Metabolic Dysfunction-Associated Steatotic Liver Disease Is Accompanied by Increased Activities of Superoxide Dismutase, Catalase, and Carbonyl Reductase 1 and Levels of miR-200b-3p in Mouse Models
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GAUK 240121
Charles University
SVV 260 664
Charles University
LX22NP05104
Ministry of Education Youth and Sports
PubMed
39594513
PubMed Central
PMC11591148
DOI
10.3390/antiox13111371
PII: antiox13111371
Knihovny.cz E-zdroje
- Klíčová slova
- detoxification enzymes, high fat, fructose, and cholesterol (FFC) diet, metabolic dysfunction-associated steatotic liver disease (MASLD), miRNAs, mice, monosodium glutamate (MSG),
- Publikační typ
- časopisecké články MeSH
Metabolic dysfunction-associated steatotic liver disease (MASLD), one of the leading causes of chronic liver disorders, is characterized by hepatic lipid accumulation. MASLD causes alterations in the antioxidant defense system, lipid, and drug metabolism, resulting in impaired antioxidant status, hepatic metabolic processes, and clearance of therapeutic drugs, respectively. In the MASLD pathogenesis, dysregulated epigenetic mechanisms (e.g., histone modifications, DNA methylation, microRNAs) play a substantial role. In this study, the development of MASLD was investigated in mice fed a high-fat, high-fructose, and high-cholesterol (FFC) diet from 2 months of age, mice treated neonatally with monosodium glutamate (MSG) on a standard diet (STD), and mice treated with MSG on an FFC diet at 7 months of age and compared to control mice (C) on STD. Changes in liver histology, detoxification enzymes, epigenetic regulation, and genes involved in lipid metabolism were characterized and compared. The strong liver steatosis was observed in MSG STD, C FFC, and MSG FFC, with significant fibrosis in the latter one. Moreover, substantial alterations in hepatic lipid metabolism, epigenetic regulatory factors, and expressions and activities of various detoxification enzymes (namely superoxide dismutase, catalase, and carbonyl reductase 1) were observed in MASLD mice compared to control mice. miR-200b-3p, highly significantly upregulated in both FFC groups, could be considered as a potential diagnostic marker of MASLD. The MSG mice fed FFC seem to be a suitable model of MASLD characterized by both liver steatosis and fibrosis and substantial metabolic dysregulation.
Zobrazit více v PubMed
Yuan X., Sun Y., Cheng Q., Hu K., Ye J., Zhao Y., Wu J., Shao X., Fang L., Ding Y., et al. Proteomic analysis to identify differentially expressed proteins between subjects with metabolic healthy obesity and non-alcoholic fatty liver disease. J. Proteom. 2020;221:103683. doi: 10.1016/j.jprot.2020.103683. PubMed DOI
Friedman S.L., Neuschwander-Tetri B.A., Rinella M., Sanyal A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018;24:908–922. doi: 10.1038/s41591-018-0104-9. PubMed DOI PMC
Korinkova L., Prazienkova V., Cerna L., Karnosova A., Zelezna B., Kunes J., Maletinska L. Pathophysiology of NAFLD and NASH in Experimental Models: The Role of Food Intake Regulating Peptides. Front. Endocrinol. 2020;11:597583. doi: 10.3389/fendo.2020.597583. PubMed DOI PMC
Alalwani J., Eljazzar S., Basil M., Tayyem R. The impact of health status, diet and lifestyle on non-alcoholic fatty liver disease: Narrative review. Clin. Obes. 2022;12:e12525. doi: 10.1111/cob.12525. PubMed DOI
Hansen H.H., Feigh M., Veidal S.S., Rigbolt K.T., Vrang N., Fosgerau K. Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov. Today. 2017;22:1707–1718. doi: 10.1016/j.drudis.2017.06.007. PubMed DOI
Kristiansen M.N., Veidal S.S., Rigbolt K.T., Tolbol K.S., Roth J.D., Jelsing J., Vrang N., Feigh M. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy. World J. Hepatol. 2016;8:673–684. doi: 10.4254/wjh.v8.i16.673. PubMed DOI PMC
Hansen H.H., Egidius H.H., Oro D., Evers S.S., Heeboll S., Eriksen P.L., Thomsen K.L., Bengtsson A., Veidal S.S., Feigh M., et al. Human translatability of the GAN diet-induced obese mouse model of non-alcoholic steatohepatitis. BMC Gastroenterol. 2020;20:210. doi: 10.1186/s12876-020-01356-2. PubMed DOI PMC
Radhakrishnan S., Yeung S.F., Ke J.Y., Antunes M.M., Pellizzon M.A. Considerations When Choosing High-Fat, High-Fructose, and High-Cholesterol Diets to Induce Experimental Nonalcoholic Fatty Liver Disease in Laboratory Animal Models. Curr. Dev. Nutr. 2021;5:nzab138. doi: 10.1093/cdn/nzab138. PubMed DOI PMC
Olney J.W. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science. 1969;164:719–721. doi: 10.1126/science.164.3880.719. PubMed DOI
Reynolds C.M., Perry J.K., Vickers M.H. Manipulation of the Growth Hormone-Insulin-Like Growth Factor (GH-IGF) Axis: A Treatment Strategy to Reverse the Effects of Early Life Developmental Programming. Int. J. Mol. Sci. 2017;18:1729. doi: 10.3390/ijms18081729. PubMed DOI PMC
Djazayery A., Miller D.S., Stock M.J. Energy balances in obese mice. Nutr. Metab. 1979;23:357–367. doi: 10.1159/000176281. PubMed DOI
Remke H., Wilsdorf A., Muller F. Development of hypothalamic obesity in growing rats. Exp. Pathol. 1988;33:223–232. doi: 10.1016/S0232-1513(88)80076-8. PubMed DOI
Maletinska L., Toma R.S., Pirnik Z., Kiss A., Slaninova J., Haluzik M., Zelezna B. Effect of cholecystokinin on feeding is attenuated in monosodium glutamate obese mice. Regul. Pept. 2006;136:58–63. doi: 10.1016/j.regpep.2006.04.020. PubMed DOI
Coelho C.F.F., Franca L.M., Nascimento J.R., Dos Santos A.M., Azevedo-Santos A.P.S., Nascimento F.R.F., Paes A.M.A. Early onset and progression of non-alcoholic fatty liver disease in young monosodium l-glutamate-induced obese mice. J. Dev. Orig. Health Dis. 2019;10:188–195. doi: 10.1017/S2040174418000284. PubMed DOI
Eslam M., Sanyal A.J., George J. MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology. 2020;158:P1999-2014.E1. doi: 10.1053/j.gastro.2019.11.312. PubMed DOI
Puri P., Baillie R.A., Wiest M.M., Mirshahi F., Choudhury J., Cheung O., Sargeant C., Contos M.J., Sanyal A.J. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46:1081–1090. doi: 10.1002/hep.21763. PubMed DOI
Ipsen D.H., Lykkesfeldt J., Tveden-Nyborg P. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell. Mol. Life Sci. 2018;75:3313–3327. doi: 10.1007/s00018-018-2860-6. PubMed DOI PMC
Carotti S., Aquilano K., Valentini F., Ruggiero S., Alletto F., Morini S., Picardi A., Antonelli-Incalzi R., Lettieri-Barbato D., Vespasiani-Gentilucci U. An overview of deregulated lipid metabolism in nonalcoholic fatty liver disease with special focus on lysosomal acid lipase. Am. J. Physiol. Gastrointest. Liver Physiol. 2020;319:G469–G480. doi: 10.1152/ajpgi.00049.2020. PubMed DOI
Arroyave-Ospina J.C., Wu Z., Geng Y., Moshage H. Role of Oxidative Stress in the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Implications for Prevention and Therapy. Antioxidants. 2021;10:174. doi: 10.3390/antiox10020174. PubMed DOI PMC
Tarantino G., Citro V., Capone D. Nonalcoholic Fatty Liver Disease: A Challenge from Mechanisms to Therapy. J. Clin. Med. 2019;9:15. doi: 10.3390/jcm9010015. PubMed DOI PMC
Świderska M., Maciejczyk M., Zalewska A., Pogorzelska J., Flisiak R., Chabowski A. Oxidative stress biomarkers in the serum and plasma of patients with non-alcoholic fatty liver disease (NAFLD). Can plasma AGE be a marker of NAFLD? Oxidative stress biomarkers in NAFLD patients. Free Radic. Res. 2019;53:841–850. doi: 10.1080/10715762.2019.1635691. PubMed DOI
Kumar A., Sharma A., Duseja A., Das A., Dhiman R.K., Chawla Y.K., Kohli K.K., Bhansali A. Patients with Nonalcoholic Fatty Liver Disease (NAFLD) have Higher Oxidative Stress in Comparison to Chronic Viral Hepatitis. J. Clin. Exp. Hepatol. 2013;3:12–18. doi: 10.1016/j.jceh.2012.10.009. PubMed DOI PMC
Hardwick R.N., Fisher C.D., Canet M.J., Lake A.D., Cherrington N.J. Diversity in antioxidant response enzymes in progressive stages of human nonalcoholic fatty liver disease. Drug Metab. Dispos. 2010;38:2293–2301. doi: 10.1124/dmd.110.035006. PubMed DOI PMC
Woolsey S.J., Mansell S.E., Kim R.B., Tirona R.G., Beaton M.D. CYP3A Activity and Expression in Nonalcoholic Fatty Liver Disease. Drug Metab. Dispos. 2015;43:1484–1490. doi: 10.1124/dmd.115.065979. PubMed DOI
Jamwal R., Barlock B.J. Nonalcoholic Fatty Liver Disease (NAFLD) and Hepatic Cytochrome P450 (CYP) Enzymes. Pharmaceuticals. 2020;13:222. doi: 10.3390/ph13090222. PubMed DOI PMC
Wang C., Tao Q., Wang X., Wang X., Zhang X. Impact of high-fat diet on liver genes expression profiles in mice model of nonalcoholic fatty liver disease. Environ. Toxicol. Pharmacol. 2016;45:52–62. doi: 10.1016/j.etap.2016.05.014. PubMed DOI
Tanner N., Kubik L., Luckert C., Thomas M., Hofmann U., Zanger U.M., Böhmert L., Lampen A., Braeuning A. Regulation of Drug Metabolism by the Interplay of Inflammatory Signaling, Steatosis, and Xeno-Sensing Receptors in HepaRG Cells. Drug Metab. Dispos. 2018;46:326–335. doi: 10.1124/dmd.117.078675. PubMed DOI
Zhang L., Xu P., Cheng Y., Wang P., Ma X., Liu M., Wang X., Xu F. Diet-induced obese alters the expression and function of hepatic drug-metabolizing enzymes and transporters in rats. Biochem. Pharmacol. 2019;164:368–376. doi: 10.1016/j.bcp.2019.05.002. PubMed DOI
Buechler C., Weiss T.S. Does hepatic steatosis affect drug metabolizing enzymes in the liver? Curr. Drug Metab. 2011;12:24–34. doi: 10.2174/138920011794520035. PubMed DOI
Jonas W., Schurmann A. Genetic and epigenetic factors determining NAFLD risk. Mol. Metab. 2021;50:101111. doi: 10.1016/j.molmet.2020.101111. PubMed DOI PMC
Herranz J.M., Lopez-Pascual A., Claveria-Cabello A., Uriarte I., Latasa M.U., Irigaray-Miramon A., Adan-Villaescusa E., Castello-Uribe B., Sangro B., Arechederra M., et al. Comprehensive analysis of epigenetic and epitranscriptomic genes’ expression in human NAFLD. J. Physiol. Biochem. 2023;79:901–924. doi: 10.1007/s13105-023-00976-y. PubMed DOI PMC
Lopez-Sanchez G.N., Dominguez-Perez M., Uribe M., Chavez-Tapia N.C., Nuno-Lambarri N. Non-alcoholic fatty liver disease and microRNAs expression, how it affects the development and progression of the disease. Ann. Hepatol. 2021;21:100212. doi: 10.1016/j.aohep.2020.04.012. PubMed DOI
Liu C.H., Ampuero J., Gil-Gómez A., Montero-Vallejo R., Rojas Á., Muñoz-Hernández R., Gallego-Durán R., Romero-Gómez M. miRNAs in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Hepatol. 2018;69:1335–1348. doi: 10.1016/j.jhep.2018.08.008. PubMed DOI
Tsoneva D.K., Ivanov M.N., Vinciguerra M. Liquid Liver Biopsy for Disease Diagnosis and Prognosis. J. Clin. Transl. Hepatol. 2023;11:1520–1541. doi: 10.14218/JCTH.2023.00040. PubMed DOI PMC
Dongiovanni P., Meroni M., Longo M., Fargion S., Fracanzani A.L. miRNA Signature in NAFLD: A Turning Point for a Non-Invasive Diagnosis. Int. J. Mol. Sci. 2018;19:3966. doi: 10.3390/ijms19123966. PubMed DOI PMC
Zhu Y., Tan J.K., Wong S.K., Goon J.A. Therapeutic Effects of microRNAs on Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023;24:9168. doi: 10.3390/ijms24119168. PubMed DOI PMC
Ponugoti B., Kim D.H., Xiao Z., Smith Z., Miao J., Zang M., Wu S.Y., Chiang C.M., Veenstra T.D., Kemper J.K. SIRT1 deacetylates and inhibits SREBP-1C activity in regulation of hepatic lipid metabolism. J. Biol. Chem. 2010;285:33959–33970. doi: 10.1074/jbc.M110.122978. PubMed DOI PMC
Pogribny I.P., Tryndyak V.P., Bagnyukova T.V., Melnyk S., Montgomery B., Ross S.A., Latendresse J.R., Rusyn I., Beland F.A. Hepatic epigenetic phenotype predetermines individual susceptibility to hepatic steatosis in mice fed a lipogenic methyl-deficient diet. J. Hepatol. 2009;51:176–186. doi: 10.1016/j.jhep.2009.03.021. PubMed DOI PMC
Murphy S.K., Yang H., Moylan C.A., Pang H., Dellinger A., Abdelmalek M.F., Garrett M.E., Ashley-Koch A., Suzuki A., Tillmann H.L., et al. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology. 2013;145:1076–1087. doi: 10.1053/j.gastro.2013.07.047. PubMed DOI PMC
Bernardis L.L., Patterson B.D. Correlation between ‘Lee index’ and carcass fat content in weanling and adult female rats with hypothalamic lesions. J. Endocrinol. 1968;40:527–528. doi: 10.1677/joe.0.0400527. PubMed DOI
Pražienková V., Funda J., Pirník Z., Karnošová A., Hrubá L., Kořínková L., Neprašová B., Janovská P., Benzce M., Kadlecová M., et al. GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene. 2021;774:145427. doi: 10.1016/j.gene.2021.145427. PubMed DOI
Korinkova L., Holubova M., Neprasova B., Hruba L., Prazienkova V., Bencze M., Haluzik M., Kunes J., Maletinska L., Zelezna B. Synergistic effect of leptin and lipidized PrRP on metabolic pathways in ob/ob mice. J. Mol. Endocrinol. 2020;64:77–90. doi: 10.1530/JME-19-0188. PubMed DOI
Chen C., Ridzon D.A., Broomer A.J., Zhou Z., Lee D.H., Nguyen J.T., Barbisin M., Xu N.L., Mahuvakar V.R., Andersen M.R., et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33:e179. doi: 10.1093/nar/gni178. PubMed DOI PMC
Matoušková P., Bártíková H., Boušová I., Hanušová V., Szotáková B., Skálová L. Reference Genes for Real-Time PCR Quantification of Messenger RNAs and MicroRNAs in Mouse Model of Obesity. PLoS ONE. 2014;9:e86033. doi: 10.1371/journal.pone.0086033. PubMed DOI PMC
Hanousková B., Vávrová G., Ambrož M., Boušová I., Karlsen T.A., Skálová L., Matoušková P. MicroRNAs mediated regulation of glutathione peroxidase 7 expression and its changes during adipogenesis. Biochim. Et Biophys. Acta (BBA)-Gene Regul. Mech. 2021;1864:194734. doi: 10.1016/j.bbagrm.2021.194734. PubMed DOI
Matouskova P., Bartikova H., Bousova I., Levorova L., Szotakova B., Skalova L. Drug-metabolizing and antioxidant enzymes in monosodium L-glutamate obese mice. Drug Metab. Dispos. 2015;43:258–265. doi: 10.1124/dmd.114.061176. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta. 1991;196:143–151. doi: 10.1016/0009-8981(91)90067-M. PubMed DOI
Mannervik B. Measurement of glutathione reductase activity. Curr. Protoc. Toxicol. 2001;7:Unit7.2. doi: 10.1002/0471140856.tx0702s00. PubMed DOI
Handy D.E., Lubos E., Yang Y., Galbraith J.D., Kelly N., Zhang Y.Y., Leopold J.A., Loscalzo J. Glutathione peroxidase-1 regulates mitochondrial function to modulate redox-dependent cellular responses. J. Biol. Chem. 2009;284:11913–11921. doi: 10.1074/jbc.M900392200. PubMed DOI PMC
Habig W.H., Jakoby W.B. Glutathione S-transferases (rat and human) Methods Enzym. 1981;77:218–231. doi: 10.1016/S0076-6879(81)77029-0. PubMed DOI
Kobayashi K., Urashima K., Shimada N., Chiba K. Substrate specificity for rat cytochrome P450 (CYP) isoforms: Screening with cDNA-expressed systems of the rat. Biochem. Pharmacol. 2002;63:889–896. doi: 10.1016/S0006-2952(01)00843-7. PubMed DOI
Maté L., Virkel G., Lifschitz A., Ballent M., Lanusse C. Hepatic and extra-hepatic metabolic pathways involved in flubendazole biotransformation in sheep. Biochem. Pharmacol. 2008;76:773–783. doi: 10.1016/j.bcp.2008.07.002. PubMed DOI
Ohara H., Miyabe Y., Deyashiki Y., Matsuura K., Hara A. Reduction of drug ketones by dihydrodiol dehydrogenases, carbonyl reductase and aldehyde reductase of human liver. Biochem. Pharmacol. 1995;50:221–227. doi: 10.1016/0006-2952(95)00124-I. PubMed DOI
Cullen J.J., Hinkhouse M.M., Grady M., Gaut A.W., Liu J., Zhang Y.P., Weydert C.J., Domann F.E., Oberley L.W. Dicumarol inhibition of NADPH: Quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism. Cancer Res. 2003;63:5513–5520. PubMed
Matyskova R., Maletinska L., Maixnerova J., Pirnik Z., Kiss A., Zelezna B. Comparison of the obesity phenotypes related to monosodium glutamate effect on arcuate nucleus and/or the high fat diet feeding in C57BL/6 and NMRI mice. Physiol. Res. Acad. Sci. Bohemoslov. 2008;57:727–734. PubMed
He K., Zhao L., Daviglus M.L., Dyer A.R., Van Horn L., Garside D., Zhu L., Guo D., Wu Y., Zhou B., et al. Association of monosodium glutamate intake with overweight in Chinese adults: The INTERMAP Study. Obesity. 2008;16:1875–1880. doi: 10.1038/oby.2008.274. PubMed DOI PMC
Pei J., Pan X., Wei G., Hua Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front. Pharmacol. 2023;14:1147414. doi: 10.3389/fphar.2023.1147414. PubMed DOI PMC
Handy D.E., Loscalzo J. The role of glutathione peroxidase-1 in health and disease. Free Radic. Biol. Med. 2022;188:146–161. doi: 10.1016/j.freeradbiomed.2022.06.004. PubMed DOI PMC
Yi Z., Jiang L., Zhao L., Zhou M., Ni Y., Yang Y., Yang H., Yang L., Zhang Q., Kuang Y., et al. Glutathione peroxidase 3 (GPX3) suppresses the growth of melanoma cells through reactive oxygen species (ROS)-dependent stabilization of hypoxia-inducible factor 1-alpha and 2-alpha. J. Cell Biochem. 2019;120:19124–19136. doi: 10.1002/jcb.29240. PubMed DOI
Nirgude S., Choudhary B. Insights into the role of GPX3, a highly efficient plasma antioxidant, in cancer. Biochem. Pharmacol. 2021;184:114365. doi: 10.1016/j.bcp.2020.114365. PubMed DOI
Mehmeti I., Lortz S., Avezov E., Jorns A., Lenzen S. ER-resident antioxidative GPx7 and GPx8 enzyme isoforms protect insulin-secreting INS-1E beta-cells against lipotoxicity by improving the ER antioxidative capacity. Free Radic. Biol. Med. 2017;112:121–130. doi: 10.1016/j.freeradbiomed.2017.07.021. PubMed DOI
Buday K., Conrad M. Emerging roles for non-selenium containing ER-resident glutathione peroxidases in cell signaling and disease. Biol. Chem. 2021;402:271–287. doi: 10.1515/hsz-2020-0286. PubMed DOI
Matoušková P., Hanousková B., Skálová L. MicroRNAs as Potential Regulators of Glutathione Peroxidases Expression and Their Role in Obesity and Related Pathologies. Int. J. Mol. Sci. 2018;19:1199. doi: 10.3390/ijms19041199. PubMed DOI PMC
McGeary S.E., Lin K.S., Shi C.Y., Pham T.M., Bisaria N., Kelley G.M., Bartel D.P. The biochemical basis of microRNA targeting efficacy. Science. 2019;366:aav1741. doi: 10.1126/science.aav1741. PubMed DOI PMC
Agarwal V., Bell G.W., Nam J.W., Bartel D.P. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005. doi: 10.7554/eLife.05005. PubMed DOI PMC
Liu W., Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol. 2019;20:18. doi: 10.1186/s13059-019-1629-z. PubMed DOI PMC
Chen Y., Wang X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48:D127–D131. doi: 10.1093/nar/gkz757. PubMed DOI PMC
Fiorino E., Giudici M., Ferrari A., Mitro N., Caruso D., De Fabiani E., Crestani M. The sirtuin class of histone deacetylases: Regulation and roles in lipid metabolism. IUBMB Life. 2014;66:89–99. doi: 10.1002/iub.1246. PubMed DOI
Solano-Urrusquieta A., Morales-Gonzalez J.A., Castro-Narro G.E., Cerda-Reyes E., Flores-Rangel P.D., Fierros-Oceguera R. NRF-2 and nonalcoholic fatty liver disease. Ann. Hepatol. 2020;19:458–465. doi: 10.1016/j.aohep.2019.11.010. PubMed DOI
Sasaki Y., Shimada T., Iizuka S., Suzuki W., Makihara H., Teraoka R., Tsuneyama K., Hokao R., Aburada M. Effects of bezafibrate in nonalcoholic steatohepatitis model mice with monosodium glutamate-induced metabolic syndrome. Eur. J. Pharmacol. 2011;662:1–8. doi: 10.1016/j.ejphar.2011.04.051. PubMed DOI
Sasaki Y., Suzuki W., Shimada T., Iizuka S., Nakamura S., Nagata M., Fujimoto M., Tsuneyama K., Hokao R., Miyamoto K., et al. Dose dependent development of diabetes mellitus and non-alcoholic steatohepatitis in monosodium glutamate-induced obese mice. Life Sci. 2009;85:490–498. doi: 10.1016/j.lfs.2009.07.017. PubMed DOI
Collison K.S., Maqbool Z.M., Inglis A.L., Makhoul N.J., Saleh S.M., Bakheet R.H., Al-Johi M.A., Al-Rabiah R.K., Zaidi M.Z., Al-Mohanna F.A. Effect of dietary monosodium glutamate on HFCS-induced hepatic steatosis: Expression profiles in the liver and visceral fat. Obesity. 2010;18:1122–1134. doi: 10.1038/oby.2009.502. PubMed DOI
Collison K.S., Maqbool Z., Saleh S.M., Inglis A., Makhoul N.J., Bakheet R., Al-Johi M., Al-Rabiah R., Zaidi M.Z., Al-Mohanna F.A. Effect of dietary monosodium glutamate on trans fat-induced nonalcoholic fatty liver disease. J. Lipid Res. 2009;50:1521–1537. doi: 10.1194/jlr.M800418-JLR200. PubMed DOI PMC
Nakanishi Y., Tsuneyama K., Fujimoto M., Salunga T.L., Nomoto K., An J.L., Takano Y., Iizuka S., Nagata M., Suzuki W., et al. Monosodium glutamate (MSG): A villain and promoter of liver inflammation and dysplasia. J. Autoimmun. 2008;30:42–50. doi: 10.1016/j.jaut.2007.11.016. PubMed DOI
Charlton M., Krishnan A., Viker K., Sanderson S., Cazanave S., McConico A., Masuoko H., Gores G. Fast food diet mouse: Novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;301:G825–G834. doi: 10.1152/ajpgi.00145.2011. PubMed DOI PMC
Hanouskova B., Neprasova B., Skalova L., Maletinska L., Zemanova K., Ambroz M., Matouskova P. High-fructose drinks affect microRNAs expression differently in lean and obese mice. J. Nutr. Biochem. 2019;68:42–50. doi: 10.1016/j.jnutbio.2019.03.001. PubMed DOI
Mungamuri S.K., Sinha S.N., Javvadi Y. Understanding the Alterations in Lipid Metabolism in NAFLD Progression: Current Trends and Future Directions. Crit. Rev. Oncog. 2021;26:35–49. doi: 10.1615/CritRevOncog.2020035839. PubMed DOI
Yamazaki Y., Usui I., Kanatani Y., Matsuya Y., Tsuneyama K., Fujisaka S., Bukhari A., Suzuki H., Senda S., Imanishi S., et al. Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice. Am. J. Physiol. Endocrinol. Metab. 2009;297:E1179–E1186. doi: 10.1152/ajpendo.90997.2008. PubMed DOI
Pelantova H., Bartova S., Anyz J., Holubova M., Zelezna B., Maletinska L., Novak D., Lacinova Z., Sulc M., Haluzik M., et al. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity. Anal. Bioanal. Chem. 2016;408:567–578. doi: 10.1007/s00216-015-9133-0. PubMed DOI
Andres-Blasco I., Blesa S., Vinue A., Gonzalez-Navarro H., Real J.T., Martinez-Hervas S., Carretero J., Ferrandez-Izquierdo A., Chaves F.J., Garcia-Garcia A.B. Srebf2 Locus Overexpression Reduces Body Weight, Total Cholesterol and Glucose Levels in Mice Fed with Two Different Diets. Nutrients. 2020;12:3130. doi: 10.3390/nu12103130. PubMed DOI PMC
Podszun M.C., Frank J. Impact of vitamin E on redox biomarkers in non-alcoholic fatty liver disease. Redox Biol. 2021;42:101937. doi: 10.1016/j.redox.2021.101937. PubMed DOI PMC
Nishida N., Yada N., Hagiwara S., Sakurai T., Kitano M., Kudo M. Unique features associated with hepatic oxidative DNA damage and DNA methylation in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2016;31:1646–1653. doi: 10.1111/jgh.13318. PubMed DOI
Zelber-Sagi S., Ivancovsky-Wajcman D., Fliss-Isakov N., Hahn M., Webb M., Shibolet O., Kariv R., Tirosh O. Serum Malondialdehyde is Associated with Non-Alcoholic Fatty Liver and Related Liver Damage Differentially in Men and Women. Antioxidants. 2020;9:578. doi: 10.3390/antiox9070578. PubMed DOI PMC
Videla L.A., Rodrigo R., Orellana M., Fernandez V., Tapia G., Quiñones L., Varela N., Contreras J., Lazarte R., Csendes A., et al. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin. Sci. 2004;106:261–268. doi: 10.1042/CS20030285. PubMed DOI
Boušová I., Hájek J., Dršata J., Skálová L. Naturally occurring flavonoids as inhibitors of purified cytosolic glutathione S-transferase. Xenobiotica. 2012;42:872–879. doi: 10.3109/00498254.2012.670737. PubMed DOI
Curtis J.M., Grimsrud P.A., Wright W.S., Xu X., Foncea R.E., Graham D.W., Brestoff J.R., Wiczer B.M., Ilkayeva O., Cianflone K., et al. Downregulation of adipose glutathione S-transferase A4 leads to increased protein carbonylation, oxidative stress, and mitochondrial dysfunction. Diabetes. 2010;59:1132–1142. doi: 10.2337/db09-1105. PubMed DOI PMC
Berhane K., Widersten M., Engstrom A., Kozarich J.W., Mannervik B. Detoxication of base propenals and other alpha, beta-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc. Natl. Acad. Sci. USA. 1994;91:1480–1484. doi: 10.1073/pnas.91.4.1480. PubMed DOI PMC
Kim H.J., Lee Y., Fang S., Kim W., Kim H.J., Kim J.W. GPx7 ameliorates non-alcoholic steatohepatitis by regulating oxidative stress. BMB Rep. 2020;53:317–322. doi: 10.5483/BMBRep.2020.53.6.280. PubMed DOI PMC
Liu Y., Beyer A., Aebersold R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell. 2016;165:535–550. doi: 10.1016/j.cell.2016.03.014. PubMed DOI
Borchi E., Bargelli V., Stillitano F., Giordano C., Sebastiani M., Nassi P.A., d’Amati G., Cerbai E., Nediani C. Enhanced ROS production by NADPH oxidase is correlated to changes in antioxidant enzyme activity in human heart failure. Biochim. Et Biophys. Acta. 2010;1802:331–338. doi: 10.1016/j.bbadis.2009.10.014. PubMed DOI
Rey-Bedon C., Banik P., Gokaltun A., Hofheinz O., Yarmush M.L., Uygun M.K., Usta O.B. CYP450 drug inducibility in NAFLD via an in vitro hepatic model: Understanding drug-drug interactions in the fatty liver. Biomed. Pharmacother. 2022;146:112377. doi: 10.1016/j.biopha.2021.112377. PubMed DOI PMC
Bousova I., Skalova L., Soucek P., Matouskova P. The modulation of carbonyl reductase 1 by polyphenols. Drug Metab. Rev. 2015;47:520–533. doi: 10.3109/03602532.2015.1089885. PubMed DOI
Morgan R.A., Beck K.R., Nixon M., Homer N.Z.M., Crawford A.A., Melchers D., Houtman R., Meijer O.C., Stomby A., Anderson A.J., et al. Carbonyl reductase 1 catalyzes 20beta-reduction of glucocorticoids, modulating receptor activation and metabolic complications of obesity. Sci. Rep. 2017;7:10633. doi: 10.1038/s41598-017-10410-1. PubMed DOI PMC
Rotondo R., Moschini R., Renzone G., Tuccinardi T., Balestri F., Cappiello M., Scaloni A., Mura U., Del-Corso A. Human carbonyl reductase 1 as efficient catalyst for the reduction of glutathionylated aldehydes derived from lipid peroxidation. Free Radic. Biol. Med. 2016;99:323–332. doi: 10.1016/j.freeradbiomed.2016.08.015. PubMed DOI
Bell R.M.B., Villalobos E., Nixon M., Miguelez-Crespo A., Murphy L., Fawkes A., Coutts A., Sharp M.G.F., Koerner M.V., Allan E., et al. Carbonyl reductase 1 amplifies glucocorticoid action in adipose tissue and impairs glucose tolerance in lean mice. Mol. Metab. 2021;48:101225. doi: 10.1016/j.molmet.2021.101225. PubMed DOI PMC
Ross D., Siegel D. The diverse functionality of NQO1 and its roles in redox control. Redox Biol. 2021;41:101950. doi: 10.1016/j.redox.2021.101950. PubMed DOI PMC
Lickteig A.J., Fisher C.D., Augustine L.M., Cherrington N.J. Genes of the antioxidant response undergo upregulation in a rodent model of nonalcoholic steatohepatitis. J. Biochem. Mol. Toxicol. 2007;21:216–220. doi: 10.1002/jbt.20177. PubMed DOI
Chen S., Tu Y., Yuan H., Shi Z., Guo Y., Gong W., Tu S. Regulatory functions of miR-200b-3p in tumor development (Review) Oncol. Rep. 2022;47:96. doi: 10.3892/or.2022.8307. PubMed DOI PMC
Zhu M., Wang Q., Zhou W., Liu T., Yang L., Zheng P., Zhang L., Ji G. Integrated analysis of hepatic mRNA and miRNA profiles identified molecular networks and potential biomarkers of NAFLD. Sci. Rep. 2018;8:7628. doi: 10.1038/s41598-018-25743-8. PubMed DOI PMC
Ye M., Wang S., Sun P., Qie J. Integrated MicroRNA Expression Profile Reveals Dysregulated miR-20a-5p and miR-200a-3p in Liver Fibrosis. Biomed. Res. Int. 2021;2021:9583932. doi: 10.1155/2021/9583932. PubMed DOI PMC
Pogribny I.P., Starlard-Davenport A., Tryndyak V.P., Han T., Ross S.A., Rusyn I., Beland F.A. Difference in expression of hepatic microRNAs miR-29c, miR-34a, miR-155, and miR-200b is associated with strain-specific susceptibility to dietary nonalcoholic steatohepatitis in mice. Lab. Investig. 2010;90:1437–1446. doi: 10.1038/labinvest.2010.113. PubMed DOI PMC
Wang J.M., Qiu Y., Yang Z., Kim H., Qian Q., Sun Q., Zhang C., Yin L., Fang D., Back S.H., et al. IRE1alpha prevents hepatic steatosis by processing and promoting the degradation of select microRNAs. Sci. Signal. 2018;11:eaao4617. doi: 10.1126/scisignal.aao4617. PubMed DOI PMC
Murakami Y., Toyoda H., Tanaka M., Kuroda M., Harada Y., Matsuda F., Tajima A., Kosaka N., Ochiya T., Shimotohno K. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families. PLoS ONE. 2011;6:e16081. doi: 10.1371/journal.pone.0016081. PubMed DOI PMC
Fabbri M., Garzon R., Cimmino A., Liu Z., Zanesi N., Callegari E., Liu S., Alder H., Costinean S., Fernandez-Cymering C., et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc. Natl. Acad. Sci. USA. 2007;104:15805–15810. doi: 10.1073/pnas.0707628104. PubMed DOI PMC
Fang Z., Dou G., Wang L. MicroRNAs in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int. J. Biol. Sci. 2021;17:1851–1863. doi: 10.7150/ijbs.59588. PubMed DOI PMC