Ustundag B, Ilhan F, Poyrazoglu OK, et al. Serum adipokine and ghrelin levels in nonalcoholic steatohepatitis. Mediators Inflammation (2006) 2006:34295.  10.1155/MI/2006/34295 PubMed DOI PMC

Okamatsu Y, Matsuda K, Hiramoto I, Tani H, Kimura K, Yada Y, et al. Ghrelin and leptin modulate immunity and liver function in overweight children. Pediatr Int (2009) 51:9–13.  10.1111/j.1442-200X.2008.02647.x PubMed DOI

Machado MV, Coutinho J, Carepa F, Costa A, Proenca H, Cortez-Pinto H. How adiponectin, leptin, and ghrelin orchestrate together and correlate with the severity of nonalcoholic fatty liver disease. Eur J Gastroenterol Hepatol (2012) 24:1166–72.  10.1097/MEG.0b013e32835609b0 PubMed DOI

Tschop M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes (2001) 50:707–9.  10.2337/diabetes.50.4.707 PubMed DOI

Cappiello V, Ronchi C, Morpurgo PS, Epaminonda P, Arosio M, Beck-Peccoz P, et al. Circulating ghrelin levels in basal conditions and during glucose tolerance test in acromegalic patients. Eur J Endocrinol (2002) 147:189–94.  10.1530/eje.0.1470189 PubMed DOI

Pagotto U, Gambineri A, Pelusi C, Genghini S, Cacciari M, Otto B, et al. Testosterone replacement therapy restores normal ghrelin in hypogonadal men. J Clin Endocrinol Metab (2003) 88:4139–43.  10.1210/jc.2003-030554 PubMed DOI

Pagotto U, Gambineri A, Vicennati V, Heiman ML, Tschop M, Pasquali R. Plasma ghrelin, obesity, and the polycystic ovary syndrome: Correlation with insulin resistance and androgen levels. J Clin Endocrinol Metab (2002) 87:5625–9.  10.1210/jc.2002-020776 PubMed DOI

Vestergaard ET, Jessen N, Moller N, Jorgensen JO. Acyl ghrelin induces insulin resistance independently of gh, cortisol, and free fatty acids. Sci Rep (2017) 7:42706.  10.1038/srep42706 PubMed DOI PMC

Estep M, Abawi M, Jarrar M, Wang L, Stepanova M, Elariny H, et al. Association of obestatin, ghrelin, and inflammatory cytokines in obese patients with non-alcoholic fatty liver disease. Obes Surg (2011) 21:1750–7.  10.1007/s11695-011-0475-1 PubMed DOI

Li Y, Hai J, Li L, Chen X, Peng H, Cao M, et al. Administration of ghrelin improves inflammation, oxidative stress, and apoptosis during and after non-alcoholic fatty liver disease development. Endocrine (2013) 43:376–86.  10.1007/s12020-012-9761-5 PubMed DOI

Moreno M, Chaves JF, Sancho-Bru P, Ramalho F, Ramalho LN, Mansego ML, et al. Ghrelin attenuates hepatocellular injury and liver fibrogenesis in rodents and influences fibrosis progression in humans. Hepatology (2010) 51:974–85.  10.1002/hep.23421 PubMed DOI

Chang L, Ren Y, Liu X, Li WG, Yang J, Geng B, et al. Protective effects of ghrelin on ischemia/reperfusion injury in the isolated rat heart. J Cardiovasc Pharmacol (2004) 43:165–70.  10.1097/00005344-200402000-00001 PubMed DOI

Gonzalez-Rey E, Chorny A, Delgado M. Therapeutic action of ghrelin in a mouse model of colitis. Gastroenterology (2006) 130:1707–20.  10.1053/j.gastro.2006.01.041 PubMed DOI

Mao Y, Zhang S, Yu F, Li H, Guo C, Fan X. Ghrelin attenuates liver fibrosis through regulation of tgf-beta1 expression and autophagy. Int J Mol Sci (2015) 16:21911–30.  10.3390/ijms160921911 PubMed DOI PMC

Sumida Y, Yoneda M. Current and future pharmacological therapies for nafld/nash. J Gastroenterol (2018) 53:362–76.  10.1007/s00535-017-1415-1 PubMed DOI PMC

Yoon IC, Eun JR. Pharmacologic therapy for nonalcoholic steatohepatitis focusing on pathophysiology. Yeungnam Univ J Med (2019) 36:67–77.  10.12701/yujm.2019.00171 PubMed DOI PMC

Kothari S, Dhami-Shah H, Shah SR. Antidiabetic drugs and statins in nonalcoholic fatty liver disease. J Clin Exp Hepatol (2019) 9:723–30.  10.1016/j.jceh.2019.06.003 PubMed DOI PMC

Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the american association for the study of liver diseases. Hepatology (2018) 67:328–57.  10.1002/hep.29367 PubMed DOI

Belfort R, Harrison SA, Brown K, Darland C, Finch J, Hardies J, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med (2006) 355:2297–307.  10.1056/NEJMoa060326 PubMed DOI

Armstrong MJ, Gaunt P, Aithal GP, Barton D, Hull D, Parker R, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (lean): A multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet (2016) 387:679–90.  10.1016/S0140-6736(15)00803-X PubMed DOI

Joy TR, McKenzie CA, Tirona RG, Summers K, Seney S, Chakrabarti S, et al. Sitagliptin in patients with non-alcoholic steatohepatitis: A randomized, placebo-controlled trial. World J Gastroenterol (2017) 23:141–50.  10.3748/wjg.v23.i1.141 PubMed DOI PMC

Cui J, Philo L, Nguyen P, Hofflich H, Hernandez C, Bettencourt R, et al. Sitagliptin vs. Placebo for non-alcoholic fatty liver disease: A randomized controlled trial. J Hepatol (2016) 65:369–76.  10.1016/j.jhep.2016.04.021 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...