Diversity of Naturalized Hairy Vetch (Vicia villosa Roth) Populations in Central Argentina as a Source of Potential Adaptive Traits for Breeding
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32180785
PubMed Central
PMC7059640
DOI
10.3389/fpls.2020.00189
Knihovny.cz E-zdroje
- Klíčová slova
- Vicia villosa genotypes, genetic resource, microsatellites, naturalized population, niche-modeling, phenotypic characterization,
- Publikační typ
- časopisecké články MeSH
Hairy vetch (Vicia villosa ssp. villosa Roth) is native of Europe and Western Asia and it is the second most cultivated vetch worldwide. Hairy vetch is used as forage species in semiarid environments and as a legume cover crop in sub-humid and humid regions. Being an incompletely domesticated species, hairy vetch can form spontaneous populations in a new environment. These populations might contain novel and adaptive traits valuable for breeding. Niche occupancy based on geographic occurrence and environmental data of naturalized populations in central Argentina showed that these populations were distributed mainly on disturbed areas with coarse soil texture and alkaline-type soils. Low rainfall and warm temperatures during pre- and post-seed dispersal explained the potential distribution under sub-humid and semiarid conditions from Pampa and Espinal ecoregions. Conversely, local adaptation along environmental gradients did not drive the divergence among recently established Argentinian (AR) populations. The highest genetic diversity revealed by microsatellite analysis was observed within accessions (72%) while no clear separation was detected between AR and European (EU) genotypes, although naturalized AR populations showed strong differentiation with the wild EU accessions. Common garden experiments were conducted in 2014-16 in order to evaluate populations' germination, flowering, and biomass traits. European cultivars were characterized by low physical seed dormancy (PY), while naturalized AR accessions showed higher winter biomass production. Detected variation in the quantitative assessment of populations could be useful for selection in breeding for traits that convey favorable functions within specific contexts.
Centro de Recursos Naturales Renovables de la Zona Semiárida CONICET Bahía Blanca Argentina
Departamento de Agronomía Universidad Nacional del Sur Bahía Blanca Argentina
Departamento de Matemática Universidad Nacional del Sur Bahía Blanca Argentina
Department of Botany Palacký University in Olomouc Olomouc Czechia
EEA H Ascasubi Instituto Nacional de Tecnología Agropecuaria Buenos Aires Argentina
Zobrazit více v PubMed
Aapresid (2018). Cultivos de cobertura en Argentina. Qué se está haciendo y qué falta? https://www.aapresid.org.ar/rem/wp-content/uploads/sites/3/2018/03/Analisis-encuesta-sobre-CC-web.pdf.
Aarssen L. W., Hall I. V., Jensen K. I. N. (1986). The biology of Canadian weed: Vicia angustifolia L., V. cracca L., V. sativa L., V. tetrasperma (L.) Schreb. and V. villosa Roth. Can. J. Plant Sci. 66, 711–737. 10.4141/cjps86-092 DOI
Ackroyd V. J., Cavigelli M. A., Spargo J. T., Davis B., Garst G., Mirsky S. B. (2019). Legume cover crops reduce poultry litter application requirements in organic systems. Agron. J. 111, 1–9. 10.2134/agronj2018.09.0622 DOI
Al-Ghzawi A. A., Samarah N., Zaitoun S., Alqudah A. (2009). Impact of bee pollinators on seed set and yield of V. villosa spp. dasycarpa (Leguminosae) grown under semiarid conditions. Ital. J. Anim. Sci. 8, 65–74. 10.4081/ijas.2009.65 DOI
Baskin C. C., Baskin J. M. (2014). Seeds: Ecology, biogeography, and evolution of dormancy and germination. 2nd ed. (San Diego: Academic Press; ).
Brandsaeter L. O., Olsmo A., Tronsmo A. M., Fykse H. (2002). Freezing resistance of winter annual and biennial legumes at different developmental stages. Crop Sci. 42, 437–443. 10.2135/cropsci2002.4370 DOI
Bryant J. A., Hughes S. G. (2011). “Vicia,” in Wild crop relatives: Genomic and breeding resources legume crops and forage. Ed. Kole C. (Berlin, Heidelberg: Springer; ), 273–289.
Burkart A. (1952). Las leguminosas Argentinas: Silvestres y cultivadas. 2nd ed. (Argentina. Acme Agency: Buenos Aires; ).
Cantamutto M., Poverene M., Peinemann N. (2008). Multi-scale analysis of two annual Helianthus species naturalization in Argentina. Agric. Ecosyst. Environ. 123, 69–74. 10.1016/j.agee.2007.04.005 DOI
Carlson J. E., Adams C. A., Holsinger K. E. (2016). Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub. Ann. Bot. 117, 195–207. 10.1093/aob/mcv146 PubMed DOI PMC
Chung J. W., Kim T. S., Suresh S., Lee S. Y., Cho G. T. (2013). Development of 65 novel polymorphic cdna-ssr markers in common vetch (Vicia sativa subsp sativa) using next generation sequencing. Molecules 18, 8376–8392. 10.3390/molecules18078376 PubMed DOI PMC
Clark A. (2007). Managing Cover Crops Profitably. 3rd ed. Handbook series (College Park, MD: SARE; ).
De La Rosa L., Lázaro A., Varela F. (2002). Utilización en mejora de la variabilidad morfo-agronómica de Vicia sativa L (Almería, España: Congreso de Mejora Genética de Plantas; ), 319–324.
Deaker R., Roughley R. J., Kennedy I. R. (2004). Legume seed inoculation technology – a review. Soil Biol. Biochem. 36, 1275–1288. 10.1016/j.soilbio.2004.04.009 DOI
Di Rienzo J. A., Casanoves F., Balzarini M. G., Gonzalez L., Tablada M., Robledo C. W. (2013). InfoStat version 2013 Grupo InfoStat, FCA (Argentina: Universidad Nacional de Córdoba; ).
Duke J. A. (1981). Handbook of legumes of world economic importance (New York and London: Plenum Press; ), 345 pp.
Excoffier L., Smouse P. E., Quattro J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491. PubMed PMC
FAO/IIASA/ISSCAS/JRC (2012). Harmonized World Soil Database (version 1.2) (Rome, Italy and IIASA, Laxenburg, Austria: FAO; ).
Fick S. E., Hijmans R. J. (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. 10.1002/joc.5086 DOI
Finch-Savage W. E., Footitt S. (2017). Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J. Exp. Bot. 68, 843–856. 10.1093/jxb/erw477 PubMed DOI
Francis C. M., Enneking D., Abd El Moneim A. (1999). “When and where will vetches have an impact as grain legumes?” in Linking research and marketing opportunities for pulses in the 21st Century. Proceedings of the Third International Food Legume Research Conference" Adelaide, S. Aust., 1997. Current Plant Science and Biotechnology in Agriculture. Vol. 34 Ed. Knight R. (Dordrecht, The Netherlands: Kluwer Academic Publishers; ), 671–683.
Frasier I., Noellemeyer E., Amiotti N., Quiroga A. (2017). Vetch-rye biculture is a sustainable alternative for enhanced nitrogen availability and low leaching losses in a no-till cover crop system. Field Crops Res. 214, 104–112. 10.1016/j.fcr.2017.08.016 DOI
Fuller D. Q., Allaby R. (2009). “Seed Dispersal and Crop Domestication: shattering, germination and seasonality in evolution under cultivation,” in Fruit Development and Seed Dispersal. Ed. Ostergaard L. (Blackwell: Oxford; ), 238–295.
Garayalde A. F., Poverene M., Cantamutto M., Carrera A. D. (2011). Wild sunflower diversity in Argentina revealed by ISSR and SSR markers: an approach for conservation and breeding programmes. Ann. Appl. Biol. 158, 305–317. 10.1111/j.1744-7348.2011.00465.x DOI
Hamrick J. L., Godt M. J. W. (1989). “Allozyme diversity in plant species,” in Plant Population Genetics, Breeding and Genetic Resources. Eds. Brown A. H. D., Clegg M. T., Kahler A. L., Weir B. S. (Sunderland, MA, USA: Sinauer Associates; ), 43–63.
Helliwell E., Faber-Hammond J., Lopez Z. C., Garoutte A., von Wettberg E., Friesen M. L., et al. (2018). Rapid establishment of a flowering cline in Medicago polymorpha after invasion of North America. Mol. Ecol. 27, 4758–4774. 10.1111/mec.14898 PubMed DOI
Hernandez P. A., Graham C. H., Master L. L., Albert D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785. 10.1111/j.0906-7590.2006.04700.x DOI
Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. 10.1002/joc.1276 DOI
Hoisington D., Khairallah M., González de León D. (1994). Laboratory Protocols: CIMMYT Applied Molecular Genetics Laboratory. 2nd edn. (México, DF, Mexico: CIMMYT; ).
Horvitz N., Wang R., Wan F.-H., Nathan R. (2017). Pervasive human-mediated large-scale invasion: analysis of spread patterns and their underlying mechanisms in 17 of China’s worst invasive plants. J. Ecol. 105, 85–94. 10.1111/1365-2745.12692 DOI
Hradilová I., Duchoslav M., Brus J., Pechanec V., Hýbl M., Kopecký P., et al. (2019). Variation in wild pea (Pisum sativum subsp. elatius) seed dormancy and its relationship to the environment and seed coat traits. PeerJ 7, e6263. 10.7717/peerj.6263 PubMed DOI PMC
Hudson A. R., Ayre D. J., Ooi M. K. J. (2015). Physical dormancy in a changing climate. Seed Sci. Res. 25, 66–81. 10.1017/S0960258514000403 DOI
Hyde E. O. C. (1954). The function of the hilum in some Papilionaceae in relation to the ripening of the seed and the permeability of the testa. Ann. Bot. 11, 241–256. 10.1093/oxfordjournals.aob.a083393 DOI
International Seed Testing Association (2019). International Rules for Seed Testing (Zürich: ISTA; ), 300. 10.15258/istarules.2019.F DOI
Jacobsen K. L., Gallagher R. S., Burnham M., Bradley B. B., Larson Z. M., Walker C. W., et al. (2010). Mitigation of seed germination impediments in hairy vetch. Agr. J. 102, 1346–1351. 10.2134/agronj2010.0002n DOI
Jannink J. L., Merrick L. C., Liebman M., Dyck E. A., Corson S. (1997). Management and winter hardiness of hairy vetch in Maine. Tech. Bull. 167, 35. Maine Agricultural and Forest Experiment Station.
Kimball S., Angert A. L., Huxman T. E., Venable D. E. (2010). Contemporary climate change in the Sonoran Desert favors cold-adapted species. Glob Chang Biol. 16, 1555–1565. 10.1111/j.1365-2486.2009.02106.x DOI
Kluyver T. A., Charles M., Jones G., Rees M., Osborne L. P. (2013). Did greater burial depth increase the seed size of domesticated legumes? J. Exp. Bot. 64, 4101–4108. 10.1093/jxb/ert304 PubMed DOI
Knapp E. E., Rice K. J. (1998). Comparison of isozymes and quantitative traits for evaluating patters of genetic variation in purple needlegrass (Nassella pulchra). Conserv. Biol. 12, 1031–1041. 10.1046/j.1523-1739.1998.97123.x DOI
Lacerda D. R., Lemos Filho J. P., Goulart M. F., Ribeiro R. A. (2007). Seed-dormancy variation in natural populations of two tropical leguminous tree species: Senna multijuga (Caesalpinoideae) and Plathymenia reticulata (Mimosoideae). Seed Sci. Res. 14, 127–135. 10.1079/SSR2004162 DOI
Lawson A., Cogger C., Bary A., Fortuna A.-M. (2015). Influence of seeding ratio, planting date, and termination date on rye-hairy vetch cover crop mixture performance under organic management. PloS One 10 (6), e0129597. 10.1371/journal.pone.0129597 PubMed DOI PMC
Loi A., Howieson J. G., Cocks P. S., Caredda S. (1993). The adaptation of Medicago polimorpha to a range of edaphic and environmental conditions: effect of temperature on growth, and acidity stress on nodulation and nod gene induction. Aust. J. Exp. Agr. 33, 25–30. 10.1071/EA9930025 DOI
Loi A., Howieson J. G., Nutt B. J., Carr S. J. (2005). A second generation of annual pasture legumes and their potential for for inclusion in Mediterranean-type farming systems. Aust. J. Exp. Agr. 45, 289–299. 10.1071/EA03134 DOI
Long R. L., Gorecki M. J., Renton M., Scott J. K., Colville L., Goggin D. E., et al. (2015). The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise. Biol. Rev. 90, 31–59. 10.1111/brv.12095 PubMed DOI
Manganaro A. (1919). “Leguminosas bonaerenses,” in Anales de la Sociedad Científica Argentina. Eds. Carrete E., Lizer C. (Buenos Aires: ), 77–264.
Marzocca A. (1994). Guía descriptiva de Malezas en el Cono Sur (Buenos Aires, Argentina: INTA; ).
Maul J., Mirsky S., Emche S., Devine T. (2011). Evaluating a germplasm collection of the cover crop hairy vetch for use in sustainable farming systems. Crop Sci. 51, 2615–2625. 10.2135/cropsci2010.09.0561 DOI
Mirsky S., Ackroyd V. J., Cordeau S., Curran W. S., Hashemi M., Reberg-Horton S. C., et al. (2017). Hairy vetch biomass across the Eastern United States: effects of latitude, seeding rate and date, and termination timing. Agron. J. 109, 1–10. 10.2134/agronj2016.09.0556 DOI
Mischler R., Duiker S. W., Curran W., Wilson D. (2010). Hairy vetch management for no-till organic corn production. Agron. J. 102, 355–362. 10.2134/agronj2009.0183 DOI
Pascher K., Hainz-Renetzeder C., Gollmann G., Schneeweiss G. M. (2017). Spillage of viable seeds of oilseed rape along transportation routes: ecological risk assessment and perspectives on management efforts. Front. Ecol. Evol. 5, 104. 10.3389/fevo.2017.00104 DOI
Peakall R., Smouse P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. 10.1111/j.1471-8286.2005.01155.x PubMed DOI PMC
Peakall R., Smouse P. E., Huff D. R. (1995). Evolutionary implications of allozyme and RAPD variation in diploid populations of buffalograss Buchloe dactyloides. (Nutt. Engelm.). Mol. Ecol. 4, 135–147. 10.1111/j.1365-294X.1995.tb00203.x DOI
Petraityte N., Sliesaravicius A., Dastikaite A. (2007). Potential reproduction and real seed productivity of Vicia villosa L. Biologija 53, 48–51.
Phillips S. J., Anderson R. P., Schapire R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecol. Model 190, 231–259. 10.1016/j.ecolmodel.2005.03.026 DOI
Phillips S. J., Dudík M., Schapire R. E. (2018). Maxent software for modeling species niches and distributions (Version 3.4.1). http://biodiversityinformatics.amnh.org/opensource/maxent/ Accessed on 2018-10-05.
Picciau R., Pritchard H. W., Mattana E., Bacchetta G. (2019). Thermal thresholds for seed germination in Mediterranean species are higher in mountain compared with lowland areas. Seed Sci. Res. 29, 44–54. 10.1017/S0960258518000399 DOI
Raveendar S., Lee G. A., Jeon Y. A., Lee Y. J., Lee J. R., Cho G. T., et al. (2015). Cross-amplification of Vicia sativa subsp. sativa microsatellites across 22 other Vicia species. Molecules 20, 1543–1550. 10.3390/molecules20011543 PubMed DOI PMC
Renzi J. P., Cantamutto M. A. (2013). Vicias: Bases agronómicas para el manejo en la Región Pampeana (Vicias: Agronomic bases for management in the Pampas) (Buenos Aires, Argentina: Ediciones INTA; ), 299.
Renzi J. P., Chantre G. R., Cantamutto M. A. (2014). Development of a thermal-time model for combinational dormancy release of hairy vetch (Vicia villosa ssp. villosa). Crop Pasture Sci. 65, 470–478. 10.1071/CP13430 DOI
Renzi J. P., Chantre G. R., Cantamutto M. A. (2016). Effect of water availability and seed source on physical dormancy break of Vicia villosa ssp. Villosa. Seed Sci. Res. 26, 254–263. 10.1017/S096025851600012X DOI
Renzi J. P., Chantre G. R., Cantamutto M. A. (2017). Self-regeneration of hairy vetch (Vicia villosa Roth) as affected by seedling density and soil tillage method in a semi-arid agroecosystem. Grass Forage Sci. 72, 535–544. 10.1111/gfs.12255 DOI
Renzi J. P., Chantre G., Cantamutto M. A. (2018). Vicia villosa ssp. villosa Roth field emergence model in a semiarid agroecosystem. Grass Forage Sci. 73, 146–158. 10.1111/gfs.12295 DOI
Renzi J. P., Chantre G. R., González-Andújar J. L., Cantamutto M. A. (2019). Development and validation of a simulation model for hairy vetch (Vicia villosa Roth) self-regeneration under different crop rotations. Field Crops Res. 235, 79–86. 10.1016/j.fcr.2019.02.020 DOI
Santos D. J., Wilson M. G., Ostinelli M. M. (2017). Metodología de muestreo de suelos y ensayos a campo (Entre Ríos, Argentina: Ediciones INTA; ).
Smouse P. E., Peakall R. (1999). Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82, 561–573. 10.1038/sj.hdy.6885180 PubMed DOI
Smouse P. E., Long J. C., Sokal R. R. (1986). Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst. Zool. 35, 627–632. 10.2307/2413122 DOI
Tang S., Kishore V. K., Knapp S. J. (2003). PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor. Appl. Genet. 107, 6–19. 10.1007/s00122-003-1233-0 PubMed DOI
Toser M. G., Ooi M. K. J. (2014). Humidity-regulated dormancy onset in the Fabaceae: a conceptual model and its ecological implications for the Australian wattle Acacia saligna . Ann. Bot. 114, 579–590. 10.1093/aob/mcu144 PubMed DOI PMC
Van Assche J. A., Vandelook F. (2010). Combinational dormancy in winter annual Fabaceae. Seed Sci. Res. 20, 237–242. 10.1017/S0960258510000218 DOI
Van de Wouw M., Enneking D., Robertson L. D., Maxted N. (2001). “Vetches (Vicia L.),” in Plant genetic resources of legumes in the Mediterranean. Eds. Maxted N., Bennett S. J. (Dordrecht, The Netherlands: Kluwer; ), 132–157.
Vanzolini J. I. (2011). La vicia villosa como cultivo de cobertura: efectos de corto plazo sobre el suelo y la productividad del maíz bajo riego en el Valle Bonaerense del río Colorado (Universidad Nacional del Sur, Buenos Aires, Argentina: MScThesis; ).
Wayman S., Kissing Kucek L., Mirsky S. B., Ackroyd V., Cordeau S., Ryan M. R. (2016). Organic and conventional farmers differ in their perspectives on cover crop use and breeding. Renew Agr. Food Syst. 32, 376–385. 10.1017/S1742170516000338 DOI
Wiering N. P., Flavin C., Sheaffer C. C., Heineck G. C., Sadok W., Ehlke N. J. (2018). Winter hardiness and freezing tolerance in a hairy vetch collection. Crop Sci. 58, 1594–1604. 10.2135/cropsci2017.12.0748 DOI
Wilke B. J., Snapp S. S. (2008). Winter cover crops for local ecosystems: Linking plant traits and ecosystem function. J. Sci. Food Agric. 88, 551–557. 10.1002/jsfa.3149 DOI
Zhang X., Mosjidis J. A. (1995). Breeding systems of several Vicia species. Crop Sci. 35, 1200–1202. 10.2135/cropsci1995.0011183X003500040049x DOI
Zhu G., Li H., Zhao L. (2017). Incorporating anthropogenic variables into ecological niche modeling to predict areas of invasion of Popillia japonica. J. Pest Sci. 90, 151–160. 10.1007/s10340-016-0780-5 DOI