MicroRNAs as Potential Regulators of Glutathione Peroxidases Expression and Their Role in Obesity and Related Pathologies
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29662007
PubMed Central
PMC5979329
DOI
10.3390/ijms19041199
PII: ijms19041199
Knihovny.cz E-zdroje
- Klíčová slova
- bioinformatics, glutathione peroxidase, microRNA, obesity,
- MeSH
- 3' nepřekládaná oblast MeSH
- glutathionperoxidasa genetika metabolismus MeSH
- lidé MeSH
- mikro RNA genetika metabolismus MeSH
- obezita genetika metabolismus patologie MeSH
- oxidační stres MeSH
- regulace genové exprese * MeSH
- výpočetní biologie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- 3' nepřekládaná oblast MeSH
- glutathionperoxidasa MeSH
- mikro RNA MeSH
Glutathione peroxidases (GPxs) belong to the eight-member family of phylogenetically related enzymes with different cellular localization, but distinct antioxidant function. Several GPxs are important selenoproteins. Dysregulated GPx expression is connected with severe pathologies, including obesity and diabetes. We performed a comprehensive bioinformatic analysis using the programs miRDB, miRanda, TargetScan, and Diana in the search for hypothetical microRNAs targeting 3'untranslated regions (3´UTR) of GPxs. We cross-referenced the literature for possible intersections between our results and available reports on identified microRNAs, with a special focus on the microRNAs related to oxidative stress, obesity, and related pathologies. We identified many microRNAs with an association with oxidative stress and obesity as putative regulators of GPxs. In particular, miR-185-5p was predicted by a larger number of programs to target six GPxs and thus could play the role as their master regulator. This microRNA was altered by selenium deficiency and can play a role as a feedback control of selenoproteins' expression. Through the bioinformatics analysis we revealed the potential connection of microRNAs, GPxs, obesity, and other redox imbalance related diseases.
Zobrazit více v PubMed
Chartoumpekis D.V., Zaravinos A., Ziros P.G., Iskrenova R.P., Psyrogiannis A.I., Kyriazopoulou V.E., Habeos I.G. Differential Expression of MicroRNAs in Adipose Tissue after Long-Term High-Fat Diet-Induced Obesity in Mice. PLoS ONE. 2012;7:e34872. doi: 10.1371/journal.pone.0034872. PubMed DOI PMC
Aleksandrova K., Mozaffarian D., Pischon T. Addressing the Perfect Storm: Biomarkers in Obesity and Pathophysiology of Cardiometabolic Risk. Clin. Chem. 2018;64:142–153. doi: 10.1373/clinchem.2017.275172. PubMed DOI
Espinosa-Diez C., Miguel V., Mennerich D., Kietzmann T., Sanchez-Perez P., Cadenas S., Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015;6:183–197. doi: 10.1016/j.redox.2015.07.008. PubMed DOI PMC
Bar-Or D., Bar-Or R., Rael L.T., Brody E.N. Oxidative stress in severe acute illness. Redox Biol. 2015;4:340–345. doi: 10.1016/j.redox.2015.01.006. PubMed DOI PMC
Brigelius-Flohe R., Maiorino M. Glutathione peroxidases. Biochim. Biophys. Acta. 2013;1830:3289–3303. doi: 10.1016/j.bbagen.2012.11.020. PubMed DOI
Gorlach A., Dimova E.Y., Petry A., Martinez-Ruiz A., Hernansanz-Agustin P., Rolo A.P., Palmeira C.M., Kietzmann T. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol. 2015;6:372–385. doi: 10.1016/j.redox.2015.08.016. PubMed DOI PMC
Herbette S., Roeckel-Drevet P., Drevet J.R. Seleno-independent glutathione peroxidases—More than simple antioxidant scavengers. FEBS J. 2007;274:2163–2180. doi: 10.1111/j.1742-4658.2007.05774.x. PubMed DOI
Brigelius-Flohe R., Kipp A. Glutathione peroxidases in different stages of carcinogenesis. Biochim. Biophys. Acta. 2009;1790:1555–1568. doi: 10.1016/j.bbagen.2009.03.006. PubMed DOI
Ufer C., Wang C.C. The roles of glutathione peroxidases during embryo development. Front. Mol. Neurosci. 2011;4:12. doi: 10.3389/fnmol.2011.00012. PubMed DOI PMC
Hernandez C., Parra A., Trejo C., Diaz C., Olguin A., Perez A. Association Between Single Nucleotide Polymorphism Pro198Leu of Glutathione Peroxidase and Normal Weight, Overweight and Obesity in Mexican Population. FASEB J. 2013;27
McClung J.P., Roneker C.A., Mu W., Lisk D.J., Langlais P., Liu F., Lei X.G. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc. Natl. Acad. Sci. USA. 2004;101:8852–8857. doi: 10.1073/pnas.0308096101. PubMed DOI PMC
Lee Y.S., Kim A.Y., Choi J.W., Kim M., Yasue S., Son H.J., Masuzaki H., Park K.S., Kim J.B. Dysregulation of adipose glutathione peroxidase 3 in obesity contributes to local and systemic oxidative stress. Mol. Endocrinol. 2008;22:2176–2189. doi: 10.1210/me.2008-0023. PubMed DOI PMC
Ruperez A.I., Olza J., Gil-Campos M., Leis R., Mesa M.D., Tojo R., Canete R., Gil A., Aguilera C.M. Association of Genetic Polymorphisms for Glutathione Peroxidase Genes with Obesity in Spanish Children. J. Nutrigenet. Nutrigenom. 2014;7:130–142. doi: 10.1159/000368833. PubMed DOI
Bartel D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002. PubMed DOI PMC
Hudder A., Novak R.F. miRNAs: Effectors of environmental influences on gene expression and disease. Toxicol. Sci. 2008;103:228–240. doi: 10.1093/toxsci/kfn033. PubMed DOI PMC
Deiuliis J.A. MicroRNAs as regulators of metabolic disease: Pathophysiologic significance and emerging role as biomarkers and therapeutics. Int. J. Obes. 2016;40:88–101. doi: 10.1038/ijo.2015.170. PubMed DOI PMC
Pescador N., Perez-Barba M., Ibarra J.M., Corbaton A., Martinez-Larrad M.T., Serrano-Rios M. Serum Circulating microRNA Profiling for Identification of Potential Type 2 Diabetes and Obesity Biomarkers. PLoS ONE. 2013;8:e77251. doi: 10.1371/journal.pone.0077251. PubMed DOI PMC
Cheng X.H., Ku C.H., Siow R.C.M. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis. Free Radic. Biol. Med. 2013;64:4–11. doi: 10.1016/j.freeradbiomed.2013.07.025. PubMed DOI
Quintana-Cabrera R., Fernandez-Fernandez S., Bobo-Jimenez V., Escobar J., Sastre J., Almeida A., Bolanos J.P. γ-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor. Nat. Commun. 2012;3:718. doi: 10.1038/ncomms1722. PubMed DOI PMC
Vats P., Sagar N., Singh T.P., Banerjee M. Association of Superoxide dismutases (SOD1 and SOD2) and Glutathione peroxidase 1 (GPx1) gene polymorphisms with type 2 diabetes mellitus. Free Radic. Res. 2015;49:17–24. doi: 10.3109/10715762.2014.971782. PubMed DOI
Wang L., Huang H., Fan Y., Kong B., Hu H., Hu K., Guo J., Mei Y., Liu W. Effects of Downregulation of MicroRNA-181a on H2O2-Induced H9c2 Cell Apoptosis via the Mitochondrial Apoptotic Pathway. Oxid. Med. Cell. Longev. 2014;2014:960362. doi: 10.1155/2014/960362. PubMed DOI PMC
La Sala L., Cattaneo M., De Nigris V., Pujadas G., Testa R., Bonfigli A.R., Genovese S., Ceriello A. Oscillating glucose induces microRNA-185 and impairs an efficient antioxidant response in human endothelial cells. Cardiovasc. Diabetol. 2016;15:71. doi: 10.1186/s12933-016-0390-9. PubMed DOI PMC
Yentrapalli R., Azimzadeh O., Kraemer A., Malinowsky K., Sarioglu H., Becker K.F., Atkinson M.J., Moertl S., Tapio S. Quantitative and integrated proteome and microRNA analysis of endothelial replicative senescence. J. Proteom. 2015;126:12–23. doi: 10.1016/j.jprot.2015.05.023. PubMed DOI
Korkmaz G., le Sage C., Tekirdag K.A., Agami R., Gozuacik D. miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy. 2012;8:165–176. doi: 10.4161/auto.8.2.18351. PubMed DOI
Milagro F.I., Miranda J., Portillo M.P., Fernandez-Quintela A., Campion J., Martinez J.A. High-Throughput Sequencing of microRNAs in Peripheral Blood Mononuclear Cells: Identification of Potential Weight Loss Biomarkers. PLoS ONE. 2013;8:e54319. doi: 10.1371/journal.pone.0054319. PubMed DOI PMC
Liu P., Zhao H., Wang R., Wang P., Tao Z., Gao L., Yan F., Liu X., Yu S., Ji X., et al. MicroRNA-424 Protects Against Focal Cerebral Ischemia and Reperfusion Injury in Mice by Suppressing Oxidative Stress. Stroke. 2015;46:513–519. doi: 10.1161/STROKEAHA.114.007482. PubMed DOI
Marchand A., Atassi F., Mougenot N., Clergue M., Codoni V., Berthuin J., Proust C., Tregouet D.A., Hulot J.S., Lompre A.M. miR-322 regulates insulin signaling pathway and protects against metabolic syndrome-induced cardiac dysfunction in mice. Biochim. Biophys. Acta. 2016;1862:611–621. doi: 10.1016/j.bbadis.2016.01.010. PubMed DOI
Wang X., Wang M., Li H., Lan X., Liu L., Li J., Li Y., Li J., Yi J., Du X., et al. Upregulation of miR-497 induces hepatic insulin resistance in E3 rats with HFD-MetS by targeting insulin receptor. Mol. Cell. Endocrinol. 2015;416:57–69. doi: 10.1016/j.mce.2015.08.021. PubMed DOI
Xu M., Wang H., Zhang Y., Zhuang H. Protection of rats spinal cord ischemia-reperfusion injury by inhibition of MiR-497 on inflammation and apoptosis: Possible role in pediatrics. Biomed. Pharmacother. 2016;81:337–344. doi: 10.1016/j.biopha.2016.04.028. PubMed DOI
Shan Z., Yao C., Li Z., Teng Y., Li W., Wang J., Ye C., Chang G., Huang X., Li X., et al. Differentially expressed microRNAs at different stages of atherosclerosis in ApoE-deficient mice. Chin. Med. J. 2013;126:515–520. PubMed
Mimura S., Iwama H., Kato K., Nomura K., Kobayashi M., Yoneyama H., Miyoshii H., Tani J., Morishita A., Himoto T., et al. Profile of microRNAs associated with aging in rat liver. Int. J. Mol. Med. 2014;34:1065–1072. doi: 10.3892/ijmm.2014.1892. PubMed DOI
Espinosa-Diez C., Fierro-Fernandez M., Sanchez-Gomez F., Rodriguez-Pascual F., Alique M., Ruiz-Ortega M., Beraza N., Martinez-Chantar M.L., Fernandez-Hernando C., Lamas S. Targeting of γ-Glutamyl-Cysteine Ligase by miR-433 Reduces Glutathione Biosynthesis and Promotes TGF-β-Dependent Fibrogenesis. Antioxid. Redox Signal. 2015;23:1092–1105. doi: 10.1089/ars.2014.6025. PubMed DOI PMC
Banning A., Deubel S., Kluth D., Zhou Z.W., Brigelius-Flohe R. The GI-GPx gene is a target for Nrf2. Mol. Cell. Biol. 2005;25:4914–4923. doi: 10.1128/MCB.25.12.4914-4923.2005. PubMed DOI PMC
Florian S., Wingler K., Schmehl K., Jacobasch G., Kreuzer O.J., Meyerhof W., Brigelius-Flohe R. Cellular and subcellular localization of gastrointestinal glutathione peroxidase in normal and malignant human intestinal tissue. Free Radic. Res. 2001;35:655–663. doi: 10.1080/10715760100301181. PubMed DOI
Banning A., Kipp A., Schmitmeier S., Lowinger M., Florian S., Krehl S., Thalmann S., Thierbach R., Steinberg P., Brigelius-Flohe R. Glutathione Peroxidase 2 Inhibits Cyclooxygenase-2-Mediated Migration and Invasion of HT-29 Adenocarcinoma Cells but Supports Their Growth as Tumors in Nude Mice. Cancer Res. 2008;68:9746–9753. doi: 10.1158/0008-5472.CAN-08-1321. PubMed DOI
Baek I.J., Yon J.M., Lee S.R., Kim M.R., Hong J.T., Lee B.J., Yun Y.W., Nam S.Y. Differential expression of gastrointestinal glutathione peroxidase (GI-GPx) gene during mouse organogenesis. Anat. Histol. Embryol. 2011;40:210–218. doi: 10.1111/j.1439-0264.2010.01061.x. PubMed DOI
Berry M.J. Insights into the hierarchy of selenium incorporation. Nat. Genet. 2005;37:1162–1163. doi: 10.1038/ng1105-1162. PubMed DOI
Maciel-Dominguez A., Swan D., Ford D., Hesketh J. Selenium alters miRNA profile in an intestinal cell line: Evidence that miR-185 regulates expression of GPX2 and SEPSH2. Mol. Nutr. Food Res. 2013;57:2195–2205. doi: 10.1002/mnfr.201300168. PubMed DOI
Wu L., Dai X., Zhan J., Zhang Y., Zhang H., Zhang H., Zeng S., Xi W. Profiling peripheral microRNAs in obesity and type 2 diabetes mellitus. APMIS. 2015;123:580–585. doi: 10.1111/apm.12389. PubMed DOI
Xu Y., Fang F., Zhang J.Y., Josson S., St. Clair W.H., St. Clair D.K. miR-17 Suppresses Tumorigenicity of Prostate Cancer by Inhibiting Mitochondrial Antioxidant Enzymes. PLoS ONE. 2010;5:e14356. doi: 10.1371/journal.pone.0014356. PubMed DOI PMC
Magenta A., Dellambra E., Ciarapica R., Capogrossi M.C. Oxidative stress, microRNAs and cytosolic calcium homeostasis. Cell Calcium. 2016;60:207–217. doi: 10.1016/j.ceca.2016.04.002. PubMed DOI
Delic D., Eisele C., Schmid R., Luippold G., Mayoux E., Grempler R. Characterization of Micro-RNA Changes during the Progression of Type 2 Diabetes in Zucker Diabetic Fatty Rats. Int. J. Mol. Sci. 2016;17:665. doi: 10.3390/ijms17050665. PubMed DOI PMC
Bao L., Fu X., Si M., Wang Y., Ma R., Ren X., Lv H. MicroRNA-185 Targets SOCS3 to Inhibit β-Cell Dysfunction in Diabetes. PLoS ONE. 2015;10:e0116067. doi: 10.1371/journal.pone.0116067. PubMed DOI PMC
Zhang D., Lee H.D., Cao Y., Dela Cruz C.S., Jin Y. miR-185 mediates lung epithelial cell death after oxidative stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016;310:L700–L710. doi: 10.1152/ajplung.00392.2015. PubMed DOI PMC
Yang M., Liu W., Pellicane C., Sahyoun C., Joseph B.K., Gallo-Ebert C., Donigan M., Pandya D., Giordano C., Bata A., et al. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J. Lipid Res. 2014;55:226–238. doi: 10.1194/jlr.M041335. PubMed DOI PMC
Wang X., Zhan X., Li X., Yu J., Liu X. MicroRNA-185 regulates expression of lipid metabolism genes and improves insulin sensitivity in mice with non-alcoholic fatty liver disease. World J. Gastroenterol. 2014;20:17914–17923. doi: 10.3748/wjg.v20.i47.17914. PubMed DOI PMC
Rotllan N., Price N., Pati P., Goedeke L., Fernandez-Hernando C. microRNAs in lipoprotein metabolism and cardiometabolic disorders. Atherosclerosis. 2016;246:352–360. doi: 10.1016/j.atherosclerosis.2016.01.025. PubMed DOI PMC
Ortega F.J., Cardona-Alvarado M.I., Mercader J.M., Moreno-Navarrete J.M., Moreno M., Sabater M., Fuentes-Batllevell N., Ramirez-Chavez E., Ricart W., Molina-Torres J., et al. Circulating profiling reveals the effect of a polyunsaturated fatty acid-enriched diet on common microRNAs. J. Nutr. Biochem. 2015;26:1095–1101. doi: 10.1016/j.jnutbio.2015.05.001. PubMed DOI
Sangokoya C., Telen M.J., Chi J.T. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood. 2010;116:4338–4348. doi: 10.1182/blood-2009-04-214817. PubMed DOI PMC
Barbagallo D., Piro S., Condorelli A.G., Mascali L.G., Urbano F., Parrinello N., Monello A., Statello L., Ragusa M., Rabuazzo A.M., et al. miR-296-3p, miR-298-5p and their downstream networks are causally involved in the higher resistance of mammalian pancreatic α cells to cytokine-induced apoptosis as compared to β cells. BMC Genom. 2013;14:62. doi: 10.1186/1471-2164-14-62. PubMed DOI PMC
Ding L., Ai D., Wu R., Zhang T., Jing L., Lu J., Zhong L. Identification of the differential expression of serum microRNA in type 2 diabetes. Biosci. Biotechnol. Biochem. 2016;80:461–465. doi: 10.1080/09168451.2015.1107460. PubMed DOI
Thulasingam S., Massilamany C., Gangaplara A., Dai H.J., Yarbaeva S., Subramaniam S., Riethoven J.J., Eudy J., Lou M., Reddy J. miR-27b*, an oxidative stress-responsive microRNA modulates nuclear factor-κB pathway in RAW 264.7 cells. Mol. Cell. Biochem. 2011;352:181–188. doi: 10.1007/s11010-011-0752-2. PubMed DOI
Can U., Buyukinan M., Yerlikaya F.H. The investigation of circulating microRNAs associated with lipid metabolism in childhood obesity. Pediatr. Obes. 2016;11:228–234. doi: 10.1111/ijpo.12050. PubMed DOI
Burk R.F., Olson G.E., Winfrey V.P., Hill K.E., Yin D. Glutathione peroxidase-3 produced by the kidney binds to a population of basement membranes in the gastrointestinal tract and in other tissues. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;301:G32–G38. doi: 10.1152/ajpgi.00064.2011. PubMed DOI PMC
Baez-Duarte B.G., Zamora-Ginez I., Mendoza-Carrera F., Ruiz-Vivanco G., Torres-Rasgado E., Gonzalez-Mejia M.E., Garcia-Zapien A., Flores-Martinez S.E., Perez-Fuentes R. Serum levels of glutathione peroxidase 3 in overweight and obese subjects from central Mexico. Arch. Med. Res. 2012;43:541–547. doi: 10.1016/j.arcmed.2012.09.001. PubMed DOI
Roos J., Enlund E., Funcke J.B., Tews D., Holzmann K., Debatin K.M., Wabitsch M., Fischer-Posovszky P. miR-146a-mediated suppression of the inflammatory response in human adipocytes. Sci. Rep. 2016;6:38339. doi: 10.1038/srep38339. PubMed DOI PMC
Kovacs B., Lumayag S., Cowan C., Xu S.B. microRNAs in Early Diabetic Retinopathy in Streptozotocin-Induced Diabetic Rats. Investig. Ophthalmol. Vis. Sci. 2011;52:4402–4409. doi: 10.1167/iovs.10-6879. PubMed DOI
Shen Y., Tian F., Chen Z., Li R., Ge Q., Lu Z. Amplification-based method for microRNA detection. Biosens. Bioelectron. 2015;71:322–331. doi: 10.1016/j.bios.2015.04.057. PubMed DOI
Schmelzer C., Kitano M., Rimbach G., Niklowitz P., Menke T., Hosoe K., Doring F. Effects of Ubiquinol-10 on MicroRNA-146a Expression In Vitro and In Vivo. Mediat. Inflamm. 2009;2009:415437. doi: 10.1155/2009/415437. PubMed DOI PMC
Chen L., Dai Y., Ji C., Yang L., Shi C., Xu G., Pang L., Huang F., Zhang C., Guo X. MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity. Mol. Cell. Endocrinol. 2014;393:65–74. doi: 10.1016/j.mce.2014.05.022. PubMed DOI
Hulsmans M., Van Dooren E., Mathieu C., Holvoet P. Decrease of miR-146b-5p in Monocytes during Obesity Is Associated with Loss of the Anti-Inflammatory but Not Insulin Signaling Action of Adiponectin. PLoS ONE. 2012;7:e32794. doi: 10.1371/journal.pone.0032794. PubMed DOI PMC
Shi C., Zhu L., Chen X., Gu N., Chen L., Zhu L., Yang L., Pang L., Guo X., Ji C., et al. IL-6 and TNF-α Induced Obesity-Related Inflammatory Response Through Transcriptional Regulation of miR-146b. J. Interferon Cytokine Res. 2014;34:342–348. doi: 10.1089/jir.2013.0078. PubMed DOI PMC
Li J., He S., Feng Z., Zhao L., Jia W., Liu P., Zhu Y., Jian Z., Xiao Y. MicroRNA-146b inhibition augments hypoxia-induced cardiomyocyte apoptosis. Mol. Med. Rep. 2015;12:6903–6910. doi: 10.3892/mmr.2015.4333. PubMed DOI
Xu X., Wang S., Liu J., Dou D., Liu L., Chen Z., Ye L., Liu H., He Q., Raj J.U., et al. Hypoxia induces downregulation of soluble guanylyl cyclase β(1) by miR-34c-5p. J. Cell Sci. 2012;125:6117–6126. doi: 10.1242/jcs.113381. PubMed DOI PMC
Baldeon R.L., Weigelt K., de Wit H., Ozcan B., van Oudenaren A., Sempertegui F., Sijbrands E., Grosse L., van Zonneveld A.J., Drexhage H.A., et al. Type 2 Diabetes Monocyte MicroRNA and mRNA Expression: Dyslipidemia Associates with Increased Differentiation-Related Genes but Not Inflammatory Activation. PLoS ONE. 2015;10:e0129421. doi: 10.1371/journal.pone.0129421. PubMed DOI PMC
Nardelli C., Iaffaldano L., Ferrigno M., Labruna G., Maruotti G.M., Quaglia F., Capobianco V., Di Noto R., Del Vecchio L., Martinelli P., et al. Characterization and predicted role of the microRNA expression profile in amnion from obese pregnant women. Int. J. Obes. 2014;38:466–469. doi: 10.1038/ijo.2013.121. PubMed DOI
Zaragosi L.E., Wdziekonski B., Le Brigand K., Villageois P., Mari B., Waldmann R., Dani C., Barbry P. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol. 2011;12:R64. doi: 10.1186/gb-2011-12-7-r64. PubMed DOI PMC
Ferrante S.C., Nadler E.P., Pillai D.K., Hubal M.J., Wang Z.Y., Wang J.M., Gordish-Dressman H., Koeck E., Sevilla S., Wiles A.A., et al. Adipocyte-derived exosomal miRNAs: A novel mechanism for obesity-related disease. Pediatr. Res. 2015;77:447–454. doi: 10.1038/pr.2014.202. PubMed DOI PMC
Jin M., Wu Y., Wang J., Chen J., Huang Y., Rao J., Feng C. MicroRNA-24 promotes 3T3-L1 adipocyte differentiation by directly targeting the MAPK7 signaling. Biochem. Biophys. Res. Commun. 2016;474:76–82. doi: 10.1016/j.bbrc.2016.04.073. PubMed DOI
Ng R., Wu H., Xiao H., Chen X., Willenbring H., Steer C.J., Song G. Inhibition of MicroRNA-24 Expression in Liver Prevents Hepatic Lipid Accumulation and Hyperlipidemia. Hepatology. 2014;60:554–564. doi: 10.1002/hep.27153. PubMed DOI PMC
Ursini F., Heim S., Kiess M., Maiorino M., Roveri A., Wissing J., Flohe L. Dual function of the selenoprotein PHGPx during sperm maturation. Science. 1999;285:1393–1396. doi: 10.1126/science.285.5432.1393. PubMed DOI
Katunga L.A., Gudimella P., Efird J.T., Abernathy S., Mattox T.A., Beatty C., Darden T.M., Thayne K.A., Alwair H., Kypson A.P., et al. Obesity in a model of gpx4 haploinsufficiency uncovers a causal role for lipid-derived aldehydes in human metabolic disease and cardiomyopathy. Mol. Metab. 2015;4:493–506. doi: 10.1016/j.molmet.2015.04.001. PubMed DOI PMC
Maes O.C., An J., Sarojini H., Wang E. Murine microRNAs implicated in liver functions and aging process. Mech. Ageing Dev. 2008;129:534–541. doi: 10.1016/j.mad.2008.05.004. PubMed DOI
Gao M., Liu Y., Chen Y., Yin C., Chen J., Liu S. miR-214 protects erythroid cells against oxidative stress by targeting ATF4 and EZH2. Free Radic. Biol. Med. 2016;92:39–49. doi: 10.1016/j.freeradbiomed.2016.01.005. PubMed DOI
Dong X., Liu H., Chen F., Li D., Zhao Y. MiR-214 Promotes the Alcohol-Induced Oxidative Stress via Down-Regulation of Glutathione Reductase and Cytochrome P450 Oxidoreductase in Liver Cells. Alcohol. Clin. Exp. Res. 2014;38:68–77. doi: 10.1111/acer.12209. PubMed DOI
Carreras-Badosa G., Bonmati A., Ortega F.J., Mercader J.M., Guindo-Martinez M., Torrents D., Prats-Puig A., Martinez-Calcerrada J.M., Platero-Gutierrez E., De Zegher F., et al. Altered Circulating miRNA Expression Profile in Pregestational and Gestational Obesity. J. Clin. Endocrinol. Metab. 2015;100:E1446–E1456. doi: 10.1210/jc.2015-2872. PubMed DOI
Dharap A., Pokrzywa C., Murali S., Pandi G., Vemuganti R. MicroRNA miR-324-3p Induces Promoter-Mediated Expression of RelA Gene. PLoS ONE. 2013;8:e79467. doi: 10.1371/journal.pone.0079467. PubMed DOI PMC
Sahu N., Stephan J.P., Cruz D.D., Merchant M., Haley B., Bourgon R., Classon M., Settleman J. Functional screening implicates miR-371-3p and peroxiredoxin 6 in reversible tolerance to cancer drugs. Nat. Commun. 2016;7:12351. doi: 10.1038/ncomms12351. PubMed DOI PMC
Bork S., Horn P., Castoldi M., Hellwig I., Ho A.D., Wagner W. Adipogenic Differentiation of Human Mesenchymal Stromal Cells Is Down-Regulated by microRNA-369-5p and Up-Regulated by microRNA-371. J. Cell. Physiol. 2011;226:2226–2234. doi: 10.1002/jcp.22557. PubMed DOI
Jiang X., Yang L., Pang L., Chen L., Guo X., Ji C., Shi C., Ni Y. Expression of obesity-related miR-1908 in human adipocytes is regulated by adipokines, free fatty acids and hormones. Mol. Med. Rep. 2014;10:1164–1169. doi: 10.3892/mmr.2014.2297. PubMed DOI
Yang L., Shi C., Chen L., Pang L., Xu G., Gu N., Zhu L., Guo X., Ni Y., Ji C. The biological effects of hsa-miR-1908 in human adipocytes. Mol. Biol. Rep. 2015;42:927–935. doi: 10.1007/s11033-014-3830-1. PubMed DOI
Rejraji H., Vernet P., Drevet J.R. GPX5 is present in the mouse caput and cauda epididymidis lumen at three different locations. Mol. Reprod. Dev. 2002;63:96–103. doi: 10.1002/mrd.10136. PubMed DOI
Taylor A., Robson A., Houghton B.C., Jepson C.A., Ford W.C.L., Frayne J. Epididymal specific, selenium-independent GPX5 protects cells from oxidative stress-induced lipid peroxidation and DNA mutation. Hum. Reprod. 2013;28:2332–2342. doi: 10.1093/humrep/det237. PubMed DOI
Yi C., Xie W., Li F., Lv Q., He J., Wu J., Gu D., Xu N., Zhang Y. MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin. FEBS Lett. 2011;585:3303–3309. doi: 10.1016/j.febslet.2011.09.015. PubMed DOI
He Z., Yu J., Zhou C., Ren G., Cong P., Mo D., Chen Y., Liu X. MiR-143 is not essential for adipose development as revealed by in vivo antisense targeting. Biotechnol. Lett. 2013;35:499–507. doi: 10.1007/s10529-012-1112-3. PubMed DOI
Kilic I.D., Dodurga Y., Uludag B., Alihanoglu Y.I., Yildiz B.S., Enli Y., Secme M., Bostanci H.E. microRNA-143 and-223 in obesity. Gene. 2015;560:140–142. doi: 10.1016/j.gene.2015.01.048. PubMed DOI
Latouche C., Natoli A., Reddy-Luthmoodoo M., Heywood S.E., Armitage J.A., Kingwell B.A. MicroRNA-194 Modulates Glucose Metabolism and Its Skeletal Muscle Expression Is Reduced in Diabetes. PLoS ONE. 2016;11:e0155108. doi: 10.1371/journal.pone.0155108. PubMed DOI PMC
Chen Y., Wang X., Yao X., Zhang D., Yang X., Tian S., Wang N. Abated microRNA-195 expression protected mesangial cells from apoptosis in early diabetic renal injury in mice. J. Nephrol. 2012;25:566–576. doi: 10.5301/jn.5000034. PubMed DOI
Krutzfeldt J., Rosch N., Hausser J., Manoharan M., Zavolan M., Stoffel M. MicroRNA-194 is a target of transcription factor 1 (Tcf1, HNF1α) in adult liver and controls expression of frizzled-6. Hepatology. 2012;55:98–107. doi: 10.1002/hep.24658. PubMed DOI
Zhang J., Zhang F., Didelot X., Bruce K.D., Cagampang F.R., Vatish M., Hanson M., Lehnert H., Ceriello A., Byrne C.D. Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genom. 2009;10:478. doi: 10.1186/1471-2164-10-478. PubMed DOI PMC
Goltyaev M.V., Varlamova E.G., Novoselov V.I., Fesenko E.E. Determination of mgpx6 and mselv gene mRNA expression during mouse postnatal development. Dokl. Biochem. Biophys. 2014;457:132–133. doi: 10.1134/S1607672914040048. PubMed DOI
Shema R., Kulicke R., Cowley G.S., Stein R., Root D.E., Heiman M. Synthetic lethal screening in the mammalian central nervous system identifies Gpx6 as a modulator of Huntington’s disease. Proc. Natl. Acad. Sci. USA. 2015;112:268–272. doi: 10.1073/pnas.1417231112. PubMed DOI PMC
Gracia A., Miranda J., Fernandez-Quintela A., Eseberri I., Garcia-Lacarte M., Milagro F.I., Martinez J.A., Aguirre L., Portillo M.P. Involvement of miR-539-5p in the inhibition of de novo lipogenesis induced by resveratrol in white adipose tissue. Food Funct. 2016;7:1680–1688. doi: 10.1039/C5FO01090J. PubMed DOI
Wang C., Wan S., Yang T., Niu D., Zhang A., Yang C., Cai J., Wu J., Song J., Zhang C., et al. Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci. Rep. 2016;6:20032. doi: 10.1038/srep20032. PubMed DOI PMC
Mentzel C.M.J., Anthon C., Jacobsen M.J., Karlskov-Mortensen P., Bruun C.S., Jorgensen C.B., Gorodkin J., Cirera S., Fredholm M. Gender and Obesity Specific MicroRNA Expression in Adipose Tissue from Lean and Obese Pigs. PLoS ONE. 2015;10:e0131650. doi: 10.1371/journal.pone.0131650. PubMed DOI PMC
Ramachandran D., Roy U., Garg S., Ghosh S., Pathak S., Kolthur-Seetharam U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J. 2011;278:1167–1174. doi: 10.1111/j.1742-4658.2011.08042.x. PubMed DOI
Nguyen V.D., Saaranen M.J., Karala A.R., Lappi A.K., Wang L., Raykhel I.B., Alanen H.I., Salo K.E., Wang C.C., Ruddock L.W. Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation. J. Mol. Biol. 2011;406:503–515. doi: 10.1016/j.jmb.2010.12.039. PubMed DOI
Chen Y., Wei P.C., Hsu J.L., Su F., Lee W.H. NPGPx (GPx7): A novel oxidative stress sensor/transmitter with multiple roles in redox homeostasis. Am. J. Transl. Res. 2016;8:1626–1640. PubMed PMC
Utomo A., Jiang X., Furuta S., Yun J., Levin D.S., Wang Y., Desai K.V., Green J.E., Chen P., Lee W.H. Identification of a novel putative non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx) essential for alleviating oxidative stress generated from polyunsaturated fatty acids in breast cancer cells. J. Biol. Chem. 2004;279:43522–43529. doi: 10.1074/jbc.M407141200. PubMed DOI
Wei P.C., Hsieh Y.H., Su M.I., Jiang X., Hsu P.H., Lo W.T., Weng J.Y., Jeng Y.M., Wang J.M., Chen P.L., et al. Loss of the oxidative stress sensor NPGPx compromises GRP78 chaperone activity and induces systemic disease. Mol. Cell. 2012;48:747–759. doi: 10.1016/j.molcel.2012.10.007. PubMed DOI PMC
Chang Y.C., Yu Y.H., Shew J.Y., Lee W.J., Hwang J.J., Chen Y.H., Chen Y.R., Wei P.C., Chuang L.M., Lee W.H. Deficiency of NPGPx, an oxidative stress sensor, leads to obesity in mice and human. EMBO Mol. Med. 2013;5:1165–1179. doi: 10.1002/emmm.201302679. PubMed DOI PMC
Shin K.K., Kim Y.S., Kim J.Y., Bae Y.C., Jung J.S. miR-137 Controls Proliferation and Differentiation of Human Adipose Tissue Stromal Cells. Cell. Physiol. Biochem. 2014;33:758–768. doi: 10.1159/000358650. PubMed DOI
Li J., Li J., Wei T., Li J. Down-Regulation of MicroRNA-137 Improves High Glucose-Induced Oxidative Stress Injury in Human Umbilical Vein Endothelial Cells by Up-Regulation of AMPKα1. Cell. Physiol. Biochem. 2016;39:847–859. doi: 10.1159/000447795. PubMed DOI
Wang J., Xu R., Wu J., Li Z. MicroRNA-137 Negatively Regulates H2O2-Induced Cardiomyocyte Apoptosis Through CDC42. Med. Sci. Monit. 2015;21:3498–3504. doi: 10.12659/MSM.894648. PubMed DOI PMC
Dooley J., Garcia-Perez J.E., Sreenivasan J., Schlenner S.M., Vangoitsenhoven R., Papadopoulou A.S., Tian L., Schonefeldt S., Serneels L., Deroose C., et al. The microRNA-29 Family Dictates the Balance Between Homeostatic and Pathological Glucose Handling in Diabetes and Obesity. Diabetes. 2016;65:53–61. doi: 10.2337/db15-0770. PubMed DOI PMC
Slusarz A., Pulakat L. The two faces of miR-29. J. Cardiovasc. Med. 2015;16:480–490. doi: 10.2459/JCM.0000000000000246. PubMed DOI PMC
Widlansky M.E., Jensen D.M., Wang J., Liu Y., Geurts A.M., Kriegel A.J., Liu P., Ying R., Zhang G., Casati M., et al. miR-29 contributes to normal endothelial function and can restore it in cardiometabolic disorders. EMBO Mol. Med. 2018:e8046. doi: 10.15252/emmm.201708046. PubMed DOI PMC
Zhang X., Wang L., Su D., Zhu D., Li Q., Chi M. MicroRNA-29b Promotes the Adipogenic Differentiation of Human Adipose Tissue-Derived Stromal Cells. Obesity. 2016;24:1097–1105. doi: 10.1002/oby.21467. PubMed DOI
Shang J., Yao Y., Fan X., Lei S., Li J., Liu H., Zhou Y. miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways. Biochim. Biophys. Acta. 2016;1863:520–532. doi: 10.1016/j.bbamcr.2016.01.005. PubMed DOI
Pandey A.K., Verma G., Vig S., Srivastava S., Srivastava A.K., Datta M. miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells. Mol. Cell. Endocrinol. 2011;332:125–133. doi: 10.1016/j.mce.2010.10.004. PubMed DOI
Frost R.J.A., Olson E.N. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc. Natl. Acad. Sci. USA. 2011;108:21075–21080. doi: 10.1073/pnas.1118922109. PubMed DOI PMC
Shi C., Huang F., Gu X., Zhang M., Wen J., Wang X., You L., Cui X., Ji C., Guo X. Adipogenic miRNA and Meta-signature miRNAs involved in human adipocyte differentiation and obesity. Oncotarget. 2016;7:40830–40845. doi: 10.18632/oncotarget.8518. PubMed DOI PMC
Hou W.H., Tian Q., Steuerwald N.M., Schrum L.W., Bonkovsky H.L. The let-7 microRNA enhances heme oxygenase-1 by suppressing Bach1 and attenuates oxidant injury in human hepatocytes. Biochim. Biophys. Acta. 2012;1819:1113–1122. doi: 10.1016/j.bbagrm.2012.06.001. PubMed DOI PMC
Yin H., Pasut A., Soleimani V.D., Bentzinger C.F., Antoun G., Thorn S., Seale P., Fernando P., van Ijcken W., Grosveld F., et al. MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16. Cell Metab. 2013;17:210–224. doi: 10.1016/j.cmet.2013.01.004. PubMed DOI PMC
He H., Chen K., Wang F., Zhao L., Wan X., Wang L., Mo Z. miR-204-5p promotes the adipogenic differentiation of human adipose-derived mesenchymal stem cells by modulating DVL3 expression and suppressing Wnt/β-catenin signaling. Int. J. Mol. Med. 2015;35:1587–1595. doi: 10.3892/ijmm.2015.2160. PubMed DOI PMC
Xu G., Chen J., Jing G., Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat. Med. 2013;19:1141–1146. doi: 10.1038/nm.3287. PubMed DOI PMC
Zhu L., Chen L., Shi C., Xu G., Xu L., Zhu L., Guo X., Ni Y., Cui Y., Ji C. MiR-335, an Adipogenesis-Related MicroRNA, is Involved in Adipose Tissue Inflammation. Cell Biochem. Biophys. 2014;68:283–290. doi: 10.1007/s12013-013-9708-3. PubMed DOI
Nakanishi N., Nakagawa Y., Tokushige N., Aoki N., Matsuzaka T., Ishii K., Yahagi N., Kobayashi K., Yatoh S., Takahashi A., et al. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochem. Biophys. Res. Commun. 2009;385:492–496. doi: 10.1016/j.bbrc.2009.05.058. PubMed DOI
Oger F., Gheeraert C., Mogilenko D., Benomar Y., Molendi-Coste O., Bouchaert E., Caron S., Dombrowicz D., Pattou F., Duez H., et al. Cell-Specific Dysregulation of MicroRNA Expression in Obese White Adipose Tissue. J. Clin. Endocrinol. Metab. 2014;99:2821–2833. doi: 10.1210/jc.2013-4259. PubMed DOI
Gerin I., Clerbaux L.-A., Haumont O., Lanthier N., Das A.K., Burant C.F., Leclercq I.A., MacDougald O.A., Bommer G.T. Expression of miR-33 from an SREBP2 Intron Inhibits Cholesterol Export and Fatty Acid Oxidation. J. Biol. Chem. 2010;285:33652–33661. doi: 10.1074/jbc.M110.152090. PubMed DOI PMC
Rayner K.J., Suarez Y., Davalos A., Parathath S., Fitzgerald M.L., Tamehiro N., Fisher E.A., Moore K.J., Fernandez-Hernando C. MiR-33 Contributes to the Regulation of Cholesterol Homeostasis. Science. 2010;328:1570–1573. doi: 10.1126/science.1189862. PubMed DOI PMC
Moore K.J., Rayner K.J., Suarez Y., Fernandez-Hernando C. The Role of MicroRNAs in Cholesterol Efflux and Hepatic Lipid Metabolism. Annu. Rev. Nutr. 2011;31:49–63. doi: 10.1146/annurev-nutr-081810-160756. PubMed DOI PMC
Novák J., Olejníčková V., Tkáčová N., Santulli G. Mechanistic Role of MicroRNAs in Coupling Lipid Metabolism and Atherosclerosis. In: Santulli G., editor. microRNA: Basic Science: From Molecular Biology to Clinical Practice. Springer; Cham, Switzerland: 2015. pp. 79–100. PubMed PMC
Karunakaran D., Richards L., Geoffrion M., Barrette D., Gotfrit R.J., Harper M.E., Rayner K.J. Therapeutic Inhibition of miR-33 Promotes Fatty Acid Oxidation but Does Not Ameliorate Metabolic Dysfunction in Diet-Induced Obesity. Arterioscler. Thromb. Vasc. Biol. 2015;35:2536–2543. doi: 10.1161/ATVBAHA.115.306404. PubMed DOI PMC
Yang Z., Bian C., Zhou H., Huang S., Wang S., Liao L., Zhao R. MicroRNA hsa-miR-138 Inhibits Adipogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells through Adenovirus EID-1. Stem Cells Dev. 2011;20:259–267. doi: 10.1089/scd.2010.0072. PubMed DOI
Lin Q., Gao Z.G., Alarcon R.M., Ye J.P., Yun Z. A role of miR-27 in the regulation of adipogenesis. FEBS J. 2009;276:2348–2358. doi: 10.1111/j.1742-4658.2009.06967.x. PubMed DOI PMC
Takahashi K., Sasano T., Sugiyama K., Kurokawa J., Tamura N., Soejima Y., Sawabe M., Isobe M., Furukawa T. High-fat diet increases vulnerability to atrial arrhythmia by conduction disturbance via miR-27b. J. Mol. Cell. Cardiol. 2016;90:38–46. doi: 10.1016/j.yjmcc.2015.11.034. PubMed DOI
Karbiener M., Fischer C., Nowitsch S., Opriessnig P., Papak C., Ailhaud G., Dani C., Amri E.Z., Scheideler M. microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem. Biophys. Res. Commun. 2009;390:247–251. doi: 10.1016/j.bbrc.2009.09.098. PubMed DOI
Kang T., Lu W., Xu W., Anderson L., Bacanamwo M., Thompson W., Chen Y.E., Liu D. MicroRNA-27 (miR-27) Targets Prohibitin and Impairs Adipocyte Differentiation and Mitochondria! Function in Human Adipose-derived Stem Cells. J. Biol. Chem. 2013;288:34394–34402. doi: 10.1074/jbc.M113.514372. PubMed DOI PMC
Kong X.C., Yu J., Bi J.H., Qi H.M., Di W.J., Wu L., Wang L., Zha J.M., Lv S., Zhang F., et al. Glucocorticoids Transcriptionally Regulate miR-27b Expression Promoting Body Fat Accumulation Via Suppressing the Browning of White Adipose Tissue. Diabetes. 2015;64:393–404. doi: 10.2337/db14-0395. PubMed DOI PMC
Chen S., Xu X., Ning L., Jiang W., Xing C., Tang Q., Huang H. miR-27 Impairs the Adipogenic Lineage Commitment via Targeting Lysyl Oxidase. Obesity. 2015;23:2445–2453. doi: 10.1002/oby.21319. PubMed DOI
Zhu Y., Zhang X., Ding X., Wang H., Chen X., Zhao H., Jia Y., Liu S., Liu Y. miR-27 inhibits adipocyte differentiation via suppressing CREB expression. Acta Biochim. Biophys. Sin. 2014;46:590–596. doi: 10.1093/abbs/gmu036. PubMed DOI
Ramming T., Hansen H.G., Nagata K., Ellgaard L., Appenzeller-Herzog C. GPx8 peroxidase prevents leakage of H2O2 from the endoplasmic reticulum. Free Radic. Biol. Med. 2014;70:106–116. doi: 10.1016/j.freeradbiomed.2014.01.018. PubMed DOI
Yoboue E.D., Rimessi A., Anelli T., Pinton P., Sitia R. Regulation of calcium fluxes by GPX8, a type-II transmembrane peroxidase enriched at the mitochondria-associated endoplasmic reticulum membrane. Antioxid. Redox Signal. 2017;27:583–595. doi: 10.1089/ars.2016.6866. PubMed DOI
Bosello-Travain V., Forman H.J., Roveri A., Toppo S., Ursini F., Venerando R., Warnecke C., Zaccarin M., Maiorino M. Glutathione peroxidase 8 is transcriptionally regulated by HIFα and modulates growth factor signaling in HeLa cells. Free Radic. Biol. Med. 2015;81:58–68. doi: 10.1016/j.freeradbiomed.2014.12.020. PubMed DOI
Morikawa K., Gouttenoire J., Hernandez C., Dao Thi V.L., Tran H.T., Lange C.M., Dill M.T., Heim M.H., Donze O., Penin F., et al. Quantitative proteomics identifies the membrane-associated peroxidase GPx8 as a cellular substrate of the hepatitis C virus NS3-4A protease. Hepatology. 2014;59:423–433. doi: 10.1002/hep.26671. PubMed DOI
Song G., Xu G., Ji C., Shi C., Shen Y., Chen L., Zhu L., Yang L., Zhao Y., Guo X. The role of microRNA-26b in human adipocyte differentiation and proliferation. Gene. 2014;533:481–487. doi: 10.1016/j.gene.2013.10.011. PubMed DOI
Xu G., Ji C., Song G., Shi C., Shen Y., Chen L., Yang L., Zhao Y., Guo X. Obesity-associated microRNA-26b regulates the proliferation of human preadipocytes via arrest of the G1/S transition. Mol. Med. Rep. 2015;12:3648–3654. doi: 10.3892/mmr.2015.3858. PubMed DOI
Prats-Puig A., Ortega F.J., Mercader J.M., Moreno-Navarrete J.M., Moreno M., Bonet N., Ricart W., Lopez-Bermejo A., Fernandez-Real J.M. Changes in Circulating MicroRNAs Are Associated With Childhood Obesity. J. Clin. Endocrinol. Metab. 2013;98:E1655–E1660. doi: 10.1210/jc.2013-1496. PubMed DOI
Kim Y.J., Hwang S.H., Lee S.Y., Shin K.K., Cho H.H., Bae Y.C., Jung J.S. miR-486-5p Induces Replicative Senescence of Human Adipose Tissue-Derived Mesenchymal Stem Cells and Its Expression Is Controlled by High Glucose. Stem Cells Dev. 2012;21:1749–1760. doi: 10.1089/scd.2011.0429. PubMed DOI
Aziz F. The emerging role of miR-223 as novel potential diagnostic and therapeutic target for inflammatory disorders. Cell. Immunol. 2016;303:1–6. doi: 10.1016/j.cellimm.2016.04.003. PubMed DOI
Wen D.Z., Qiao P., Wang L. Circulating microRNA-223 as a potential biomarker for obesity. Obes. Res. Clin. Pract. 2015;9:398–404. doi: 10.1016/j.orcp.2015.01.006. PubMed DOI
Smutny T., Tebbens J.D., Pavek P. Bioinformatic analysis of miRNAs targeting the key nuclear receptors regulating CYP3A4 gene expression: The challenge of the CYP3A4 “missing heritability’’ enigma. J. Appl. Biomed. 2015;13:181–188. doi: 10.1016/j.jab.2015.04.002. DOI
Cheng C., Bhardwaj N., Gerstein M. The relationship between the evolution of microRNA targets and the length of their UTRs. BMC Genom. 2009;10:431. doi: 10.1186/1471-2164-10-431. PubMed DOI PMC
Steinbrenner H., Speckmann B., Klotz L.O. Selenoproteins: Antioxidant selenoenzymes and beyond. Arch. Biochem. Biophys. 2016;595:113–119. doi: 10.1016/j.abb.2015.06.024. PubMed DOI
Brandao B.B., Guerra B.A., Mori M.A. Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. Redox Biol. 2017;12:82–102. doi: 10.1016/j.redox.2017.01.020. PubMed DOI PMC
Giroud M., Karbiener M., Pisani D.F., Ghandour R.A., Beranger G.E., Niemi T., Taittonen M., Nuutila P., Virtanen K.A., Langin D., et al. Let-7i-5p represses brite adipocyte function in mice and humans. Sci. Rep. 2016;6:28613. doi: 10.1038/srep28613. PubMed DOI PMC
Kang M., Yan L.M., Li Y.M., Zhang W.Y., Wang H., Tang A.Z., Ou H.S. Inhibitory effect of microRNA-24 on fatty acid-binding protein expression on 3T3-L1 adipocyte differentiation. Genet. Mol. Res. 2013;12:5267–5277. doi: 10.4238/2013.November.7.1. PubMed DOI
Orian L., Mauri P., Roveri A., Toppo S., Benazzi L., Bosello-Travain V., De Palma A., Maiorino M., Miotto G., Zaccarin M., et al. Selenocysteine oxidation in glutathione peroxidase catalysis: An MS-supported quantum mechanics study. Free Radic. Biol. Med. 2015;87:1–14. doi: 10.1016/j.freeradbiomed.2015.06.011. PubMed DOI
Johansson L., Gafvelin G., Arner E.S. Selenocysteine in proteins-properties and biotechnological use. Biochim. Biophys. Acta. 2005;1726:1–13. doi: 10.1016/j.bbagen.2005.05.010. PubMed DOI
Pasquinelli A.E. MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 2012;13:271–282. doi: 10.1038/nrg3162. PubMed DOI
Podshivalova K., Salomon D.R. MicroRNA regulation of T-lymphocyte immunity: Modulation of molecular networks responsible for T-cell activation, differentiation, and development. Crit. Rev. Immunol. 2013;33:435–476. doi: 10.1615/CritRevImmunol.2013006858. PubMed DOI PMC
Ben-Hamo R., Efroni S. MicroRNA regulation of molecular pathways as a generic mechanism and as a core disease phenotype. Oncotarget. 2015;6:1594–1604. doi: 10.18632/oncotarget.2734. PubMed DOI PMC
Saydam O., Shen Y., Wurdinger T., Senol O., Boke E., James M.F., Tannous B.A., Stemmer-Rachamimov A.O., Yi M., Stephens R.M., et al. Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/β-catenin signaling pathway. Mol. Cell. Biol. 2009;29:5923–5940. doi: 10.1128/MCB.00332-09. PubMed DOI PMC
Karbiener M., Neuhold C., Opriessnig P., Prokesch A., Bogner-Strauss J.G., Scheideler M. MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol. 2011;8:850–860. doi: 10.4161/rna.8.5.16153. PubMed DOI
Yeh C.L., Cheng I.C., Hou Y.C., Wang W., Yeh S.L. MicroRNA-125a-3p expression in abdominal adipose tissues is associated with insulin signalling gene expressions in morbid obesity: Observations in Taiwanese. Asia Pac. J. Clin. Nutr. 2014;23:331–337. PubMed
Chen K., He H., Xie Y., Zhao L., Zhao S., Wan X., Yang W., Mo Z. miR-125a-3p and miR-483-5p promote adipogenesis via suppressing the RhoA/ROCK1/ERK1/2 pathway in multiple symmetric lipomatosis. Sci. Rep. 2015;5:11909. doi: 10.1038/srep11909. PubMed DOI PMC
Lavery C.A., Kurowska-Stolarska M., Holmes W.M., Donnelly I., Caslake M., Collier A., Baker A.H., Miller A.M. miR-34a(-/-) Mice are Susceptible to Diet-Induced Obesity. Obesity. 2016;24:1741–1751. doi: 10.1002/oby.21561. PubMed DOI PMC
Fu T., Choi S.G., Huang Z., Suino-Powell K., Xu H.E., Kemper B., Kemper J.K. MicroRNA 34a Inhibits Beige and Brown Fat Formation in Obesity in Part by Suppressing Adipocyte Fibroblast Growth Factor 21 Signaling and SIRT1 Function. Mol. Cell. Biol. 2014;34:4130–4142. doi: 10.1128/MCB.00596-14. PubMed DOI PMC
Nesca V., Guay C., Jacovetti C., Menoud V., Peyot M.L., Laybutt D.R., Prentki M., Regazzi R. Identification of particular groups of microRNAs that positively or negatively impact on β cell function in obese models of type 2 diabetes. Diabetologia. 2013;56:2203–2212. doi: 10.1007/s00125-013-2993-y. PubMed DOI
Fu T., Kemper J.K. MicroRNA-34a and Impaired FGF19/21 Signaling in Obesity. Vitam. Horm. 2016;101:175–196. PubMed PMC