MicroRNAs as Potential Regulators of Glutathione Peroxidases Expression and Their Role in Obesity and Related Pathologies

. 2018 Apr 14 ; 19 (4) : . [epub] 20180414

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29662007

Glutathione peroxidases (GPxs) belong to the eight-member family of phylogenetically related enzymes with different cellular localization, but distinct antioxidant function. Several GPxs are important selenoproteins. Dysregulated GPx expression is connected with severe pathologies, including obesity and diabetes. We performed a comprehensive bioinformatic analysis using the programs miRDB, miRanda, TargetScan, and Diana in the search for hypothetical microRNAs targeting 3'untranslated regions (3´UTR) of GPxs. We cross-referenced the literature for possible intersections between our results and available reports on identified microRNAs, with a special focus on the microRNAs related to oxidative stress, obesity, and related pathologies. We identified many microRNAs with an association with oxidative stress and obesity as putative regulators of GPxs. In particular, miR-185-5p was predicted by a larger number of programs to target six GPxs and thus could play the role as their master regulator. This microRNA was altered by selenium deficiency and can play a role as a feedback control of selenoproteins' expression. Through the bioinformatics analysis we revealed the potential connection of microRNAs, GPxs, obesity, and other redox imbalance related diseases.

Zobrazit více v PubMed

Chartoumpekis D.V., Zaravinos A., Ziros P.G., Iskrenova R.P., Psyrogiannis A.I., Kyriazopoulou V.E., Habeos I.G. Differential Expression of MicroRNAs in Adipose Tissue after Long-Term High-Fat Diet-Induced Obesity in Mice. PLoS ONE. 2012;7:e34872. doi: 10.1371/journal.pone.0034872. PubMed DOI PMC

Aleksandrova K., Mozaffarian D., Pischon T. Addressing the Perfect Storm: Biomarkers in Obesity and Pathophysiology of Cardiometabolic Risk. Clin. Chem. 2018;64:142–153. doi: 10.1373/clinchem.2017.275172. PubMed DOI

Espinosa-Diez C., Miguel V., Mennerich D., Kietzmann T., Sanchez-Perez P., Cadenas S., Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015;6:183–197. doi: 10.1016/j.redox.2015.07.008. PubMed DOI PMC

Bar-Or D., Bar-Or R., Rael L.T., Brody E.N. Oxidative stress in severe acute illness. Redox Biol. 2015;4:340–345. doi: 10.1016/j.redox.2015.01.006. PubMed DOI PMC

Brigelius-Flohe R., Maiorino M. Glutathione peroxidases. Biochim. Biophys. Acta. 2013;1830:3289–3303. doi: 10.1016/j.bbagen.2012.11.020. PubMed DOI

Gorlach A., Dimova E.Y., Petry A., Martinez-Ruiz A., Hernansanz-Agustin P., Rolo A.P., Palmeira C.M., Kietzmann T. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved? Redox Biol. 2015;6:372–385. doi: 10.1016/j.redox.2015.08.016. PubMed DOI PMC

Herbette S., Roeckel-Drevet P., Drevet J.R. Seleno-independent glutathione peroxidases—More than simple antioxidant scavengers. FEBS J. 2007;274:2163–2180. doi: 10.1111/j.1742-4658.2007.05774.x. PubMed DOI

Brigelius-Flohe R., Kipp A. Glutathione peroxidases in different stages of carcinogenesis. Biochim. Biophys. Acta. 2009;1790:1555–1568. doi: 10.1016/j.bbagen.2009.03.006. PubMed DOI

Ufer C., Wang C.C. The roles of glutathione peroxidases during embryo development. Front. Mol. Neurosci. 2011;4:12. doi: 10.3389/fnmol.2011.00012. PubMed DOI PMC

Hernandez C., Parra A., Trejo C., Diaz C., Olguin A., Perez A. Association Between Single Nucleotide Polymorphism Pro198Leu of Glutathione Peroxidase and Normal Weight, Overweight and Obesity in Mexican Population. FASEB J. 2013;27

McClung J.P., Roneker C.A., Mu W., Lisk D.J., Langlais P., Liu F., Lei X.G. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc. Natl. Acad. Sci. USA. 2004;101:8852–8857. doi: 10.1073/pnas.0308096101. PubMed DOI PMC

Lee Y.S., Kim A.Y., Choi J.W., Kim M., Yasue S., Son H.J., Masuzaki H., Park K.S., Kim J.B. Dysregulation of adipose glutathione peroxidase 3 in obesity contributes to local and systemic oxidative stress. Mol. Endocrinol. 2008;22:2176–2189. doi: 10.1210/me.2008-0023. PubMed DOI PMC

Ruperez A.I., Olza J., Gil-Campos M., Leis R., Mesa M.D., Tojo R., Canete R., Gil A., Aguilera C.M. Association of Genetic Polymorphisms for Glutathione Peroxidase Genes with Obesity in Spanish Children. J. Nutrigenet. Nutrigenom. 2014;7:130–142. doi: 10.1159/000368833. PubMed DOI

Bartel D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002. PubMed DOI PMC

Hudder A., Novak R.F. miRNAs: Effectors of environmental influences on gene expression and disease. Toxicol. Sci. 2008;103:228–240. doi: 10.1093/toxsci/kfn033. PubMed DOI PMC

Deiuliis J.A. MicroRNAs as regulators of metabolic disease: Pathophysiologic significance and emerging role as biomarkers and therapeutics. Int. J. Obes. 2016;40:88–101. doi: 10.1038/ijo.2015.170. PubMed DOI PMC

Pescador N., Perez-Barba M., Ibarra J.M., Corbaton A., Martinez-Larrad M.T., Serrano-Rios M. Serum Circulating microRNA Profiling for Identification of Potential Type 2 Diabetes and Obesity Biomarkers. PLoS ONE. 2013;8:e77251. doi: 10.1371/journal.pone.0077251. PubMed DOI PMC

Cheng X.H., Ku C.H., Siow R.C.M. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis. Free Radic. Biol. Med. 2013;64:4–11. doi: 10.1016/j.freeradbiomed.2013.07.025. PubMed DOI

Quintana-Cabrera R., Fernandez-Fernandez S., Bobo-Jimenez V., Escobar J., Sastre J., Almeida A., Bolanos J.P. γ-Glutamylcysteine detoxifies reactive oxygen species by acting as glutathione peroxidase-1 cofactor. Nat. Commun. 2012;3:718. doi: 10.1038/ncomms1722. PubMed DOI PMC

Vats P., Sagar N., Singh T.P., Banerjee M. Association of Superoxide dismutases (SOD1 and SOD2) and Glutathione peroxidase 1 (GPx1) gene polymorphisms with type 2 diabetes mellitus. Free Radic. Res. 2015;49:17–24. doi: 10.3109/10715762.2014.971782. PubMed DOI

Wang L., Huang H., Fan Y., Kong B., Hu H., Hu K., Guo J., Mei Y., Liu W. Effects of Downregulation of MicroRNA-181a on H2O2-Induced H9c2 Cell Apoptosis via the Mitochondrial Apoptotic Pathway. Oxid. Med. Cell. Longev. 2014;2014:960362. doi: 10.1155/2014/960362. PubMed DOI PMC

La Sala L., Cattaneo M., De Nigris V., Pujadas G., Testa R., Bonfigli A.R., Genovese S., Ceriello A. Oscillating glucose induces microRNA-185 and impairs an efficient antioxidant response in human endothelial cells. Cardiovasc. Diabetol. 2016;15:71. doi: 10.1186/s12933-016-0390-9. PubMed DOI PMC

Yentrapalli R., Azimzadeh O., Kraemer A., Malinowsky K., Sarioglu H., Becker K.F., Atkinson M.J., Moertl S., Tapio S. Quantitative and integrated proteome and microRNA analysis of endothelial replicative senescence. J. Proteom. 2015;126:12–23. doi: 10.1016/j.jprot.2015.05.023. PubMed DOI

Korkmaz G., le Sage C., Tekirdag K.A., Agami R., Gozuacik D. miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1. Autophagy. 2012;8:165–176. doi: 10.4161/auto.8.2.18351. PubMed DOI

Milagro F.I., Miranda J., Portillo M.P., Fernandez-Quintela A., Campion J., Martinez J.A. High-Throughput Sequencing of microRNAs in Peripheral Blood Mononuclear Cells: Identification of Potential Weight Loss Biomarkers. PLoS ONE. 2013;8:e54319. doi: 10.1371/journal.pone.0054319. PubMed DOI PMC

Liu P., Zhao H., Wang R., Wang P., Tao Z., Gao L., Yan F., Liu X., Yu S., Ji X., et al. MicroRNA-424 Protects Against Focal Cerebral Ischemia and Reperfusion Injury in Mice by Suppressing Oxidative Stress. Stroke. 2015;46:513–519. doi: 10.1161/STROKEAHA.114.007482. PubMed DOI

Marchand A., Atassi F., Mougenot N., Clergue M., Codoni V., Berthuin J., Proust C., Tregouet D.A., Hulot J.S., Lompre A.M. miR-322 regulates insulin signaling pathway and protects against metabolic syndrome-induced cardiac dysfunction in mice. Biochim. Biophys. Acta. 2016;1862:611–621. doi: 10.1016/j.bbadis.2016.01.010. PubMed DOI

Wang X., Wang M., Li H., Lan X., Liu L., Li J., Li Y., Li J., Yi J., Du X., et al. Upregulation of miR-497 induces hepatic insulin resistance in E3 rats with HFD-MetS by targeting insulin receptor. Mol. Cell. Endocrinol. 2015;416:57–69. doi: 10.1016/j.mce.2015.08.021. PubMed DOI

Xu M., Wang H., Zhang Y., Zhuang H. Protection of rats spinal cord ischemia-reperfusion injury by inhibition of MiR-497 on inflammation and apoptosis: Possible role in pediatrics. Biomed. Pharmacother. 2016;81:337–344. doi: 10.1016/j.biopha.2016.04.028. PubMed DOI

Shan Z., Yao C., Li Z., Teng Y., Li W., Wang J., Ye C., Chang G., Huang X., Li X., et al. Differentially expressed microRNAs at different stages of atherosclerosis in ApoE-deficient mice. Chin. Med. J. 2013;126:515–520. PubMed

Mimura S., Iwama H., Kato K., Nomura K., Kobayashi M., Yoneyama H., Miyoshii H., Tani J., Morishita A., Himoto T., et al. Profile of microRNAs associated with aging in rat liver. Int. J. Mol. Med. 2014;34:1065–1072. doi: 10.3892/ijmm.2014.1892. PubMed DOI

Espinosa-Diez C., Fierro-Fernandez M., Sanchez-Gomez F., Rodriguez-Pascual F., Alique M., Ruiz-Ortega M., Beraza N., Martinez-Chantar M.L., Fernandez-Hernando C., Lamas S. Targeting of γ-Glutamyl-Cysteine Ligase by miR-433 Reduces Glutathione Biosynthesis and Promotes TGF-β-Dependent Fibrogenesis. Antioxid. Redox Signal. 2015;23:1092–1105. doi: 10.1089/ars.2014.6025. PubMed DOI PMC

Banning A., Deubel S., Kluth D., Zhou Z.W., Brigelius-Flohe R. The GI-GPx gene is a target for Nrf2. Mol. Cell. Biol. 2005;25:4914–4923. doi: 10.1128/MCB.25.12.4914-4923.2005. PubMed DOI PMC

Florian S., Wingler K., Schmehl K., Jacobasch G., Kreuzer O.J., Meyerhof W., Brigelius-Flohe R. Cellular and subcellular localization of gastrointestinal glutathione peroxidase in normal and malignant human intestinal tissue. Free Radic. Res. 2001;35:655–663. doi: 10.1080/10715760100301181. PubMed DOI

Banning A., Kipp A., Schmitmeier S., Lowinger M., Florian S., Krehl S., Thalmann S., Thierbach R., Steinberg P., Brigelius-Flohe R. Glutathione Peroxidase 2 Inhibits Cyclooxygenase-2-Mediated Migration and Invasion of HT-29 Adenocarcinoma Cells but Supports Their Growth as Tumors in Nude Mice. Cancer Res. 2008;68:9746–9753. doi: 10.1158/0008-5472.CAN-08-1321. PubMed DOI

Baek I.J., Yon J.M., Lee S.R., Kim M.R., Hong J.T., Lee B.J., Yun Y.W., Nam S.Y. Differential expression of gastrointestinal glutathione peroxidase (GI-GPx) gene during mouse organogenesis. Anat. Histol. Embryol. 2011;40:210–218. doi: 10.1111/j.1439-0264.2010.01061.x. PubMed DOI

Berry M.J. Insights into the hierarchy of selenium incorporation. Nat. Genet. 2005;37:1162–1163. doi: 10.1038/ng1105-1162. PubMed DOI

Maciel-Dominguez A., Swan D., Ford D., Hesketh J. Selenium alters miRNA profile in an intestinal cell line: Evidence that miR-185 regulates expression of GPX2 and SEPSH2. Mol. Nutr. Food Res. 2013;57:2195–2205. doi: 10.1002/mnfr.201300168. PubMed DOI

Wu L., Dai X., Zhan J., Zhang Y., Zhang H., Zhang H., Zeng S., Xi W. Profiling peripheral microRNAs in obesity and type 2 diabetes mellitus. APMIS. 2015;123:580–585. doi: 10.1111/apm.12389. PubMed DOI

Xu Y., Fang F., Zhang J.Y., Josson S., St. Clair W.H., St. Clair D.K. miR-17 Suppresses Tumorigenicity of Prostate Cancer by Inhibiting Mitochondrial Antioxidant Enzymes. PLoS ONE. 2010;5:e14356. doi: 10.1371/journal.pone.0014356. PubMed DOI PMC

Magenta A., Dellambra E., Ciarapica R., Capogrossi M.C. Oxidative stress, microRNAs and cytosolic calcium homeostasis. Cell Calcium. 2016;60:207–217. doi: 10.1016/j.ceca.2016.04.002. PubMed DOI

Delic D., Eisele C., Schmid R., Luippold G., Mayoux E., Grempler R. Characterization of Micro-RNA Changes during the Progression of Type 2 Diabetes in Zucker Diabetic Fatty Rats. Int. J. Mol. Sci. 2016;17:665. doi: 10.3390/ijms17050665. PubMed DOI PMC

Bao L., Fu X., Si M., Wang Y., Ma R., Ren X., Lv H. MicroRNA-185 Targets SOCS3 to Inhibit β-Cell Dysfunction in Diabetes. PLoS ONE. 2015;10:e0116067. doi: 10.1371/journal.pone.0116067. PubMed DOI PMC

Zhang D., Lee H.D., Cao Y., Dela Cruz C.S., Jin Y. miR-185 mediates lung epithelial cell death after oxidative stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016;310:L700–L710. doi: 10.1152/ajplung.00392.2015. PubMed DOI PMC

Yang M., Liu W., Pellicane C., Sahyoun C., Joseph B.K., Gallo-Ebert C., Donigan M., Pandya D., Giordano C., Bata A., et al. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake. J. Lipid Res. 2014;55:226–238. doi: 10.1194/jlr.M041335. PubMed DOI PMC

Wang X., Zhan X., Li X., Yu J., Liu X. MicroRNA-185 regulates expression of lipid metabolism genes and improves insulin sensitivity in mice with non-alcoholic fatty liver disease. World J. Gastroenterol. 2014;20:17914–17923. doi: 10.3748/wjg.v20.i47.17914. PubMed DOI PMC

Rotllan N., Price N., Pati P., Goedeke L., Fernandez-Hernando C. microRNAs in lipoprotein metabolism and cardiometabolic disorders. Atherosclerosis. 2016;246:352–360. doi: 10.1016/j.atherosclerosis.2016.01.025. PubMed DOI PMC

Ortega F.J., Cardona-Alvarado M.I., Mercader J.M., Moreno-Navarrete J.M., Moreno M., Sabater M., Fuentes-Batllevell N., Ramirez-Chavez E., Ricart W., Molina-Torres J., et al. Circulating profiling reveals the effect of a polyunsaturated fatty acid-enriched diet on common microRNAs. J. Nutr. Biochem. 2015;26:1095–1101. doi: 10.1016/j.jnutbio.2015.05.001. PubMed DOI

Sangokoya C., Telen M.J., Chi J.T. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood. 2010;116:4338–4348. doi: 10.1182/blood-2009-04-214817. PubMed DOI PMC

Barbagallo D., Piro S., Condorelli A.G., Mascali L.G., Urbano F., Parrinello N., Monello A., Statello L., Ragusa M., Rabuazzo A.M., et al. miR-296-3p, miR-298-5p and their downstream networks are causally involved in the higher resistance of mammalian pancreatic α cells to cytokine-induced apoptosis as compared to β cells. BMC Genom. 2013;14:62. doi: 10.1186/1471-2164-14-62. PubMed DOI PMC

Ding L., Ai D., Wu R., Zhang T., Jing L., Lu J., Zhong L. Identification of the differential expression of serum microRNA in type 2 diabetes. Biosci. Biotechnol. Biochem. 2016;80:461–465. doi: 10.1080/09168451.2015.1107460. PubMed DOI

Thulasingam S., Massilamany C., Gangaplara A., Dai H.J., Yarbaeva S., Subramaniam S., Riethoven J.J., Eudy J., Lou M., Reddy J. miR-27b*, an oxidative stress-responsive microRNA modulates nuclear factor-κB pathway in RAW 264.7 cells. Mol. Cell. Biochem. 2011;352:181–188. doi: 10.1007/s11010-011-0752-2. PubMed DOI

Can U., Buyukinan M., Yerlikaya F.H. The investigation of circulating microRNAs associated with lipid metabolism in childhood obesity. Pediatr. Obes. 2016;11:228–234. doi: 10.1111/ijpo.12050. PubMed DOI

Burk R.F., Olson G.E., Winfrey V.P., Hill K.E., Yin D. Glutathione peroxidase-3 produced by the kidney binds to a population of basement membranes in the gastrointestinal tract and in other tissues. Am. J. Physiol. Gastrointest. Liver Physiol. 2011;301:G32–G38. doi: 10.1152/ajpgi.00064.2011. PubMed DOI PMC

Baez-Duarte B.G., Zamora-Ginez I., Mendoza-Carrera F., Ruiz-Vivanco G., Torres-Rasgado E., Gonzalez-Mejia M.E., Garcia-Zapien A., Flores-Martinez S.E., Perez-Fuentes R. Serum levels of glutathione peroxidase 3 in overweight and obese subjects from central Mexico. Arch. Med. Res. 2012;43:541–547. doi: 10.1016/j.arcmed.2012.09.001. PubMed DOI

Roos J., Enlund E., Funcke J.B., Tews D., Holzmann K., Debatin K.M., Wabitsch M., Fischer-Posovszky P. miR-146a-mediated suppression of the inflammatory response in human adipocytes. Sci. Rep. 2016;6:38339. doi: 10.1038/srep38339. PubMed DOI PMC

Kovacs B., Lumayag S., Cowan C., Xu S.B. microRNAs in Early Diabetic Retinopathy in Streptozotocin-Induced Diabetic Rats. Investig. Ophthalmol. Vis. Sci. 2011;52:4402–4409. doi: 10.1167/iovs.10-6879. PubMed DOI

Shen Y., Tian F., Chen Z., Li R., Ge Q., Lu Z. Amplification-based method for microRNA detection. Biosens. Bioelectron. 2015;71:322–331. doi: 10.1016/j.bios.2015.04.057. PubMed DOI

Schmelzer C., Kitano M., Rimbach G., Niklowitz P., Menke T., Hosoe K., Doring F. Effects of Ubiquinol-10 on MicroRNA-146a Expression In Vitro and In Vivo. Mediat. Inflamm. 2009;2009:415437. doi: 10.1155/2009/415437. PubMed DOI PMC

Chen L., Dai Y., Ji C., Yang L., Shi C., Xu G., Pang L., Huang F., Zhang C., Guo X. MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity. Mol. Cell. Endocrinol. 2014;393:65–74. doi: 10.1016/j.mce.2014.05.022. PubMed DOI

Hulsmans M., Van Dooren E., Mathieu C., Holvoet P. Decrease of miR-146b-5p in Monocytes during Obesity Is Associated with Loss of the Anti-Inflammatory but Not Insulin Signaling Action of Adiponectin. PLoS ONE. 2012;7:e32794. doi: 10.1371/journal.pone.0032794. PubMed DOI PMC

Shi C., Zhu L., Chen X., Gu N., Chen L., Zhu L., Yang L., Pang L., Guo X., Ji C., et al. IL-6 and TNF-α Induced Obesity-Related Inflammatory Response Through Transcriptional Regulation of miR-146b. J. Interferon Cytokine Res. 2014;34:342–348. doi: 10.1089/jir.2013.0078. PubMed DOI PMC

Li J., He S., Feng Z., Zhao L., Jia W., Liu P., Zhu Y., Jian Z., Xiao Y. MicroRNA-146b inhibition augments hypoxia-induced cardiomyocyte apoptosis. Mol. Med. Rep. 2015;12:6903–6910. doi: 10.3892/mmr.2015.4333. PubMed DOI

Xu X., Wang S., Liu J., Dou D., Liu L., Chen Z., Ye L., Liu H., He Q., Raj J.U., et al. Hypoxia induces downregulation of soluble guanylyl cyclase β(1) by miR-34c-5p. J. Cell Sci. 2012;125:6117–6126. doi: 10.1242/jcs.113381. PubMed DOI PMC

Baldeon R.L., Weigelt K., de Wit H., Ozcan B., van Oudenaren A., Sempertegui F., Sijbrands E., Grosse L., van Zonneveld A.J., Drexhage H.A., et al. Type 2 Diabetes Monocyte MicroRNA and mRNA Expression: Dyslipidemia Associates with Increased Differentiation-Related Genes but Not Inflammatory Activation. PLoS ONE. 2015;10:e0129421. doi: 10.1371/journal.pone.0129421. PubMed DOI PMC

Nardelli C., Iaffaldano L., Ferrigno M., Labruna G., Maruotti G.M., Quaglia F., Capobianco V., Di Noto R., Del Vecchio L., Martinelli P., et al. Characterization and predicted role of the microRNA expression profile in amnion from obese pregnant women. Int. J. Obes. 2014;38:466–469. doi: 10.1038/ijo.2013.121. PubMed DOI

Zaragosi L.E., Wdziekonski B., Le Brigand K., Villageois P., Mari B., Waldmann R., Dani C., Barbry P. Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol. 2011;12:R64. doi: 10.1186/gb-2011-12-7-r64. PubMed DOI PMC

Ferrante S.C., Nadler E.P., Pillai D.K., Hubal M.J., Wang Z.Y., Wang J.M., Gordish-Dressman H., Koeck E., Sevilla S., Wiles A.A., et al. Adipocyte-derived exosomal miRNAs: A novel mechanism for obesity-related disease. Pediatr. Res. 2015;77:447–454. doi: 10.1038/pr.2014.202. PubMed DOI PMC

Jin M., Wu Y., Wang J., Chen J., Huang Y., Rao J., Feng C. MicroRNA-24 promotes 3T3-L1 adipocyte differentiation by directly targeting the MAPK7 signaling. Biochem. Biophys. Res. Commun. 2016;474:76–82. doi: 10.1016/j.bbrc.2016.04.073. PubMed DOI

Ng R., Wu H., Xiao H., Chen X., Willenbring H., Steer C.J., Song G. Inhibition of MicroRNA-24 Expression in Liver Prevents Hepatic Lipid Accumulation and Hyperlipidemia. Hepatology. 2014;60:554–564. doi: 10.1002/hep.27153. PubMed DOI PMC

Ursini F., Heim S., Kiess M., Maiorino M., Roveri A., Wissing J., Flohe L. Dual function of the selenoprotein PHGPx during sperm maturation. Science. 1999;285:1393–1396. doi: 10.1126/science.285.5432.1393. PubMed DOI

Katunga L.A., Gudimella P., Efird J.T., Abernathy S., Mattox T.A., Beatty C., Darden T.M., Thayne K.A., Alwair H., Kypson A.P., et al. Obesity in a model of gpx4 haploinsufficiency uncovers a causal role for lipid-derived aldehydes in human metabolic disease and cardiomyopathy. Mol. Metab. 2015;4:493–506. doi: 10.1016/j.molmet.2015.04.001. PubMed DOI PMC

Maes O.C., An J., Sarojini H., Wang E. Murine microRNAs implicated in liver functions and aging process. Mech. Ageing Dev. 2008;129:534–541. doi: 10.1016/j.mad.2008.05.004. PubMed DOI

Gao M., Liu Y., Chen Y., Yin C., Chen J., Liu S. miR-214 protects erythroid cells against oxidative stress by targeting ATF4 and EZH2. Free Radic. Biol. Med. 2016;92:39–49. doi: 10.1016/j.freeradbiomed.2016.01.005. PubMed DOI

Dong X., Liu H., Chen F., Li D., Zhao Y. MiR-214 Promotes the Alcohol-Induced Oxidative Stress via Down-Regulation of Glutathione Reductase and Cytochrome P450 Oxidoreductase in Liver Cells. Alcohol. Clin. Exp. Res. 2014;38:68–77. doi: 10.1111/acer.12209. PubMed DOI

Carreras-Badosa G., Bonmati A., Ortega F.J., Mercader J.M., Guindo-Martinez M., Torrents D., Prats-Puig A., Martinez-Calcerrada J.M., Platero-Gutierrez E., De Zegher F., et al. Altered Circulating miRNA Expression Profile in Pregestational and Gestational Obesity. J. Clin. Endocrinol. Metab. 2015;100:E1446–E1456. doi: 10.1210/jc.2015-2872. PubMed DOI

Dharap A., Pokrzywa C., Murali S., Pandi G., Vemuganti R. MicroRNA miR-324-3p Induces Promoter-Mediated Expression of RelA Gene. PLoS ONE. 2013;8:e79467. doi: 10.1371/journal.pone.0079467. PubMed DOI PMC

Sahu N., Stephan J.P., Cruz D.D., Merchant M., Haley B., Bourgon R., Classon M., Settleman J. Functional screening implicates miR-371-3p and peroxiredoxin 6 in reversible tolerance to cancer drugs. Nat. Commun. 2016;7:12351. doi: 10.1038/ncomms12351. PubMed DOI PMC

Bork S., Horn P., Castoldi M., Hellwig I., Ho A.D., Wagner W. Adipogenic Differentiation of Human Mesenchymal Stromal Cells Is Down-Regulated by microRNA-369-5p and Up-Regulated by microRNA-371. J. Cell. Physiol. 2011;226:2226–2234. doi: 10.1002/jcp.22557. PubMed DOI

Jiang X., Yang L., Pang L., Chen L., Guo X., Ji C., Shi C., Ni Y. Expression of obesity-related miR-1908 in human adipocytes is regulated by adipokines, free fatty acids and hormones. Mol. Med. Rep. 2014;10:1164–1169. doi: 10.3892/mmr.2014.2297. PubMed DOI

Yang L., Shi C., Chen L., Pang L., Xu G., Gu N., Zhu L., Guo X., Ni Y., Ji C. The biological effects of hsa-miR-1908 in human adipocytes. Mol. Biol. Rep. 2015;42:927–935. doi: 10.1007/s11033-014-3830-1. PubMed DOI

Rejraji H., Vernet P., Drevet J.R. GPX5 is present in the mouse caput and cauda epididymidis lumen at three different locations. Mol. Reprod. Dev. 2002;63:96–103. doi: 10.1002/mrd.10136. PubMed DOI

Taylor A., Robson A., Houghton B.C., Jepson C.A., Ford W.C.L., Frayne J. Epididymal specific, selenium-independent GPX5 protects cells from oxidative stress-induced lipid peroxidation and DNA mutation. Hum. Reprod. 2013;28:2332–2342. doi: 10.1093/humrep/det237. PubMed DOI

Yi C., Xie W., Li F., Lv Q., He J., Wu J., Gu D., Xu N., Zhang Y. MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin. FEBS Lett. 2011;585:3303–3309. doi: 10.1016/j.febslet.2011.09.015. PubMed DOI

He Z., Yu J., Zhou C., Ren G., Cong P., Mo D., Chen Y., Liu X. MiR-143 is not essential for adipose development as revealed by in vivo antisense targeting. Biotechnol. Lett. 2013;35:499–507. doi: 10.1007/s10529-012-1112-3. PubMed DOI

Kilic I.D., Dodurga Y., Uludag B., Alihanoglu Y.I., Yildiz B.S., Enli Y., Secme M., Bostanci H.E. microRNA-143 and-223 in obesity. Gene. 2015;560:140–142. doi: 10.1016/j.gene.2015.01.048. PubMed DOI

Latouche C., Natoli A., Reddy-Luthmoodoo M., Heywood S.E., Armitage J.A., Kingwell B.A. MicroRNA-194 Modulates Glucose Metabolism and Its Skeletal Muscle Expression Is Reduced in Diabetes. PLoS ONE. 2016;11:e0155108. doi: 10.1371/journal.pone.0155108. PubMed DOI PMC

Chen Y., Wang X., Yao X., Zhang D., Yang X., Tian S., Wang N. Abated microRNA-195 expression protected mesangial cells from apoptosis in early diabetic renal injury in mice. J. Nephrol. 2012;25:566–576. doi: 10.5301/jn.5000034. PubMed DOI

Krutzfeldt J., Rosch N., Hausser J., Manoharan M., Zavolan M., Stoffel M. MicroRNA-194 is a target of transcription factor 1 (Tcf1, HNF1α) in adult liver and controls expression of frizzled-6. Hepatology. 2012;55:98–107. doi: 10.1002/hep.24658. PubMed DOI

Zhang J., Zhang F., Didelot X., Bruce K.D., Cagampang F.R., Vatish M., Hanson M., Lehnert H., Ceriello A., Byrne C.D. Maternal high fat diet during pregnancy and lactation alters hepatic expression of insulin like growth factor-2 and key microRNAs in the adult offspring. BMC Genom. 2009;10:478. doi: 10.1186/1471-2164-10-478. PubMed DOI PMC

Goltyaev M.V., Varlamova E.G., Novoselov V.I., Fesenko E.E. Determination of mgpx6 and mselv gene mRNA expression during mouse postnatal development. Dokl. Biochem. Biophys. 2014;457:132–133. doi: 10.1134/S1607672914040048. PubMed DOI

Shema R., Kulicke R., Cowley G.S., Stein R., Root D.E., Heiman M. Synthetic lethal screening in the mammalian central nervous system identifies Gpx6 as a modulator of Huntington’s disease. Proc. Natl. Acad. Sci. USA. 2015;112:268–272. doi: 10.1073/pnas.1417231112. PubMed DOI PMC

Gracia A., Miranda J., Fernandez-Quintela A., Eseberri I., Garcia-Lacarte M., Milagro F.I., Martinez J.A., Aguirre L., Portillo M.P. Involvement of miR-539-5p in the inhibition of de novo lipogenesis induced by resveratrol in white adipose tissue. Food Funct. 2016;7:1680–1688. doi: 10.1039/C5FO01090J. PubMed DOI

Wang C., Wan S., Yang T., Niu D., Zhang A., Yang C., Cai J., Wu J., Song J., Zhang C., et al. Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Sci. Rep. 2016;6:20032. doi: 10.1038/srep20032. PubMed DOI PMC

Mentzel C.M.J., Anthon C., Jacobsen M.J., Karlskov-Mortensen P., Bruun C.S., Jorgensen C.B., Gorodkin J., Cirera S., Fredholm M. Gender and Obesity Specific MicroRNA Expression in Adipose Tissue from Lean and Obese Pigs. PLoS ONE. 2015;10:e0131650. doi: 10.1371/journal.pone.0131650. PubMed DOI PMC

Ramachandran D., Roy U., Garg S., Ghosh S., Pathak S., Kolthur-Seetharam U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J. 2011;278:1167–1174. doi: 10.1111/j.1742-4658.2011.08042.x. PubMed DOI

Nguyen V.D., Saaranen M.J., Karala A.R., Lappi A.K., Wang L., Raykhel I.B., Alanen H.I., Salo K.E., Wang C.C., Ruddock L.W. Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation. J. Mol. Biol. 2011;406:503–515. doi: 10.1016/j.jmb.2010.12.039. PubMed DOI

Chen Y., Wei P.C., Hsu J.L., Su F., Lee W.H. NPGPx (GPx7): A novel oxidative stress sensor/transmitter with multiple roles in redox homeostasis. Am. J. Transl. Res. 2016;8:1626–1640. PubMed PMC

Utomo A., Jiang X., Furuta S., Yun J., Levin D.S., Wang Y., Desai K.V., Green J.E., Chen P., Lee W.H. Identification of a novel putative non-selenocysteine containing phospholipid hydroperoxide glutathione peroxidase (NPGPx) essential for alleviating oxidative stress generated from polyunsaturated fatty acids in breast cancer cells. J. Biol. Chem. 2004;279:43522–43529. doi: 10.1074/jbc.M407141200. PubMed DOI

Wei P.C., Hsieh Y.H., Su M.I., Jiang X., Hsu P.H., Lo W.T., Weng J.Y., Jeng Y.M., Wang J.M., Chen P.L., et al. Loss of the oxidative stress sensor NPGPx compromises GRP78 chaperone activity and induces systemic disease. Mol. Cell. 2012;48:747–759. doi: 10.1016/j.molcel.2012.10.007. PubMed DOI PMC

Chang Y.C., Yu Y.H., Shew J.Y., Lee W.J., Hwang J.J., Chen Y.H., Chen Y.R., Wei P.C., Chuang L.M., Lee W.H. Deficiency of NPGPx, an oxidative stress sensor, leads to obesity in mice and human. EMBO Mol. Med. 2013;5:1165–1179. doi: 10.1002/emmm.201302679. PubMed DOI PMC

Shin K.K., Kim Y.S., Kim J.Y., Bae Y.C., Jung J.S. miR-137 Controls Proliferation and Differentiation of Human Adipose Tissue Stromal Cells. Cell. Physiol. Biochem. 2014;33:758–768. doi: 10.1159/000358650. PubMed DOI

Li J., Li J., Wei T., Li J. Down-Regulation of MicroRNA-137 Improves High Glucose-Induced Oxidative Stress Injury in Human Umbilical Vein Endothelial Cells by Up-Regulation of AMPKα1. Cell. Physiol. Biochem. 2016;39:847–859. doi: 10.1159/000447795. PubMed DOI

Wang J., Xu R., Wu J., Li Z. MicroRNA-137 Negatively Regulates H2O2-Induced Cardiomyocyte Apoptosis Through CDC42. Med. Sci. Monit. 2015;21:3498–3504. doi: 10.12659/MSM.894648. PubMed DOI PMC

Dooley J., Garcia-Perez J.E., Sreenivasan J., Schlenner S.M., Vangoitsenhoven R., Papadopoulou A.S., Tian L., Schonefeldt S., Serneels L., Deroose C., et al. The microRNA-29 Family Dictates the Balance Between Homeostatic and Pathological Glucose Handling in Diabetes and Obesity. Diabetes. 2016;65:53–61. doi: 10.2337/db15-0770. PubMed DOI PMC

Slusarz A., Pulakat L. The two faces of miR-29. J. Cardiovasc. Med. 2015;16:480–490. doi: 10.2459/JCM.0000000000000246. PubMed DOI PMC

Widlansky M.E., Jensen D.M., Wang J., Liu Y., Geurts A.M., Kriegel A.J., Liu P., Ying R., Zhang G., Casati M., et al. miR-29 contributes to normal endothelial function and can restore it in cardiometabolic disorders. EMBO Mol. Med. 2018:e8046. doi: 10.15252/emmm.201708046. PubMed DOI PMC

Zhang X., Wang L., Su D., Zhu D., Li Q., Chi M. MicroRNA-29b Promotes the Adipogenic Differentiation of Human Adipose Tissue-Derived Stromal Cells. Obesity. 2016;24:1097–1105. doi: 10.1002/oby.21467. PubMed DOI

Shang J., Yao Y., Fan X., Lei S., Li J., Liu H., Zhou Y. miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways. Biochim. Biophys. Acta. 2016;1863:520–532. doi: 10.1016/j.bbamcr.2016.01.005. PubMed DOI

Pandey A.K., Verma G., Vig S., Srivastava S., Srivastava A.K., Datta M. miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells. Mol. Cell. Endocrinol. 2011;332:125–133. doi: 10.1016/j.mce.2010.10.004. PubMed DOI

Frost R.J.A., Olson E.N. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc. Natl. Acad. Sci. USA. 2011;108:21075–21080. doi: 10.1073/pnas.1118922109. PubMed DOI PMC

Shi C., Huang F., Gu X., Zhang M., Wen J., Wang X., You L., Cui X., Ji C., Guo X. Adipogenic miRNA and Meta-signature miRNAs involved in human adipocyte differentiation and obesity. Oncotarget. 2016;7:40830–40845. doi: 10.18632/oncotarget.8518. PubMed DOI PMC

Hou W.H., Tian Q., Steuerwald N.M., Schrum L.W., Bonkovsky H.L. The let-7 microRNA enhances heme oxygenase-1 by suppressing Bach1 and attenuates oxidant injury in human hepatocytes. Biochim. Biophys. Acta. 2012;1819:1113–1122. doi: 10.1016/j.bbagrm.2012.06.001. PubMed DOI PMC

Yin H., Pasut A., Soleimani V.D., Bentzinger C.F., Antoun G., Thorn S., Seale P., Fernando P., van Ijcken W., Grosveld F., et al. MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16. Cell Metab. 2013;17:210–224. doi: 10.1016/j.cmet.2013.01.004. PubMed DOI PMC

He H., Chen K., Wang F., Zhao L., Wan X., Wang L., Mo Z. miR-204-5p promotes the adipogenic differentiation of human adipose-derived mesenchymal stem cells by modulating DVL3 expression and suppressing Wnt/β-catenin signaling. Int. J. Mol. Med. 2015;35:1587–1595. doi: 10.3892/ijmm.2015.2160. PubMed DOI PMC

Xu G., Chen J., Jing G., Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat. Med. 2013;19:1141–1146. doi: 10.1038/nm.3287. PubMed DOI PMC

Zhu L., Chen L., Shi C., Xu G., Xu L., Zhu L., Guo X., Ni Y., Cui Y., Ji C. MiR-335, an Adipogenesis-Related MicroRNA, is Involved in Adipose Tissue Inflammation. Cell Biochem. Biophys. 2014;68:283–290. doi: 10.1007/s12013-013-9708-3. PubMed DOI

Nakanishi N., Nakagawa Y., Tokushige N., Aoki N., Matsuzaka T., Ishii K., Yahagi N., Kobayashi K., Yatoh S., Takahashi A., et al. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochem. Biophys. Res. Commun. 2009;385:492–496. doi: 10.1016/j.bbrc.2009.05.058. PubMed DOI

Oger F., Gheeraert C., Mogilenko D., Benomar Y., Molendi-Coste O., Bouchaert E., Caron S., Dombrowicz D., Pattou F., Duez H., et al. Cell-Specific Dysregulation of MicroRNA Expression in Obese White Adipose Tissue. J. Clin. Endocrinol. Metab. 2014;99:2821–2833. doi: 10.1210/jc.2013-4259. PubMed DOI

Gerin I., Clerbaux L.-A., Haumont O., Lanthier N., Das A.K., Burant C.F., Leclercq I.A., MacDougald O.A., Bommer G.T. Expression of miR-33 from an SREBP2 Intron Inhibits Cholesterol Export and Fatty Acid Oxidation. J. Biol. Chem. 2010;285:33652–33661. doi: 10.1074/jbc.M110.152090. PubMed DOI PMC

Rayner K.J., Suarez Y., Davalos A., Parathath S., Fitzgerald M.L., Tamehiro N., Fisher E.A., Moore K.J., Fernandez-Hernando C. MiR-33 Contributes to the Regulation of Cholesterol Homeostasis. Science. 2010;328:1570–1573. doi: 10.1126/science.1189862. PubMed DOI PMC

Moore K.J., Rayner K.J., Suarez Y., Fernandez-Hernando C. The Role of MicroRNAs in Cholesterol Efflux and Hepatic Lipid Metabolism. Annu. Rev. Nutr. 2011;31:49–63. doi: 10.1146/annurev-nutr-081810-160756. PubMed DOI PMC

Novák J., Olejníčková V., Tkáčová N., Santulli G. Mechanistic Role of MicroRNAs in Coupling Lipid Metabolism and Atherosclerosis. In: Santulli G., editor. microRNA: Basic Science: From Molecular Biology to Clinical Practice. Springer; Cham, Switzerland: 2015. pp. 79–100. PubMed PMC

Karunakaran D., Richards L., Geoffrion M., Barrette D., Gotfrit R.J., Harper M.E., Rayner K.J. Therapeutic Inhibition of miR-33 Promotes Fatty Acid Oxidation but Does Not Ameliorate Metabolic Dysfunction in Diet-Induced Obesity. Arterioscler. Thromb. Vasc. Biol. 2015;35:2536–2543. doi: 10.1161/ATVBAHA.115.306404. PubMed DOI PMC

Yang Z., Bian C., Zhou H., Huang S., Wang S., Liao L., Zhao R. MicroRNA hsa-miR-138 Inhibits Adipogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells through Adenovirus EID-1. Stem Cells Dev. 2011;20:259–267. doi: 10.1089/scd.2010.0072. PubMed DOI

Lin Q., Gao Z.G., Alarcon R.M., Ye J.P., Yun Z. A role of miR-27 in the regulation of adipogenesis. FEBS J. 2009;276:2348–2358. doi: 10.1111/j.1742-4658.2009.06967.x. PubMed DOI PMC

Takahashi K., Sasano T., Sugiyama K., Kurokawa J., Tamura N., Soejima Y., Sawabe M., Isobe M., Furukawa T. High-fat diet increases vulnerability to atrial arrhythmia by conduction disturbance via miR-27b. J. Mol. Cell. Cardiol. 2016;90:38–46. doi: 10.1016/j.yjmcc.2015.11.034. PubMed DOI

Karbiener M., Fischer C., Nowitsch S., Opriessnig P., Papak C., Ailhaud G., Dani C., Amri E.Z., Scheideler M. microRNA miR-27b impairs human adipocyte differentiation and targets PPARγ. Biochem. Biophys. Res. Commun. 2009;390:247–251. doi: 10.1016/j.bbrc.2009.09.098. PubMed DOI

Kang T., Lu W., Xu W., Anderson L., Bacanamwo M., Thompson W., Chen Y.E., Liu D. MicroRNA-27 (miR-27) Targets Prohibitin and Impairs Adipocyte Differentiation and Mitochondria! Function in Human Adipose-derived Stem Cells. J. Biol. Chem. 2013;288:34394–34402. doi: 10.1074/jbc.M113.514372. PubMed DOI PMC

Kong X.C., Yu J., Bi J.H., Qi H.M., Di W.J., Wu L., Wang L., Zha J.M., Lv S., Zhang F., et al. Glucocorticoids Transcriptionally Regulate miR-27b Expression Promoting Body Fat Accumulation Via Suppressing the Browning of White Adipose Tissue. Diabetes. 2015;64:393–404. doi: 10.2337/db14-0395. PubMed DOI PMC

Chen S., Xu X., Ning L., Jiang W., Xing C., Tang Q., Huang H. miR-27 Impairs the Adipogenic Lineage Commitment via Targeting Lysyl Oxidase. Obesity. 2015;23:2445–2453. doi: 10.1002/oby.21319. PubMed DOI

Zhu Y., Zhang X., Ding X., Wang H., Chen X., Zhao H., Jia Y., Liu S., Liu Y. miR-27 inhibits adipocyte differentiation via suppressing CREB expression. Acta Biochim. Biophys. Sin. 2014;46:590–596. doi: 10.1093/abbs/gmu036. PubMed DOI

Ramming T., Hansen H.G., Nagata K., Ellgaard L., Appenzeller-Herzog C. GPx8 peroxidase prevents leakage of H2O2 from the endoplasmic reticulum. Free Radic. Biol. Med. 2014;70:106–116. doi: 10.1016/j.freeradbiomed.2014.01.018. PubMed DOI

Yoboue E.D., Rimessi A., Anelli T., Pinton P., Sitia R. Regulation of calcium fluxes by GPX8, a type-II transmembrane peroxidase enriched at the mitochondria-associated endoplasmic reticulum membrane. Antioxid. Redox Signal. 2017;27:583–595. doi: 10.1089/ars.2016.6866. PubMed DOI

Bosello-Travain V., Forman H.J., Roveri A., Toppo S., Ursini F., Venerando R., Warnecke C., Zaccarin M., Maiorino M. Glutathione peroxidase 8 is transcriptionally regulated by HIFα and modulates growth factor signaling in HeLa cells. Free Radic. Biol. Med. 2015;81:58–68. doi: 10.1016/j.freeradbiomed.2014.12.020. PubMed DOI

Morikawa K., Gouttenoire J., Hernandez C., Dao Thi V.L., Tran H.T., Lange C.M., Dill M.T., Heim M.H., Donze O., Penin F., et al. Quantitative proteomics identifies the membrane-associated peroxidase GPx8 as a cellular substrate of the hepatitis C virus NS3-4A protease. Hepatology. 2014;59:423–433. doi: 10.1002/hep.26671. PubMed DOI

Song G., Xu G., Ji C., Shi C., Shen Y., Chen L., Zhu L., Yang L., Zhao Y., Guo X. The role of microRNA-26b in human adipocyte differentiation and proliferation. Gene. 2014;533:481–487. doi: 10.1016/j.gene.2013.10.011. PubMed DOI

Xu G., Ji C., Song G., Shi C., Shen Y., Chen L., Yang L., Zhao Y., Guo X. Obesity-associated microRNA-26b regulates the proliferation of human preadipocytes via arrest of the G1/S transition. Mol. Med. Rep. 2015;12:3648–3654. doi: 10.3892/mmr.2015.3858. PubMed DOI

Prats-Puig A., Ortega F.J., Mercader J.M., Moreno-Navarrete J.M., Moreno M., Bonet N., Ricart W., Lopez-Bermejo A., Fernandez-Real J.M. Changes in Circulating MicroRNAs Are Associated With Childhood Obesity. J. Clin. Endocrinol. Metab. 2013;98:E1655–E1660. doi: 10.1210/jc.2013-1496. PubMed DOI

Kim Y.J., Hwang S.H., Lee S.Y., Shin K.K., Cho H.H., Bae Y.C., Jung J.S. miR-486-5p Induces Replicative Senescence of Human Adipose Tissue-Derived Mesenchymal Stem Cells and Its Expression Is Controlled by High Glucose. Stem Cells Dev. 2012;21:1749–1760. doi: 10.1089/scd.2011.0429. PubMed DOI

Aziz F. The emerging role of miR-223 as novel potential diagnostic and therapeutic target for inflammatory disorders. Cell. Immunol. 2016;303:1–6. doi: 10.1016/j.cellimm.2016.04.003. PubMed DOI

Wen D.Z., Qiao P., Wang L. Circulating microRNA-223 as a potential biomarker for obesity. Obes. Res. Clin. Pract. 2015;9:398–404. doi: 10.1016/j.orcp.2015.01.006. PubMed DOI

Smutny T., Tebbens J.D., Pavek P. Bioinformatic analysis of miRNAs targeting the key nuclear receptors regulating CYP3A4 gene expression: The challenge of the CYP3A4 “missing heritability’’ enigma. J. Appl. Biomed. 2015;13:181–188. doi: 10.1016/j.jab.2015.04.002. DOI

Cheng C., Bhardwaj N., Gerstein M. The relationship between the evolution of microRNA targets and the length of their UTRs. BMC Genom. 2009;10:431. doi: 10.1186/1471-2164-10-431. PubMed DOI PMC

Steinbrenner H., Speckmann B., Klotz L.O. Selenoproteins: Antioxidant selenoenzymes and beyond. Arch. Biochem. Biophys. 2016;595:113–119. doi: 10.1016/j.abb.2015.06.024. PubMed DOI

Brandao B.B., Guerra B.A., Mori M.A. Shortcuts to a functional adipose tissue: The role of small non-coding RNAs. Redox Biol. 2017;12:82–102. doi: 10.1016/j.redox.2017.01.020. PubMed DOI PMC

Giroud M., Karbiener M., Pisani D.F., Ghandour R.A., Beranger G.E., Niemi T., Taittonen M., Nuutila P., Virtanen K.A., Langin D., et al. Let-7i-5p represses brite adipocyte function in mice and humans. Sci. Rep. 2016;6:28613. doi: 10.1038/srep28613. PubMed DOI PMC

Kang M., Yan L.M., Li Y.M., Zhang W.Y., Wang H., Tang A.Z., Ou H.S. Inhibitory effect of microRNA-24 on fatty acid-binding protein expression on 3T3-L1 adipocyte differentiation. Genet. Mol. Res. 2013;12:5267–5277. doi: 10.4238/2013.November.7.1. PubMed DOI

Orian L., Mauri P., Roveri A., Toppo S., Benazzi L., Bosello-Travain V., De Palma A., Maiorino M., Miotto G., Zaccarin M., et al. Selenocysteine oxidation in glutathione peroxidase catalysis: An MS-supported quantum mechanics study. Free Radic. Biol. Med. 2015;87:1–14. doi: 10.1016/j.freeradbiomed.2015.06.011. PubMed DOI

Johansson L., Gafvelin G., Arner E.S. Selenocysteine in proteins-properties and biotechnological use. Biochim. Biophys. Acta. 2005;1726:1–13. doi: 10.1016/j.bbagen.2005.05.010. PubMed DOI

Pasquinelli A.E. MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 2012;13:271–282. doi: 10.1038/nrg3162. PubMed DOI

Podshivalova K., Salomon D.R. MicroRNA regulation of T-lymphocyte immunity: Modulation of molecular networks responsible for T-cell activation, differentiation, and development. Crit. Rev. Immunol. 2013;33:435–476. doi: 10.1615/CritRevImmunol.2013006858. PubMed DOI PMC

Ben-Hamo R., Efroni S. MicroRNA regulation of molecular pathways as a generic mechanism and as a core disease phenotype. Oncotarget. 2015;6:1594–1604. doi: 10.18632/oncotarget.2734. PubMed DOI PMC

Saydam O., Shen Y., Wurdinger T., Senol O., Boke E., James M.F., Tannous B.A., Stemmer-Rachamimov A.O., Yi M., Stephens R.M., et al. Downregulated microRNA-200a in meningiomas promotes tumor growth by reducing E-cadherin and activating the Wnt/β-catenin signaling pathway. Mol. Cell. Biol. 2009;29:5923–5940. doi: 10.1128/MCB.00332-09. PubMed DOI PMC

Karbiener M., Neuhold C., Opriessnig P., Prokesch A., Bogner-Strauss J.G., Scheideler M. MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol. 2011;8:850–860. doi: 10.4161/rna.8.5.16153. PubMed DOI

Yeh C.L., Cheng I.C., Hou Y.C., Wang W., Yeh S.L. MicroRNA-125a-3p expression in abdominal adipose tissues is associated with insulin signalling gene expressions in morbid obesity: Observations in Taiwanese. Asia Pac. J. Clin. Nutr. 2014;23:331–337. PubMed

Chen K., He H., Xie Y., Zhao L., Zhao S., Wan X., Yang W., Mo Z. miR-125a-3p and miR-483-5p promote adipogenesis via suppressing the RhoA/ROCK1/ERK1/2 pathway in multiple symmetric lipomatosis. Sci. Rep. 2015;5:11909. doi: 10.1038/srep11909. PubMed DOI PMC

Lavery C.A., Kurowska-Stolarska M., Holmes W.M., Donnelly I., Caslake M., Collier A., Baker A.H., Miller A.M. miR-34a(-/-) Mice are Susceptible to Diet-Induced Obesity. Obesity. 2016;24:1741–1751. doi: 10.1002/oby.21561. PubMed DOI PMC

Fu T., Choi S.G., Huang Z., Suino-Powell K., Xu H.E., Kemper B., Kemper J.K. MicroRNA 34a Inhibits Beige and Brown Fat Formation in Obesity in Part by Suppressing Adipocyte Fibroblast Growth Factor 21 Signaling and SIRT1 Function. Mol. Cell. Biol. 2014;34:4130–4142. doi: 10.1128/MCB.00596-14. PubMed DOI PMC

Nesca V., Guay C., Jacovetti C., Menoud V., Peyot M.L., Laybutt D.R., Prentki M., Regazzi R. Identification of particular groups of microRNAs that positively or negatively impact on β cell function in obese models of type 2 diabetes. Diabetologia. 2013;56:2203–2212. doi: 10.1007/s00125-013-2993-y. PubMed DOI

Fu T., Kemper J.K. MicroRNA-34a and Impaired FGF19/21 Signaling in Obesity. Vitam. Horm. 2016;101:175–196. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...