Massive intein content in Anaeramoeba reveals aspects of intein mobility in eukaryotes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
RGPIN-2019-05058
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (NSERC)
RGPIN-2022-05430
Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (NSERC)
21-30563S
CAS | Institute of Botany of the Czech Academy of Sciences (Institute of Botany of the ASCR)
2020-05071
Vetenskapsrådet (VR)
PubMed
38019867
PubMed Central
PMC10710043
DOI
10.1073/pnas.2306381120
Knihovny.cz E-zdroje
- Klíčová slova
- evolution, genomics, inteins, microbiology, mobile genetic elements,
- MeSH
- Eukaryota genetika MeSH
- genom MeSH
- inteiny * genetika MeSH
- proteiny genetika MeSH
- splicing proteinů * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny MeSH
Inteins are self-splicing protein elements found in viruses and all three domains of life. How the DNA encoding these selfish elements spreads within and between genomes is poorly understood, particularly in eukaryotes where inteins are scarce. Here, we show that the nuclear genomes of three strains of Anaeramoeba encode between 45 and 103 inteins, in stark contrast to four found in the most intein-rich eukaryotic genome described previously. The Anaeramoeba inteins reside in a wide range of proteins, only some of which correspond to intein-containing proteins in other eukaryotes, prokaryotes, and viruses. Our data also suggest that viruses have contributed to the spread of inteins in Anaeramoeba and the colonization of new alleles. The persistence of Anaeramoeba inteins might be partly explained by intragenomic movement of intein-encoding regions from gene to gene. Our intein dataset greatly expands the spectrum of intein-containing proteins and provides insights into the evolution of inteins in eukaryotes.
Department of Zoology Charles University Prague 128 00 Czech Republic
Institute for Comparative Genomics Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
Microbiology Group Department of Biology Lund University Lund 223 62 Sweden
Zobrazit více v PubMed
Lennon C. W., Belfort M., Inteins. Curr. Biol. 27, R204–R206 (2017). PubMed
Perler F. B., et al. , Protein splicing elements: Inteins and exteins–a definition of terms and recommended nomenclature. Nucleic Acids Res. 22, 1125–1127 (1994). PubMed PMC
Liu X. Q., Protein-splicing intein: Genetic mobility, origin, and evolution. Annu. Rev. Genet. 34, 61–76 (2000). PubMed
Belfort M., Reaban M. E., Coetzee T., Dalgaard J. Z., Prokaryotic introns and inteins: A panoply of form and function. J. Bacteriol. 177, 3897–3903 (1995). PubMed PMC
Gimble F. S., Thorner J., Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae. Nature 357, 301–306 (1992). PubMed
Gogarten J. P., Hilario E., Inteins, introns, and homing endonucleases: Recent revelations about the life cycle of parasitic genetic elements. BMC Evol. Biol. 6, 94 (2006). PubMed PMC
Soucy S. M., Fullmer M. S., Papke R. T., Gogarten J. P., Inteins as indicators of gene flow in the halobacteria. Front. Microbiol. 5, 299 (2014). PubMed PMC
Swithers K. S., Senejani A. G., Fournier G. P., Gogarten J. P., Conservation of intron and intein insertion sites: Implications for life histories of parasitic genetic elements. BMC Evol. Biol. 9, 303 (2009). PubMed PMC
Perler F. B., Olsen G. J., Adam E., Compilation and analysis of intein sequences. Nucleic Acids Res. 25, 1087–1093 (1997). PubMed PMC
Hirata R., et al. , Molecular structure of a gene, VMA1, encoding the catalytic subunit of H(+)-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J. Biol. Chem. 265, 6726–6733 (1990). PubMed
Kane P. M., et al. , Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H(+)-adenosine triphosphatase. Science 250, 651–657 (1990). PubMed
Green C. M., Novikova O., Belfort M., The dynamic intein landscape of eukaryotes. Mob. DNA 9, 4 (2018). PubMed PMC
Novikova O., et al. , Intein clustering suggests functional importance in different domains of life. Mol. Biol. Evol. 33, 783–799 (2016). PubMed PMC
Novikova O., Topilina N., Belfort M., Enigmatic distribution, evolution, and function of inteins. J. Biol. Chem. 289, 14490–14497 (2014). PubMed PMC
Bernstein C., Deoxyribonucleic acid repair in bacteriophage. Microbiol. Rev. 45, 72–98 (1981). PubMed PMC
Lopes A., Amarir-Bouhram J., Faure G., Petit M.-A., Guerois R., Detection of novel recombinases in bacteriophage genomes unveils Rad52, Rad51 and Gp2.5 remote homologs. Nucleic Acids Res. 38, 3952–3962 (2010). PubMed PMC
Weigel C., Seitz H., Bacteriophage replication modules. FEMS Microbiol. Rev. 30, 321–381 (2006). PubMed
Gogarten J. P., Senejani A. G., Zhaxybayeva O., Olendzenski L., Hilario E., Inteins: Structure, function, and evolution. Annu. Rev. Microbiol. 56, 263–287 (2002). PubMed
Pavankumar T. L., Inteins: Localized distribution, gene regulation, and protein engineering for biological applications. Microorganisms 6, 19 (2018). PubMed PMC
Lennon C. W., Stanger M., Banavali N. K., Belfort M., Conditional protein splicing switch in hyperthermophiles through an intein-extein partnership. mBio 9, e02304–17 (2018). PubMed PMC
Stairs C. W., et al. , Anaeramoebae are a divergent lineage of eukaryotes that shed light on the transition from anaerobic mitochondria to hydrogenosomes. Curr. Biol. 31, 5605–5612.e5 (2021). PubMed
Táborský P., Pánek T., Čepička I., Anaeramoebidae fam. nov., a novel lineage of anaerobic amoebae and amoeboflagellates of uncertain phylogenetic positio n. Protist 168, 495–526 (2017). PubMed
Jerlström-Hultqvist J., et al. , A novel symbiosome in an anaerobic single-celled eukaryote. bioRxiv [Preprint] (2023). 10.1101/2023.03.03.530753 (Accessed 5 March 2023). DOI
Perler F. B., InBase: The intein database. Nucleic Acids Res. 30, 383–384 (2002). PubMed PMC
Green C. M., et al. , Spliceosomal Prp8 intein at the crossroads of protein and RNA splicing. PLoS Biol. 17, e3000104 (2019). PubMed PMC
Liu X.-Q., Yang J., Meng Q., Four inteins and three group II introns encoded in a bacterial ribonucleotide reductase gene. J. Biol. Chem. 278, 46826–46831 (2003). PubMed
Monier A., Sudek S., Fast N. M., Worden A. Z., Gene invasion in distant eukaryotic lineages: Discovery of mutually exclusive genetic elements reveals marine biodiversity. ISME J. 7, 1764–1774 (2013). PubMed PMC
Kelley D. S., Lennon C. W., Sea-Phages M., Belfort O. Novikova., Mycobacteriophages as incubators for intein dissemination and evolution. mBio 7, e01537-16 (2016). PubMed PMC
Tori K., Perler F. B., Expanding the definition of class 3 inteins and their proposed phage origin▿. J. Bacteriol. 193, 2035–2041 (2011). PubMed PMC
Gallot-Lavallee L., Blanc G., Claverie J.-M., Comparative genomics of Chrysochromulina Ericina Virus (CeV) and other microalgae-infecting large DNA viruses highlight their intricate evolutionary relationship with the established Mimiviridae family. J. Virol. 91, e00230-17 (2017), 10.1128/JVI.00230-17. PubMed DOI PMC
Southworth M. W., Benner J., Perler F. B., An alternative protein splicing mechanism for inteins lacking an N-terminal nucleophile. EMBO J. 19, 5019–5026 (2000). PubMed PMC
Tori K., et al. , Splicing of the mycobacteriophage Bethlehem DnaB intein: Identification of a new mechanistic class of inteins that contain an obligate block F nucleophile. J. Biol. Chem. 285, 2515–2526 (2010). PubMed PMC
Featherston J., et al. , The 4-Celled Tetrabaena socialis nuclear genome reveals the essential components for genetic control of cell number at the origin of multicellularity in the volvocine lineage. Mol. Biol. Evol. 35, 855–870 (2018). PubMed
Filée J., Multiple occurrences of giant virus core genes acquired by eukaryotic genomes: The visible part of the iceberg? Virology 466–467, 53–59 (2014). PubMed
Maumus F., Blanc G., Study of gene trafficking between acanthamoeba and giant viruses suggests an undiscovered family of amoeba-infecting viruses. Genome Biol. Evol. 8, 3351–3363 (2016). PubMed PMC
Maumus F., Epert A., Nogué F., Blanc G., Plant genomes enclose footprints of past infections by giant virus relatives. Nat. Commun. 5, 4268 (2014). PubMed PMC
Gallot-Lavallée L., Blanc G., A glimpse of nucleo-cytoplasmic large DNA virus biodiversity through the eukaryotic genomics window. Viruses 9, 17 (2017). PubMed PMC
Moniruzzaman M., Weinheimer A. R., Martinez-Gutierrez C. A., Aylward F. O., Widespread endogenization of giant viruses shapes genomes of green algae. Nature 588, 141–145 (2020). PubMed
Elleuche S., Pelikan C., Nolting N., Pöggeler S., Inteins and introns within the prp8 -gene of four Eupenicillium species. J. Basic Microbiol. 49, 52–57 (2009). PubMed
Edgar R. C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004). PubMed PMC
Goddard M. R., Burt A., Recurrent invasion and extinction of a selfish gene. Proc. Natl. Acad. Sci. U.S.A. 96, 13880–13885 (1999). PubMed PMC
Belfort M., Roberts R. J., Homing endonucleases: Keeping the house in order. Nucleic Acids Res. 25, 3379–3388 (1997). PubMed PMC
Liu X. Q., Hu Z., A DnaB intein in Rhodothermus marinus: Indication of recent intein homing across remotely related organisms. Proc. Natl. Acad. Sci. U.S.A. 94, 7851–7856 (1997). PubMed PMC
Swithers K. S., Soucy S. M., Lasek-Nesselquist E., Lapierre P., Gogarten J. P., Distribution and evolution of the mobile vma-1b intein. Mol. Biol. Evol. 30, 2676–2687 (2013). PubMed
Fischer M. G., Kelly I., Foster L. J., Suttle C. A., The virion of Cafeteria roenbergensis virus (CroV) contains a complex suite of proteins for transcription and DNA repair. Virology 466–467, 82–94 (2014). PubMed
Salas-Leiva D. E., et al. , Genomic analysis finds no evidence of canonical eukaryotic DNA processing complexes in a free-living protist. Nat. Commun. 12, 6003 (2021). PubMed PMC
Tornabene P., et al. , Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Sci. Transl. Med. 11, eaav4523 (2019). PubMed PMC
López-Igual R., Bernal-Bayard J., Rodríguez-Patón A., Ghigo J.-M., Mazel D., Engineered toxin-intein antimicrobials can selectively target and kill antibiotic-resistant bacteria in mixed populations. Nat. Biotechnol. 37, 755–760 (2019). PubMed
Sarmiento C., Camarero J. A., Biotechnological applications of protein splicing. Curr. Protein Pept. Sci. 20, 408–424 (2019). PubMed PMC
Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J., Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). PubMed
Eddy S. R., Multiple alignment using hidden Markov models. Proc. Int. Conf. Intell. Syst. Mol. Biol. 3, 114–120 (1995). PubMed
Katoh K., Standley D. M., MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). PubMed PMC
Criscuolo A., Gribaldo S., BMGE (Block Mapping and Gathering with Entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010). PubMed PMC
Nguyen L.-T., Schmidt H. A., von Haeseler A., Minh B. Q., IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015). PubMed PMC
Hoang D. T., Chernomor O., von Haeseler A., Minh B. Q., Vinh L. S., UFboot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018). PubMed PMC
Zallot R., Oberg N., Gerlt J. A., The EFI web resource for genomic enzymology tools: Leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182 (2019). PubMed PMC
Shannon P., et al. , Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003). PubMed PMC
Mi H., et al. , Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc. 14, 703–721 (2019). PubMed PMC