Metabolic Dysfunction-Associated Steatotic Liver Disease Is Accompanied by Increased Activities of Superoxide Dismutase, Catalase, and Carbonyl Reductase 1 and Levels of miR-200b-3p in Mouse Models

. 2024 Nov 09 ; 13 (11) : . [epub] 20241109

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39594513

Grantová podpora
GAUK 240121 Charles University
SVV 260 664 Charles University
LX22NP05104 Ministry of Education Youth and Sports

Metabolic dysfunction-associated steatotic liver disease (MASLD), one of the leading causes of chronic liver disorders, is characterized by hepatic lipid accumulation. MASLD causes alterations in the antioxidant defense system, lipid, and drug metabolism, resulting in impaired antioxidant status, hepatic metabolic processes, and clearance of therapeutic drugs, respectively. In the MASLD pathogenesis, dysregulated epigenetic mechanisms (e.g., histone modifications, DNA methylation, microRNAs) play a substantial role. In this study, the development of MASLD was investigated in mice fed a high-fat, high-fructose, and high-cholesterol (FFC) diet from 2 months of age, mice treated neonatally with monosodium glutamate (MSG) on a standard diet (STD), and mice treated with MSG on an FFC diet at 7 months of age and compared to control mice (C) on STD. Changes in liver histology, detoxification enzymes, epigenetic regulation, and genes involved in lipid metabolism were characterized and compared. The strong liver steatosis was observed in MSG STD, C FFC, and MSG FFC, with significant fibrosis in the latter one. Moreover, substantial alterations in hepatic lipid metabolism, epigenetic regulatory factors, and expressions and activities of various detoxification enzymes (namely superoxide dismutase, catalase, and carbonyl reductase 1) were observed in MASLD mice compared to control mice. miR-200b-3p, highly significantly upregulated in both FFC groups, could be considered as a potential diagnostic marker of MASLD. The MSG mice fed FFC seem to be a suitable model of MASLD characterized by both liver steatosis and fibrosis and substantial metabolic dysregulation.

Zobrazit více v PubMed

Yuan X., Sun Y., Cheng Q., Hu K., Ye J., Zhao Y., Wu J., Shao X., Fang L., Ding Y., et al. Proteomic analysis to identify differentially expressed proteins between subjects with metabolic healthy obesity and non-alcoholic fatty liver disease. J. Proteom. 2020;221:103683. doi: 10.1016/j.jprot.2020.103683. PubMed DOI

Friedman S.L., Neuschwander-Tetri B.A., Rinella M., Sanyal A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018;24:908–922. doi: 10.1038/s41591-018-0104-9. PubMed DOI PMC

Korinkova L., Prazienkova V., Cerna L., Karnosova A., Zelezna B., Kunes J., Maletinska L. Pathophysiology of NAFLD and NASH in Experimental Models: The Role of Food Intake Regulating Peptides. Front. Endocrinol. 2020;11:597583. doi: 10.3389/fendo.2020.597583. PubMed DOI PMC

Alalwani J., Eljazzar S., Basil M., Tayyem R. The impact of health status, diet and lifestyle on non-alcoholic fatty liver disease: Narrative review. Clin. Obes. 2022;12:e12525. doi: 10.1111/cob.12525. PubMed DOI

Hansen H.H., Feigh M., Veidal S.S., Rigbolt K.T., Vrang N., Fosgerau K. Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov. Today. 2017;22:1707–1718. doi: 10.1016/j.drudis.2017.06.007. PubMed DOI

Kristiansen M.N., Veidal S.S., Rigbolt K.T., Tolbol K.S., Roth J.D., Jelsing J., Vrang N., Feigh M. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy. World J. Hepatol. 2016;8:673–684. doi: 10.4254/wjh.v8.i16.673. PubMed DOI PMC

Hansen H.H., Egidius H.H., Oro D., Evers S.S., Heeboll S., Eriksen P.L., Thomsen K.L., Bengtsson A., Veidal S.S., Feigh M., et al. Human translatability of the GAN diet-induced obese mouse model of non-alcoholic steatohepatitis. BMC Gastroenterol. 2020;20:210. doi: 10.1186/s12876-020-01356-2. PubMed DOI PMC

Radhakrishnan S., Yeung S.F., Ke J.Y., Antunes M.M., Pellizzon M.A. Considerations When Choosing High-Fat, High-Fructose, and High-Cholesterol Diets to Induce Experimental Nonalcoholic Fatty Liver Disease in Laboratory Animal Models. Curr. Dev. Nutr. 2021;5:nzab138. doi: 10.1093/cdn/nzab138. PubMed DOI PMC

Olney J.W. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science. 1969;164:719–721. doi: 10.1126/science.164.3880.719. PubMed DOI

Reynolds C.M., Perry J.K., Vickers M.H. Manipulation of the Growth Hormone-Insulin-Like Growth Factor (GH-IGF) Axis: A Treatment Strategy to Reverse the Effects of Early Life Developmental Programming. Int. J. Mol. Sci. 2017;18:1729. doi: 10.3390/ijms18081729. PubMed DOI PMC

Djazayery A., Miller D.S., Stock M.J. Energy balances in obese mice. Nutr. Metab. 1979;23:357–367. doi: 10.1159/000176281. PubMed DOI

Remke H., Wilsdorf A., Muller F. Development of hypothalamic obesity in growing rats. Exp. Pathol. 1988;33:223–232. doi: 10.1016/S0232-1513(88)80076-8. PubMed DOI

Maletinska L., Toma R.S., Pirnik Z., Kiss A., Slaninova J., Haluzik M., Zelezna B. Effect of cholecystokinin on feeding is attenuated in monosodium glutamate obese mice. Regul. Pept. 2006;136:58–63. doi: 10.1016/j.regpep.2006.04.020. PubMed DOI

Coelho C.F.F., Franca L.M., Nascimento J.R., Dos Santos A.M., Azevedo-Santos A.P.S., Nascimento F.R.F., Paes A.M.A. Early onset and progression of non-alcoholic fatty liver disease in young monosodium l-glutamate-induced obese mice. J. Dev. Orig. Health Dis. 2019;10:188–195. doi: 10.1017/S2040174418000284. PubMed DOI

Eslam M., Sanyal A.J., George J. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158:P1999-2014.E1. doi: 10.1053/j.gastro.2019.11.312. PubMed DOI

Puri P., Baillie R.A., Wiest M.M., Mirshahi F., Choudhury J., Cheung O., Sargeant C., Contos M.J., Sanyal A.J. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46:1081–1090. doi: 10.1002/hep.21763. PubMed DOI

Ipsen D.H., Lykkesfeldt J., Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 2018;75:3313–3327. doi: 10.1007/s00018-018-2860-6. PubMed DOI PMC

Carotti S., Aquilano K., Valentini F., Ruggiero S., Alletto F., Morini S., Picardi A., Antonelli-Incalzi R., Lettieri-Barbato D., Vespasiani-Gentilucci U. An overview of deregulated lipid metabolism in nonalcoholic fatty liver disease with special focus on lysosomal acid lipase. Am. J. Physiol. Gastrointest. Liver Physiol. 2020;319:G469–G480. doi: 10.1152/ajpgi.00049.2020. PubMed DOI

Arroyave-Ospina J.C., Wu Z., Geng Y., Moshage H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants. 2021;10:174. doi: 10.3390/antiox10020174. PubMed DOI PMC

Tarantino G., Citro V., Capone D. Nonalcoholic Fatty Liver Disease: A Challenge from Mechanisms to Therapy. J. Clin. Med. 2019;9:15. doi: 10.3390/jcm9010015. PubMed DOI PMC

Świderska M., Maciejczyk M., Zalewska A., Pogorzelska J., Flisiak R., Chabowski A. Oxidative stress biomarkers in the serum and plasma of patients with non-alcoholic fatty liver disease (NAFLD). Can plasma AGE be a marker of NAFLD? Oxidative stress biomarkers in NAFLD patients. Free Radic. Res. 2019;53:841–850. doi: 10.1080/10715762.2019.1635691. PubMed DOI

Kumar A., Sharma A., Duseja A., Das A., Dhiman R.K., Chawla Y.K., Kohli K.K., Bhansali A. Patients with Nonalcoholic Fatty Liver Disease (NAFLD) have Higher Oxidative Stress in Comparison to Chronic Viral Hepatitis. J. Clin. Exp. Hepatol. 2013;3:12–18. doi: 10.1016/j.jceh.2012.10.009. PubMed DOI PMC

Hardwick R.N., Fisher C.D., Canet M.J., Lake A.D., Cherrington N.J. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab. Dispos. 2010;38:2293–2301. doi: 10.1124/dmd.110.035006. PubMed DOI PMC

Woolsey S.J., Mansell S.E., Kim R.B., Tirona R.G., Beaton M.D. CYP3A Activity and Expression in Nonalcoholic Fatty Liver Disease. Drug Metab. Dispos. 2015;43:1484–1490. doi: 10.1124/dmd.115.065979. PubMed DOI

Jamwal R., Barlock B.J. Nonalcoholic Fatty Liver Disease (NAFLD) and Hepatic Cytochrome P450 (CYP) Enzymes. Pharmaceuticals. 2020;13:222. doi: 10.3390/ph13090222. PubMed DOI PMC

Wang C., Tao Q., Wang X., Wang X., Zhang X. Impact of high-fat diet on liver genes expression profiles in mice model of nonalcoholic fatty liver disease. Environ. Toxicol. Pharmacol. 2016;45:52–62. doi: 10.1016/j.etap.2016.05.014. PubMed DOI

Tanner N., Kubik L., Luckert C., Thomas M., Hofmann U., Zanger U.M., Böhmert L., Lampen A., Braeuning A. Regulation of Drug Metabolism by the Interplay of Inflammatory Signaling, Steatosis, and Xeno-Sensing Receptors in HepaRG Cells. Drug Metab. Dispos. 2018;46:326–335. doi: 10.1124/dmd.117.078675. PubMed DOI

Zhang L., Xu P., Cheng Y., Wang P., Ma X., Liu M., Wang X., Xu F. Diet-induced obese alters the expression and function of hepatic drug-metabolizing enzymes and transporters in rats. Biochem. Pharmacol. 2019;164:368–376. doi: 10.1016/j.bcp.2019.05.002. PubMed DOI

Buechler C., Weiss T.S. Does hepatic steatosis affect drug metabolizing enzymes in the liver? Curr. Drug Metab. 2011;12:24–34. doi: 10.2174/138920011794520035. PubMed DOI

Jonas W., Schurmann A. Genetic and epigenetic factors determining NAFLD risk. Mol. Metab. 2021;50:101111. doi: 10.1016/j.molmet.2020.101111. PubMed DOI PMC

Herranz J.M., Lopez-Pascual A., Claveria-Cabello A., Uriarte I., Latasa M.U., Irigaray-Miramon A., Adan-Villaescusa E., Castello-Uribe B., Sangro B., Arechederra M., et al. Comprehensive analysis of epigenetic and epitranscriptomic genes’ expression in human NAFLD. J. Physiol. Biochem. 2023;79:901–924. doi: 10.1007/s13105-023-00976-y. PubMed DOI PMC

Lopez-Sanchez G.N., Dominguez-Perez M., Uribe M., Chavez-Tapia N.C., Nuno-Lambarri N. Non-alcoholic fatty liver disease and microRNAs expression, how it affects the development and progression of the disease. Ann. Hepatol. 2021;21:100212. doi: 10.1016/j.aohep.2020.04.012. PubMed DOI

Liu C.H., Ampuero J., Gil-Gómez A., Montero-Vallejo R., Rojas Á., Muñoz-Hernández R., Gallego-Durán R., Romero-Gómez M. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Hepatol. 2018;69:1335–1348. doi: 10.1016/j.jhep.2018.08.008. PubMed DOI

Tsoneva D.K., Ivanov M.N., Vinciguerra M. Liquid Liver Biopsy for Disease Diagnosis and Prognosis. J. Clin. Transl. Hepatol. 2023;11:1520–1541. doi: 10.14218/JCTH.2023.00040. PubMed DOI PMC

Dongiovanni P., Meroni M., Longo M., Fargion S., Fracanzani A.L. miRNA Signature in NAFLD: A Turning Point for a Non-Invasive Diagnosis. Int. J. Mol. Sci. 2018;19:3966. doi: 10.3390/ijms19123966. PubMed DOI PMC

Zhu Y., Tan J.K., Wong S.K., Goon J.A. Therapeutic Effects of microRNAs on Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023;24:9168. doi: 10.3390/ijms24119168. PubMed DOI PMC

Ponugoti B., Kim D.H., Xiao Z., Smith Z., Miao J., Zang M., Wu S.Y., Chiang C.M., Veenstra T.D., Kemper J.K. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 2010;285:33959–33970. doi: 10.1074/jbc.M110.122978. PubMed DOI PMC

Pogribny I.P., Tryndyak V.P., Bagnyukova T.V., Melnyk S., Montgomery B., Ross S.A., Latendresse J.R., Rusyn I., Beland F.A. Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet. J. Hepatol. 2009;51:176–186. doi: 10.1016/j.jhep.2009.03.021. PubMed DOI PMC

Murphy S.K., Yang H., Moylan C.A., Pang H., Dellinger A., Abdelmalek M.F., Garrett M.E., Ashley-Koch A., Suzuki A., Tillmann H.L., et al. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology. 2013;145:1076–1087. doi: 10.1053/j.gastro.2013.07.047. PubMed DOI PMC

Bernardis L.L., Patterson B.D. Correlation between ‘Lee index’ and carcass fat content in weanling and adult female rats with hypothalamic lesions. J. Endocrinol. 1968;40:527–528. doi: 10.1677/joe.0.0400527. PubMed DOI

Pražienková V., Funda J., Pirník Z., Karnošová A., Hrubá L., Kořínková L., Neprašová B., Janovská P., Benzce M., Kadlecová M., et al. GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene. 2021;774:145427. doi: 10.1016/j.gene.2021.145427. PubMed DOI

Korinkova L., Holubova M., Neprasova B., Hruba L., Prazienkova V., Bencze M., Haluzik M., Kunes J., Maletinska L., Zelezna B. Synergistic effect of leptin and lipidized PrRP on metabolic pathways in ob/ob mice. J. Mol. Endocrinol. 2020;64:77–90. doi: 10.1530/JME-19-0188. PubMed DOI

Chen C., Ridzon D.A., Broomer A.J., Zhou Z., Lee D.H., Nguyen J.T., Barbisin M., Xu N.L., Mahuvakar V.R., Andersen M.R., et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33:e179. doi: 10.1093/nar/gni178. PubMed DOI PMC

Matoušková P., Bártíková H., Boušová I., Hanušová V., Szotáková B., Skálová L. Reference Genes for Real-Time PCR Quantification of Messenger RNAs and MicroRNAs in Mouse Model of Obesity. PLoS ONE. 2014;9:e86033. doi: 10.1371/journal.pone.0086033. PubMed DOI PMC

Hanousková B., Vávrová G., Ambrož M., Boušová I., Karlsen T.A., Skálová L., Matoušková P. MicroRNAs mediated regulation of glutathione peroxidase 7 expression and its changes during adipogenesis. Biochim. Et Biophys. Acta (BBA)-Gene Regul. Mech. 2021;1864:194734. doi: 10.1016/j.bbagrm.2021.194734. PubMed DOI

Matouskova P., Bartikova H., Bousova I., Levorova L., Szotakova B., Skalova L. Drug-metabolizing and antioxidant enzymes in monosodium L-glutamate obese mice. Drug Metab. Dispos. 2015;43:258–265. doi: 10.1124/dmd.114.061176. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta. 1991;196:143–151. doi: 10.1016/0009-8981(91)90067-M. PubMed DOI

Mannervik B. Measurement of glutathione reductase activity. Curr. Protoc. Toxicol. 2001;7:Unit7.2. doi: 10.1002/0471140856.tx0702s00. PubMed DOI

Handy D.E., Lubos E., Yang Y., Galbraith J.D., Kelly N., Zhang Y.Y., Leopold J.A., Loscalzo J. Glutathione peroxidase-1 regulates mitochondrial function to modulate redox-dependent cellular responses. J. Biol. Chem. 2009;284:11913–11921. doi: 10.1074/jbc.M900392200. PubMed DOI PMC

Habig W.H., Jakoby W.B. Glutathione S-transferases (rat and human) Methods Enzym. 1981;77:218–231. doi: 10.1016/S0076-6879(81)77029-0. PubMed DOI

Kobayashi K., Urashima K., Shimada N., Chiba K. Substrate specificity for rat cytochrome P450 (CYP) isoforms: Screening with cDNA-expressed systems of the rat. Biochem. Pharmacol. 2002;63:889–896. doi: 10.1016/S0006-2952(01)00843-7. PubMed DOI

Maté L., Virkel G., Lifschitz A., Ballent M., Lanusse C. Hepatic and extra-hepatic metabolic pathways involved in flubendazole biotransformation in sheep. Biochem. Pharmacol. 2008;76:773–783. doi: 10.1016/j.bcp.2008.07.002. PubMed DOI

Ohara H., Miyabe Y., Deyashiki Y., Matsuura K., Hara A. Reduction of drug ketones by dihydrodiol dehydrogenases, carbonyl reductase and aldehyde reductase of human liver. Biochem. Pharmacol. 1995;50:221–227. doi: 10.1016/0006-2952(95)00124-I. PubMed DOI

Cullen J.J., Hinkhouse M.M., Grady M., Gaut A.W., Liu J., Zhang Y.P., Weydert C.J., Domann F.E., Oberley L.W. Dicumarol inhibition of NADPH: Quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism. Cancer Res. 2003;63:5513–5520. PubMed

Matyskova R., Maletinska L., Maixnerova J., Pirnik Z., Kiss A., Zelezna B. Comparison of the obesity phenotypes related to monosodium glutamate effect on arcuate nucleus and/or the high fat diet feeding in C57BL/6 and NMRI mice. Physiol. Res. Acad. Sci. Bohemoslov. 2008;57:727–734. PubMed

He K., Zhao L., Daviglus M.L., Dyer A.R., Van Horn L., Garside D., Zhu L., Guo D., Wu Y., Zhou B., et al. Association of monosodium glutamate intake with overweight in Chinese adults: The INTERMAP Study. Obesity. 2008;16:1875–1880. doi: 10.1038/oby.2008.274. PubMed DOI PMC

Pei J., Pan X., Wei G., Hua Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front. Pharmacol. 2023;14:1147414. doi: 10.3389/fphar.2023.1147414. PubMed DOI PMC

Handy D.E., Loscalzo J. The role of glutathione peroxidase-1 in health and disease. Free Radic. Biol. Med. 2022;188:146–161. doi: 10.1016/j.freeradbiomed.2022.06.004. PubMed DOI PMC

Yi Z., Jiang L., Zhao L., Zhou M., Ni Y., Yang Y., Yang H., Yang L., Zhang Q., Kuang Y., et al. Glutathione peroxidase 3 (GPX3) suppresses the growth of melanoma cells through reactive oxygen species (ROS)-dependent stabilization of hypoxia-inducible factor 1-alpha and 2-alpha. J. Cell Biochem. 2019;120:19124–19136. doi: 10.1002/jcb.29240. PubMed DOI

Nirgude S., Choudhary B. Insights into the role of GPX3, a highly efficient plasma antioxidant, in cancer. Biochem. Pharmacol. 2021;184:114365. doi: 10.1016/j.bcp.2020.114365. PubMed DOI

Mehmeti I., Lortz S., Avezov E., Jorns A., Lenzen S. ER-resident antioxidative GPx7 and GPx8 enzyme isoforms protect insulin-secreting INS-1E beta-cells against lipotoxicity by improving the ER antioxidative capacity. Free Radic. Biol. Med. 2017;112:121–130. doi: 10.1016/j.freeradbiomed.2017.07.021. PubMed DOI

Buday K., Conrad M. Emerging roles for non-selenium containing ER-resident glutathione peroxidases in cell signaling and disease. Biol. Chem. 2021;402:271–287. doi: 10.1515/hsz-2020-0286. PubMed DOI

Matoušková P., Hanousková B., Skálová L. MicroRNAs as Potential Regulators of Glutathione Peroxidases Expression and Their Role in Obesity and Related Pathologies. Int. J. Mol. Sci. 2018;19:1199. doi: 10.3390/ijms19041199. PubMed DOI PMC

McGeary S.E., Lin K.S., Shi C.Y., Pham T.M., Bisaria N., Kelley G.M., Bartel D.P. The biochemical basis of microRNA targeting efficacy. Science. 2019;366:aav1741. doi: 10.1126/science.aav1741. PubMed DOI PMC

Agarwal V., Bell G.W., Nam J.W., Bartel D.P. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005. doi: 10.7554/eLife.05005. PubMed DOI PMC

Liu W., Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20:18. doi: 10.1186/s13059-019-1629-z. PubMed DOI PMC

Chen Y., Wang X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48:D127–D131. doi: 10.1093/nar/gkz757. PubMed DOI PMC

Fiorino E., Giudici M., Ferrari A., Mitro N., Caruso D., De Fabiani E., Crestani M. The sirtuin class of histone deacetylases: Regulation and roles in lipid metabolism. IUBMB Life. 2014;66:89–99. doi: 10.1002/iub.1246. PubMed DOI

Solano-Urrusquieta A., Morales-Gonzalez J.A., Castro-Narro G.E., Cerda-Reyes E., Flores-Rangel P.D., Fierros-Oceguera R. NRF-2 and nonalcoholic fatty liver disease. Ann. Hepatol. 2020;19:458–465. doi: 10.1016/j.aohep.2019.11.010. PubMed DOI

Sasaki Y., Shimada T., Iizuka S., Suzuki W., Makihara H., Teraoka R., Tsuneyama K., Hokao R., Aburada M. Effects of bezafibrate in nonalcoholic steatohepatitis model mice with monosodium glutamate-induced metabolic syndrome. Eur. J. Pharmacol. 2011;662:1–8. doi: 10.1016/j.ejphar.2011.04.051. PubMed DOI

Sasaki Y., Suzuki W., Shimada T., Iizuka S., Nakamura S., Nagata M., Fujimoto M., Tsuneyama K., Hokao R., Miyamoto K., et al. Dose dependent development of diabetes mellitus and non-alcoholic steatohepatitis in monosodium glutamate-induced obese mice. Life Sci. 2009;85:490–498. doi: 10.1016/j.lfs.2009.07.017. PubMed DOI

Collison K.S., Maqbool Z.M., Inglis A.L., Makhoul N.J., Saleh S.M., Bakheet R.H., Al-Johi M.A., Al-Rabiah R.K., Zaidi M.Z., Al-Mohanna F.A. Effect of dietary monosodium glutamate on HFCS-induced hepatic steatosis: Expression profiles in the liver and visceral fat. Obesity. 2010;18:1122–1134. doi: 10.1038/oby.2009.502. PubMed DOI

Collison K.S., Maqbool Z., Saleh S.M., Inglis A., Makhoul N.J., Bakheet R., Al-Johi M., Al-Rabiah R., Zaidi M.Z., Al-Mohanna F.A. Effect of dietary monosodium glutamate on trans fat-induced nonalcoholic fatty liver disease. J. Lipid Res. 2009;50:1521–1537. doi: 10.1194/jlr.M800418-JLR200. PubMed DOI PMC

Nakanishi Y., Tsuneyama K., Fujimoto M., Salunga T.L., Nomoto K., An J.L., Takano Y., Iizuka S., Nagata M., Suzuki W., et al. Monosodium glutamate (MSG): A villain and promoter of liver inflammation and dysplasia. J. Autoimmun. 2008;30:42–50. doi: 10.1016/j.jaut.2007.11.016. PubMed DOI

Charlton M., Krishnan A., Viker K., Sanderson S., Cazanave S., McConico A., Masuoko H., Gores G. Fast food diet mouse: Novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;301:G825–G834. doi: 10.1152/ajpgi.00145.2011. PubMed DOI PMC

Hanouskova B., Neprasova B., Skalova L., Maletinska L., Zemanova K., Ambroz M., Matouskova P. High-fructose drinks affect microRNAs expression differently in lean and obese mice. J. Nutr. Biochem. 2019;68:42–50. doi: 10.1016/j.jnutbio.2019.03.001. PubMed DOI

Mungamuri S.K., Sinha S.N., Javvadi Y. Understanding the Alterations in Lipid Metabolism in NAFLD Progression: Current Trends and Future Directions. Crit. Rev. Oncog. 2021;26:35–49. doi: 10.1615/CritRevOncog.2020035839. PubMed DOI

Yamazaki Y., Usui I., Kanatani Y., Matsuya Y., Tsuneyama K., Fujisaka S., Bukhari A., Suzuki H., Senda S., Imanishi S., et al. Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice. Am. J. Physiol. Endocrinol. Metab. 2009;297:E1179–E1186. doi: 10.1152/ajpendo.90997.2008. PubMed DOI

Pelantova H., Bartova S., Anyz J., Holubova M., Zelezna B., Maletinska L., Novak D., Lacinova Z., Sulc M., Haluzik M., et al. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity. Anal. Bioanal. Chem. 2016;408:567–578. doi: 10.1007/s00216-015-9133-0. PubMed DOI

Andres-Blasco I., Blesa S., Vinue A., Gonzalez-Navarro H., Real J.T., Martinez-Hervas S., Carretero J., Ferrandez-Izquierdo A., Chaves F.J., Garcia-Garcia A.B. Srebf2 Locus Overexpression Reduces Body Weight, Total Cholesterol and Glucose Levels in Mice Fed with Two Different Diets. Nutrients. 2020;12:3130. doi: 10.3390/nu12103130. PubMed DOI PMC

Podszun M.C., Frank J. Impact of vitamin E on redox biomarkers in non-alcoholic fatty liver disease. Redox Biol. 2021;42:101937. doi: 10.1016/j.redox.2021.101937. PubMed DOI PMC

Nishida N., Yada N., Hagiwara S., Sakurai T., Kitano M., Kudo M. Unique features associated with hepatic oxidative DNA damage and DNA methylation in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2016;31:1646–1653. doi: 10.1111/jgh.13318. PubMed DOI

Zelber-Sagi S., Ivancovsky-Wajcman D., Fliss-Isakov N., Hahn M., Webb M., Shibolet O., Kariv R., Tirosh O. Serum Malondialdehyde is Associated with Non-Alcoholic Fatty Liver and Related Liver Damage Differentially in Men and Women. Antioxidants. 2020;9:578. doi: 10.3390/antiox9070578. PubMed DOI PMC

Videla L.A., Rodrigo R., Orellana M., Fernandez V., Tapia G., Quiñones L., Varela N., Contreras J., Lazarte R., Csendes A., et al. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin. Sci. 2004;106:261–268. doi: 10.1042/CS20030285. PubMed DOI

Boušová I., Hájek J., Dršata J., Skálová L. Naturally occurring flavonoids as inhibitors of purified cytosolic glutathione S-transferase. Xenobiotica. 2012;42:872–879. doi: 10.3109/00498254.2012.670737. PubMed DOI

Curtis J.M., Grimsrud P.A., Wright W.S., Xu X., Foncea R.E., Graham D.W., Brestoff J.R., Wiczer B.M., Ilkayeva O., Cianflone K., et al. Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction. Diabetes. 2010;59:1132–1142. doi: 10.2337/db09-1105. PubMed DOI PMC

Berhane K., Widersten M., Engstrom A., Kozarich J.W., Mannervik B. Detoxication of base propenals and other alpha, beta-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc. Natl. Acad. Sci. USA. 1994;91:1480–1484. doi: 10.1073/pnas.91.4.1480. PubMed DOI PMC

Kim H.J., Lee Y., Fang S., Kim W., Kim H.J., Kim J.W. GPx7 ameliorates non-alcoholic steatohepatitis by regulating oxidative stress. BMB Rep. 2020;53:317–322. doi: 10.5483/BMBRep.2020.53.6.280. PubMed DOI PMC

Liu Y., Beyer A., Aebersold R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell. 2016;165:535–550. doi: 10.1016/j.cell.2016.03.014. PubMed DOI

Borchi E., Bargelli V., Stillitano F., Giordano C., Sebastiani M., Nassi P.A., d’Amati G., Cerbai E., Nediani C. Enhanced ROS production by NADPH oxidase is correlated to changes in antioxidant enzyme activity in human heart failure. Biochim. Et Biophys. Acta. 2010;1802:331–338. doi: 10.1016/j.bbadis.2009.10.014. PubMed DOI

Rey-Bedon C., Banik P., Gokaltun A., Hofheinz O., Yarmush M.L., Uygun M.K., Usta O.B. CYP450 drug inducibility in NAFLD via an in vitro hepatic model: Understanding drug-drug interactions in the fatty liver. Biomed. Pharmacother. 2022;146:112377. doi: 10.1016/j.biopha.2021.112377. PubMed DOI PMC

Bousova I., Skalova L., Soucek P., Matouskova P. The modulation of carbonyl reductase 1 by polyphenols. Drug Metab. Rev. 2015;47:520–533. doi: 10.3109/03602532.2015.1089885. PubMed DOI

Morgan R.A., Beck K.R., Nixon M., Homer N.Z.M., Crawford A.A., Melchers D., Houtman R., Meijer O.C., Stomby A., Anderson A.J., et al. Carbonyl reductase 1 catalyzes 20beta-reduction of glucocorticoids, modulating receptor activation and metabolic complications of obesity. Sci. Rep. 2017;7:10633. doi: 10.1038/s41598-017-10410-1. PubMed DOI PMC

Rotondo R., Moschini R., Renzone G., Tuccinardi T., Balestri F., Cappiello M., Scaloni A., Mura U., Del-Corso A. Human carbonyl reductase 1 as efficient catalyst for the reduction of glutathionylated aldehydes derived from lipid peroxidation. Free Radic. Biol. Med. 2016;99:323–332. doi: 10.1016/j.freeradbiomed.2016.08.015. PubMed DOI

Bell R.M.B., Villalobos E., Nixon M., Miguelez-Crespo A., Murphy L., Fawkes A., Coutts A., Sharp M.G.F., Koerner M.V., Allan E., et al. Carbonyl reductase 1 amplifies glucocorticoid action in adipose tissue and impairs glucose tolerance in lean mice. Mol. Metab. 2021;48:101225. doi: 10.1016/j.molmet.2021.101225. PubMed DOI PMC

Ross D., Siegel D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol. 2021;41:101950. doi: 10.1016/j.redox.2021.101950. PubMed DOI PMC

Lickteig A.J., Fisher C.D., Augustine L.M., Cherrington N.J. Genes of the antioxidant response undergo upregulation in a rodent model of nonalcoholic steatohepatitis. J. Biochem. Mol. Toxicol. 2007;21:216–220. doi: 10.1002/jbt.20177. PubMed DOI

Chen S., Tu Y., Yuan H., Shi Z., Guo Y., Gong W., Tu S. Regulatory functions of miR-200b-3p in tumor development (Review) Oncol. Rep. 2022;47:96. doi: 10.3892/or.2022.8307. PubMed DOI PMC

Zhu M., Wang Q., Zhou W., Liu T., Yang L., Zheng P., Zhang L., Ji G. Integrated analysis of hepatic mRNA and miRNA profiles identified molecular networks and potential biomarkers of NAFLD. Sci. Rep. 2018;8:7628. doi: 10.1038/s41598-018-25743-8. PubMed DOI PMC

Ye M., Wang S., Sun P., Qie J. Integrated MicroRNA Expression Profile Reveals Dysregulated miR-20a-5p and miR-200a-3p in Liver Fibrosis. Biomed. Res. Int. 2021;2021:9583932. doi: 10.1155/2021/9583932. PubMed DOI PMC

Pogribny I.P., Starlard-Davenport A., Tryndyak V.P., Han T., Ross S.A., Rusyn I., Beland F.A. Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice. Lab. Investig. 2010;90:1437–1446. doi: 10.1038/labinvest.2010.113. PubMed DOI PMC

Wang J.M., Qiu Y., Yang Z., Kim H., Qian Q., Sun Q., Zhang C., Yin L., Fang D., Back S.H., et al. IRE1alpha prevents hepatic steatosis by processing and promoting the degradation of select microRNAs. Sci. Signal. 2018;11:eaao4617. doi: 10.1126/scisignal.aao4617. PubMed DOI PMC

Murakami Y., Toyoda H., Tanaka M., Kuroda M., Harada Y., Matsuda F., Tajima A., Kosaka N., Ochiya T., Shimotohno K. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS ONE. 2011;6:e16081. doi: 10.1371/journal.pone.0016081. PubMed DOI PMC

Fabbri M., Garzon R., Cimmino A., Liu Z., Zanesi N., Callegari E., Liu S., Alder H., Costinean S., Fernandez-Cymering C., et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl. Acad. Sci. USA. 2007;104:15805–15810. doi: 10.1073/pnas.0707628104. PubMed DOI PMC

Fang Z., Dou G., Wang L. MicroRNAs in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int. J. Biol. Sci. 2021;17:1851–1863. doi: 10.7150/ijbs.59588. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...