DArTseq genotyping facilitates the transfer of "exotic" chromatin from a Secale cereale × S. strictum hybrid into wheat
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39309182
PubMed Central
PMC11412823
DOI
10.3389/fpls.2024.1407840
Knihovny.cz E-zdroje
- Klíčová slova
- DArTseq markers, Secale cereanum, Triticum aestivum, chromosome rearrangements, genotyping, heatmap, introgression lines,
- Publikační typ
- časopisecké články MeSH
Cultivated and wild species of the genus rye (Secale) are important but underexploited gene sources for increasing the genetic diversity of bread wheat. Gene transfer is possible via bridge genetic materials derived from intergeneric hybrids. During this process, it is essential to precisely identify the rye chromatin in the wheat genetic background. In the present study, backcross generation BC2F8 from a cross between Triticum aestivum (Mv9kr1) and S. cereanum ('Kriszta,' a cultivar from the artificial hybrid of S. cereale and S. strictum) was screened using in-situ hybridization (GISH and FISH) and analyzed by DArTseq genotyping in order to select potentially agronomically useful genotypes for prebreeding purposes. Of the 329,267 high-quality short sequence reads generated, 27,822 SilicoDArT and 8,842 SNP markers specific to S. cereanum 1R-7R chromosomes were identified. Heatmaps of the marker densities along the 'Lo7' rye reference pseudomolecules revealed subtle differences between the FISH- and DArTseq-based results. This study demonstrates that the "exotic" rye chromatin of S. cereanum introgressed into wheat can be reliably identified by high-throughput DArTseq genotyping. The Mv9kr1-'Kriszta' addition and translocation lines presented here may serve as valuable prebreeding genetic materials for the development of stress-tolerant or disease-resistant wheat varieties.
Field Crops Research Institute Agricultural Research Centre Giza Cairo Egypt
Institute of Experimental Botany Centre of Plant Structural and Functional Genomics Olomouc Czechia
Zobrazit více v PubMed
Akgün Đ., Tosun M. (2004). Agricultural and cytological characteristics of M1 perennial rye (Secale montanum Guss.) as effected by the application of different doses of gamma rays. Pak. J. Biol. Sci. 7, 827–833. doi: 10.3923/pjbs.2004.827.833 DOI
Akhunov E. D., Goodyear A. W., Geng S., Qi L. L., Echalier B., Gill B. S., et al. . (2003). The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosomes arms. Genome Res. 13, 753–763. doi: 10.1101/gr.808603 PubMed DOI PMC
Al-Beyroutiová M., Sabo M., Sleziak P., Dušinský R., Birčák E., Hauptvogel P., et al. . (2016). Evolutionary relationships in the genus Secale revealed by DArTseq DNA polymorphism. Plant Syst. Evol. 302, 1083–1091. doi: 10.1007/s00606-016-1318-2 DOI
An D., Ma P., Zheng Q., Fu S., Li L., Han F., et al. . (2019). Development and molecular cytogenetic identification of a new wheat-rye 4R chromosome disomic addition line with resistances to powdery mildew, stripe rust and sharp eyespot. Theor. Appl. Genet. 132, 257–272. doi: 10.1007/s00122-018-3214-3 PubMed DOI
Aniol A. (2004). Chromosomal location of aluminium tolerance genes in rye. Plant Breed. 123, 132–136. doi: 10.1046/j.1439-0523.2003.00958.x DOI
Aniol A., Gustafson J. P. (1984). Chromosome location of genes controlling aluminum tolerance in wheat, rye, and triticale. Can. J. Genet. Cytol. 26, 701–705. doi: 10.1139/g84-111 DOI
Appels R., Eversole K., Feuillet C., Keller B., Rogers J., Stein N., et al. . (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361. doi: 10.1126/science.aar7191 PubMed DOI
Avni R., Nave M., Barad O., Baruch K., Twardziok S. O., Gundlach H., et al. . (2017). Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357, 93–97. doi: 10.1126/science.aan0032 PubMed DOI
Bauer E., Schmutzer T., Barilar I., Mascher M., Gundlach H., Martis M. M., et al. . (2017). Towards a whole-genome sequence for rye (Secale cereale L.). Plant J. 89, 853–869. doi: 10.1111/tpj.13436 PubMed DOI
Bedbrook J. R., Jones J., O’Dell M., Thompson R. D., Flavell R. B. (1980). A molecular description of telomeric heterochromatin in Secale species. Cell 19, 545–560. doi: 10.1016/0092-8674(80)90529-2 PubMed DOI
Benito C., Gallego F. J., Zaragoza C., Frade J. M., Figueiras A. M. (1991). Biochemical evidence of a translocation between 6RL/7RL chromosome arms in rye (Secale cereale L.). A genetic map of 6R chromosome. Theor. Appl. Genet. 82, 27–32. doi: 10.1007/BF00231274 PubMed DOI
Bienias A., Góralska M., Masojć P., Milczarski P., Myśków B. (2020). The GAMYB gene in rye: sequence, polymorphisms, map location, allele-specific markers, and relationship with α-amylase activity. BMC Genomics 21, 578. doi: 10.1186/s12864-020-06991-3 PubMed DOI PMC
Contento A., Heslop-Harrison J. S., Schwarzacher T. (2005). Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet. Genome Res. 109, 34–42. doi: 10.1159/000082379 PubMed DOI
Crespo-Herrera L. A., Garkava-Gustavsson L., Åhman I. (2017). A systematic review of rye (Secale cereale L.) as a source of resistance to pathogens and pests in wheat (Triticum aestivum L.). Hereditas 154, 14. doi: 10.1186/s41065-017-0033-5 PubMed DOI PMC
Cseh A., Megyeri M., Yang C., Hubbart-Edwards S., Scholefield D., Ashling S. S., et al. . (2019. a). Development of a new Am-genome-specific single nucleotide polymorphism marker set for the molecular characterization of wheat-Triticum monococcum introgression lines. Plant Genome 12, 1–7. doi: 10.3835/plantgenome2018.12.0098 PubMed DOI
Cseh A., Yang C., Hubbart-Edwards S., Scholefield D., Ashling S. S., Burridge A. J., et al. . (2019. b). Development and validation of an exome-based SNP marker set for identification of the St C.OMMAJ.R.X.X.X and Jvs genomes of Thinopyrym intermedium in a wheat background. Theor. Appl. Genet. 132, 1555–1570. doi: 10.1007/s00122-019-03300-9 PubMed DOI PMC
Cuadrado A., Schwarzacher T., Jouve N. (2000). Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor. Appl. Genet. 101, 711–717. doi: 10.1007/s001220051535 DOI
Culvenor R. A., Oram R. N., Fazekas d. S. G. C. (1986). Variation in tolerance in Phalaris aquatica L. and a related species to aluminium in nutrient solution and soil. Aust. J. Agric. Res. 37, 383–395. doi: 10.1071/AR9860383 DOI
deJong J. H., Fransz P., Zabel P. (1999). High resolution FISH in plants – techniques and applications. Trends Plant Sci. 4, 258–263. doi: 10.1016/s1360-1385(99)01436-3 PubMed DOI
Devi U., Grewal S., Yang C.-Y., Hubbart-Edwards S., Scholefield D., Ashling S., et al. . (2019). Development and characterisation of interspecific hybrid lines with genome-wide introgressions from Triticum timopheevii in a hexaploid wheat background. BMC Plant Biol. 19, 183. doi: 10.1186/s12870-019-1785-z PubMed DOI PMC
Devos K. M., Atkinson M. D., Chinoy C. N., Francis H. A., Harcourt R. L., Koebner R. M. D., et al. . (1993). Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85, 673–680. doi: 10.1007/BF00225004 PubMed DOI
Driscoll C. J., Sears E. R. (1971). Individual addition of the chromosomes of ‘Imperial’ rye to wheat. Agron. Abstr. 6.
Du H., Tang Z., Duan Q., Tang S., Fu S. (2018). Using the 6RLKu minichromosome of rye (Secale cereale L.) to create wheat-rye 6D/6RLKu small segment translocation lines with powdery mildew resistance. Int. J. Mol. Sci. 19, 3933. doi: 10.3390/ijms19123933 PubMed DOI PMC
Duan Q., Wang Y. Y., Qiu L., Ren T. H., Li Z., Fu S. L., et al. . (2017). Physical location of new PCR-based markers and powdery mildew resistance gene (s ) on rye (Secale cereale L.) chromosome 4 using 4R dissection lines. Front. Plant. Sci. 8, 1716. doi: 10.3389/fpls.2017.01716 PubMed DOI PMC
Elshire R. J., Glaubitz J. C., Sun Q., Poland J. A., Kawamoto K., Buckler E. S., et al. . (2011). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS One 6, e19379. doi: 10.1371/journal.pone.0019379 PubMed DOI PMC
Friebe B., Heun M., Tuleen N., Zeller F. J., Gill B. S. (1994). Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci. 34, 621. doi: 10.2135/cropsci1994.0011183X003400030003x DOI
Ganal M. W., Polley A., Graner E.-M., Plieske J., Wieseke R., Luerssen H., et al. . (2012). Large SNP arrays for genotyping in crop plants. J. Biosci. 37, 821–828. doi: 10.1007/s12038-012-9225-3 PubMed DOI
Glithero N. J., Wilson P., Ramsden S. J. (2013). Straw use and availability for second generation biofuels in England. Biomass Bioenerg. 55, 311–321. doi: 10.1016/j.biombioe.2013.02.033 PubMed DOI PMC
Grądzielewska A., Milczarski P., Molik K., Pawłowska E. (2020). Identification and mapping of a new recessive dwarfing gene dw9 on the 6RL rye chromosome and its phenotypic effects. PloS One 15, e0229564. doi: 10.1371/journal.pone.0229564 PubMed DOI PMC
Grossi L. L., Fernandes M., Silva M. A., de Oliveira Bernardes C., Tuler A. C., dos Santos P. H. D., et al. . (2021). DArTseq-derived SNPs for the genus Psidium reveal the high diversity of native species. Tree Genet. Gen. 17, 23. doi: 10.1007/s11295-021-01505-y DOI
Holden S., Bergum M., Green P., Bettgenhaeuser J., Hernández-Pinzón I., Thind A., et al. . (2022). A lineage-specific Exo70 is required for receptor kinase-mediated immunity in barley. Sci. Adv. 8, eabn7258. doi: 10.1126/sciadv.abn7258 PubMed DOI PMC
Jaccoud D., Peng K., Feinstein D., Kilian A. (2001). Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res. 29, E25. doi: 10.1093/nar/29.4.e25 PubMed DOI PMC
Jauhar P. P., Chibbar R. N. (1999). Chromosome-mediated and direct gene transfers in wheat. Genome 42, 570–583. doi: 10.1139/g99-045 DOI
Jiang J., Friebe B., Gill B. S. (1994). Recent advances in alien gene transfer in wheat. Euphytica 73, 199–212. doi: 10.1007/BF00036700 DOI
Kalinka A., Achrem M. (2020). The distribution pattern of 5-methylcytosine in rye (Secale L.) chromosomes. PloS One 15, e0240869. doi: 10.1371/journal.pone.0240869 PubMed DOI PMC
Keilwagen J., Lehnert H., Berner T., Badaeva E., Himmelbach A., Börner A., et al. . (2022). Detecting major introgressions in wheat and their putative origins using coverage analysis. Sci. Rep. 12, 1908. doi: 10.1038/s41598-022-05865-w PubMed DOI PMC
Keilwagen J., Lehnert H., Berner T., Beier S., Scholz U., Himmelbach A., et al. . (2019). Detecting large chromosomal modifications using short read data from genotyping-by-sequencing. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.01133 PubMed DOI PMC
Kilian A., Huttner E., Wenzl P., Jaccoud D., Carling J., Caig V., et al. . (2005). “The fast and the cheap SNP and DArT-based whole genome profiling for crop improvement,” in Proceedings of the International Congress “In the Wake of the Double Helix: From the Green Revolution to the Gene Revolution. Eds. Tuberosa R., Phillips R. L., Gale M. (Bologna, Italy: Avenue media; ), 443–461.
King J., Grewal S., Yang C.-Y., Hubbart S., Scholefield D., Ashling S., et al. . (2017). A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum . Plant Biotechnol. J. 15, 217–226. doi: 10.1111/pbi.12606 PubMed DOI PMC
King J., Newell C., Grewal S., Hubbart-Edwards S., Yang C.-Y., Scholefield D., et al. . (2019). Development of stable homozygous wheat/Amblyopyrum muticum (Aegilops mutica) introgression lines and their cytogenetic and molecular characterization. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00034 PubMed DOI PMC
Korzun V., Börner A., Melz G. (1996). RFLP mapping of the dwarfing (Ddw1) and hairy peduncle (Hp) genes on chromosome 5 of rye (Secale cereale L.). Theor. Appl. Genet. 92, 1073–1077. doi: 10.1007/BF00224051 PubMed DOI
Kotvics G. (1970). “Investigations on increasing the protein content of Secale cereale L,” in Protein growth by plant breeding. Ed. Bálint A. (Budapest, Hungary: Akadémiai Kiadó; ), 89–90.
Kubiczek R., Łuczak W., Molski B. (1981). Protein resources of wild Secale species. Kulturpflanze 29, 159–167. doi: 10.1007/BF02014747 DOI
Le H. T., Armstrong K. C., Miki B. (1989). Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol. Biol. Rep. 7, 150–158. doi: 10.1007/BF02669631 DOI
Li G., Li J., Zhang Y., Ma Q., Yang E., Zhang P., et al. . (2022). Molecular and cytogenetic dissection of stripe rust resistance gene Yr83 from rye 6R and generation of resistant germplasm in wheat breeding. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1035784 PubMed DOI PMC
Li G., Wang L., Yang J., He H., Jin H., Li X., et al. . (2021). A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat. Genet. 53, 574–584. doi: 10.1038/s41588-021-00808-z PubMed DOI PMC
Li J., Dundas I., Dong C., Li G., Trethowan R., Yang Z., et al. . (2020). Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor. Appl. Genet. 133, 1095–1107. doi: 10.1007/s00122-020-03534-y PubMed DOI
Ling H.-Q., Ma B., Shi X., Liu H., Dong L., Sun H., et al. . (2018). Genome sequence of the progenitor of wheat A subgenome Triticum urartu . Nature 557, 424–428. doi: 10.1038/s41586-018-0108-0 PubMed DOI PMC
Lukaszewski A. J., Porter D. R., Baker C. A., Rybka K., Lapinski B. (2001). Attempts to transfer Russian wheat aphid resistance from a rye chromosome in Russian triticales to wheat. Crop Sci. 41, 1743. doi: 10.2135/cropsci2001.1743 DOI
Luo M. C., Gu Y. Q., Puiu D., Wang H., Twardziok S. O., Deal K. R., et al. . (2017). Genome sequence of the progenitor of the wheat D genome Aegilops tauschii . Nature 551, 498–502. doi: 10.1038/nature24486 PubMed DOI PMC
Ma P., Han G., Zheng Q., Liu S., Han F., Wang J., et al. . (2020). Development of novel wheat-rye chromosome 4R translocations and assignment of their powdery mildew resistance. Plant Dis. 104, 260–268. doi: 10.1094/PDIS-01-19-0160-RE PubMed DOI
Maccaferri M., Harris N. S., Twardziok S. O., Pasam R. K., Gundlach H., Spannagl M., et al. . (2019). Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 51, 885–895. doi: 10.1038/s41588-019-0381-3 PubMed DOI
Marais G. F. (2001). An evaluation of three Sr27-carrying wheat × rye translocations. S. Afr. J. Plant Soil 18, 135–136. doi: 10.1080/02571862.2001.10634417 DOI
Marais G. F., Marais A. S. (1994). The derivation of compensating translocations involving homoeologous group 3 chromosomes of wheat and rye. Euphytica 79, 75–80. doi: 10.1007/BF00023578 DOI
Mascher M., Gundlach H., Himmelbach A., Beier S., Twardziok S. O., Wicker T., et al. . (2017). A chromosome conformation capture ordered sequence of the barley genome. Nature 544, 427–433. doi: 10.1038/nature22043 PubMed DOI
Matos M., Camacho M. V., Pérez-Flores V., Pernaute B., Pinto-Carnide O., Benito C. (2005). A new aluminum tolerance gene located on rye chromosome arm 7RS. Theor. Appl. Genet. 111, 360–369. doi: 10.1007/s00122-005-2029-1 PubMed DOI
McIntyre C. L., Pereira S., Moran L. B., Appels R. (1990). New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33, 635–640. doi: 10.1139/g90-094 PubMed DOI
Miftahudin, Scoles G. J., Gustafson J. P. (2002). AFLP markers tightly linked to the aluminum-tolerance gene Alt3 in rye (Secale cereale L.). Theor. Appl. Genet. 104, 626–631. doi: 10.1007/s00122-001-0782-3 DOI
Milczarski P., Hanek M., Tyrka M., Stojałowski S. (2016). The application of GBS markers for extending the dense genetic map of rye (Secale cereale L.) and the localization of the Rfc1 gene restoring male fertility in plants with the C source of sterility-inducing cytoplasm. J. Appl. Genet. 57, 439–451. doi: 10.1007/s13353-016-0347-4 PubMed DOI PMC
Mohammadi R., Farshadfar E., Aghaee-Sarbarzeh M., Sutka J. (2003). Locating QTLs controlling drought tolerance criteria in rye using disomic addition lines. Cereal Res. Commun. 31, 257–264. doi: 10.1007/BF03543352 DOI
Molnár-Láng M., Ceoloni C., Doležel J. (2015). Alien introgression in wheat: Cytogenetics, molecular biology, and genomics / Márta Molnár-Láng. Eds. Ceoloni C., Doležel J. (Switzerland: Cham: Springer Science + Business Media; ). doi: 10.1007/978-3-319-23494-6 DOI
Molnár-Láng M., Linc G., Sutka J. (1996). Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica 90, 301–305. doi: 10.1007/BF00027480 DOI
Moore G. (2015). Strategic pre-breeding for wheat improvement. Nat. Plants 1, 1–3. doi: 10.1038/nplants.2015.18 PubMed DOI
Naranjo T., Fernández-Rueda P. (1996). Pairing and recombination between individual chromosomes of wheat and rye in hybrids carrying the ph1b mutation. Theor. Appl. Genet. 93, 242–248. doi: 10.1007/BF00225752 PubMed DOI
Negro S. S., Millet E. J., Madur D., Bauland C., Combes V., Welcker C., et al. . (2019). Genotyping-by-sequencing and SNP-arrays are complementary for detecting quantitative trait loci by tagging different haplotypes in association studies. BMC Plant Biol. 19, 318. doi: 10.1186/s12870-019-1926-4 PubMed DOI PMC
Oram R. N. (1996). Secale montanum —a wider role in Australasia? N. Z. J. Agric. Res. 39, 629–633. doi: 10.1080/00288233.1996.9513223 DOI
Pertea G., Pertea M. (2020). GFF utilities: gffRead and gffCompare. F1000Research 9, 304. doi: 10.12688/f1000research.23297.2 PubMed DOI PMC
Plaschke J., Börner A., Xie D. X., Koebner R. M. D., Schlegel R., Gale M. D. (1993). RFLP mapping of genes affecting plant height and growth habit in rye. Theor. Appl. Genet. 85, 1049–1054. doi: 10.1007/BF00215046 PubMed DOI
Qiu L., Tang Z. X., Li M., Fu S. L. (2016). Development of new PCR-based markers specific for chromosome arms of rye (Secale cereale L.). Genome 59, 159–165. doi: 10.1139/gen-2015-0154 PubMed DOI
Rabanus-Wallace M. T., Hackauf B., Mascher M., Lux T., Wicker T., Gundlach H., et al. . (2021). Chromosome-scale genome assembly provides insights into rye biology, evolution and agronomic potential. Nat. Genet. 53, 564–573. doi: 10.1038/s41588-021-00807-0 PubMed DOI PMC
Rakoczy-Trojanowska M., Krajewski P., Bocianowski J., Schollenberger M., Wakuliński W., Milczarski P., et al. . (2017). Identification of single nucleotide polymorphisms associated with brown rust resistance, α-amylase activity and pre-harvest sprouting in rye (Secale cereale L.). Plant Mol. Biol. Rep. 35, 366–378. doi: 10.1007/s11105-017-1030-6 PubMed DOI PMC
Rao M. V. P. (1979). The transfer of alien genes for stem rust resistance to durum wheat. Proc. Fifth Int. Wheat Genet. Symposium Vol. 1., 338–341.
Ray D. K., Mueller N. D., West P. C., Foley J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS One 8, e66428. doi: 10.1371/journal.pone.0066428 PubMed DOI PMC
Rayburn A. L., Gill B. S. (1985). Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J. Hered. 76, 78–81. doi: 10.1093/oxfordjournals.jhered.a110049 DOI
Reimann-Philipp R. (1986). Perennial spring rye as a crop alternative. J. Agron. Crop Sci. 157, 281–285. doi: 10.1111/j.1439-037X.1986.tb00077.x DOI
Roussel V., Leisova L., Exbrayat F., Stehno Z., Balfourier F. (2005). SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor. Appl. Genet. 111, 162–170. doi: 10.1007/s00122-005-2014-8 PubMed DOI
Sánchez-Martín J., Steuernagel B., Ghosh S., Herren G., Hurni S., Adamski N., et al. . (2016). Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 17, 1–7. doi: 10.1186/s13059-016-1082-1 PubMed DOI PMC
Sansaloni C., Petroli C., Jaccoud D., Carling J., Detering F., Grattapaglia D., et al. . (2011). Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus . BMC Proc. 5, 1–2. doi: 10.1186/1753-6561-5-S7-P54 DOI
Scheben A., Batley J., Edwards D. (2017). Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol. J. 15, 149–161. doi: 10.1111/pbi.12645 PubMed DOI PMC
Schlegel R., Ozdemir A., Tolay I., Cakmak I., Saberi H., Atanasova M. (1999). “Localisation of genes for zinc and manganese efficiency in wheat and rye,” in Plant Nutrition—Molecular Biology and Genetics: Proceedings of the Sixth International Symposium on Genetics and Molecular Biology of Plant Nutrition. Eds. Gissel-Nielsen G., Jensen A. (Dordrecht, Netherlands: Springer; ), 417–424.
Schlegel R., Werner T., Hülgenhof E. (1991). Confirmationof a 4BL.5RL wheat rye translocation line in wheat cultivar ‘Viking’ showing high copper efficiency. Plant Breed. 107, 226–234. doi: 10.1111/j.1439-0523.1991.tb01210.x DOI
Schneider A., Rakszegi M., Molnár-Láng M., Szakács É. (2016). Production and cytomolecular identification of new wheat-perennial rye (Secale cereanum) disomic addition lines with yellow rust resistance (6R) and increased arabinoxylan and protein content (1R, 4R, 6R). Theor. Appl. Genet. 129, 1045–1059. doi: 10.1007/s00122-016-2682-6 PubMed DOI
Schreiber M., Gao Y., Koch N., Fuchs J., Heckmann S., Himmelbach A., et al. . (2022). Recombination landscape divergence between populations is marked by larger low-recombining regions in domesticated rye. Mol. Biol. Evol. 39, msac131. doi: 10.1093/molbev/msac131 PubMed DOI PMC
Schreiber M., Himmelbach A., Börner A., Mascher M. (2019). Genetic diversity and relationship between domesticated rye and its wild relatives as revealed through genotyping-by-sequencing. Evol. Appl. 12, 66–77. doi: 10.1111/eva.12624 PubMed DOI PMC
Schwarzacher T., Leitch A. R., Bennett M. D., Heslop-Harrison J. S. (1989). In situ localization of parental genomes in a wide hybrid. Ann. Bot. 64, 315–324. doi: 10.1093/oxfordjournals.aob.a087847 DOI
Singh R. J., Röbbelen G. (1977). Identification by Giemsa technique of the translocations separating cultivated rye from three wild species of Secale . Chromosoma 59, 217–225. doi: 10.1007/BF00292779 DOI
Szőke-Pázsi K., Türkösi E., Szakács É. (2022). Chromosome morphology and cytomolecular characteristics of the perennial rye cultivar ‘Kriszta’. Cereal Res. Commun. 50, 789–796. doi: 10.1007/s42976-021-00233-2 DOI
Szakács É., Molnár-Láng M. (2008). Fluorescent in situ hybridization polymorphism on the 1RS chromosome arms of cultivated Secale cereale species. Cereal Res. Commun. 36, 247–255. doi: 10.1556/CRC.36.2008.2.5 DOI
Szakács É., Schneider A., Rakszegi M., Molnár-Láng M. (2016). Addition of chromosome 4R from Hungarian rye cultivar Lovászpatonai confers resistance to stripe rust and outstanding end-use quality in wheat. J. Cereal Sci. 71, 204–206. doi: 10.1016/j.jcs.2016.08.019 DOI
Szakács É., Szőke-Pázsi K., Kalapos B., Schneider A., Ivanizs L., Rakszegi M., et al. . (2020). 1RS arm of Secale cereanum ‘Kriszta’ confers resistance to stripe rust, improved yield components and high arabinoxylan content in wheat. Sci. Rep. 10, 1792. doi: 10.1038/s41598-020-58419-3 PubMed DOI PMC
Targońska-Karasek M., Bolibok-Brągoszewska H., Oleniecki T., Sharifova S., Kopania M., Rakoczy-Trojanowska M. (2018). Verification of taxonomic relationships within the genus Secale (Poaceae: Pooideae: Triticeae) based on multiple molecular methods. Phytotaxa 383, 128. doi: 10.11646/phytotaxa.383.2.1 DOI
Targońska-Karasek M., Bolibok-Brągoszewska H., Rakoczy-Trojanowska M. (2017). DArTseq genotyping reveals high genetic diversity of polish rye inbred lines. Crop Sci. 57, 1906–1915. doi: 10.2135/cropsci2016.09.0771 DOI
Tiwari V. K., Wang S., Danilova T., Koo D. H., Vrána J., Kubaláková M., et al. . (2015). Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5Mg of Aegilops geniculata . Plant J. 84, 733–746. doi: 10.1111/tpj.13036 PubMed DOI
Türkösi E., Ivanizs L., Farkas A., Gaál E., Kruppa K., Kovács P., et al. . (2022). Transfer of the ph1b deletion chromosome 5B from Chinese Spring wheat into a winter wheat line and induction of chromosome rearrangements in wheat-Aegilops biuncialis hybrids. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.875676 PubMed DOI PMC
Valdisser P. A. M. R., Pereira W. J., Almeida Filho J. E., Müller B. S. F., Coelho G. R. C., de Menezes I. P. P., et al. . (2017). In-depth genome characterization of a Brazilian common bean core collection using DArTseq high-density SNP genotyping. BMC Genomics 18, 423. doi: 10.1186/s12864-017-3805-4 PubMed DOI PMC
van de Wouw M., Kik C., van Hintum T., van Treuren R., Visser B. (2010). Genetic erosion in crops: concept, research results and challenges. Plant Genet. Resour. 8, 1–15. doi: 10.1017/S1479262109990062 DOI
Wang R. R.-C. (1987). Diploid perennial intergeneric hybrids in the tribe Triticeae. III. Hybrids among Secale montanum, Pseudoroegneria spicata, and Agropyron mongolicum . Genome 29, 80–84. doi: 10.1139/g87-014 DOI
Wang D., Zhuang L., Sun L., Feng Y., Pei Z., Qi Z. (2010). Allocation of a powdery mildew resistance locus to the chromosome arm 6RL of Secale cereale L. cv. ‘Jingzhouheimai’. Euphytica 176, 157–166. doi: 10.1007/s10681-010-0199-7 DOI
Winfield M. O., Allen A. M., Burridge A. J., Barker G. L. A., Benbow H. R., Wilkinson P. A., et al. . (2016). High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol. J. 14, 1195–1206. doi: 10.1111/pbi.12485 PubMed DOI PMC
Xi W., Tang Z., Luo J., Fu S. (2019). Physical location of new stripe rust resistance gene(s) and PCR-based markers on rye (Secale cereale L.) chromosome 5 using 5R dissection lines. Agronomy 9, 498. doi: 10.3390/agronomy9090498 DOI
Yu G., Matny O., Champouret N., Steuernagel B., Moscou M. J., Hernández-Pinzón I., et al. . (2022). Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62 . Nat. Commun. 13, 1607. doi: 10.1038/s41467-022-29132-8 PubMed DOI PMC
Zeller F. J., Koller O. L. (1981). Identification of a 4A/7R and a 7B/4R wheat-rye chromosome translocation. Theor. Appl. Genet. 59, 33–37. doi: 10.1007/BF00275773 PubMed DOI
Zhu T., Wang Le, Rimbert H., Rodriguez J. C., Deal K. R., de Oliveira R., et al. . (2021). Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J. 107, 303–314. doi: 10.1111/tpj.15289 PubMed DOI PMC