A lineage-specific Exo70 is required for receptor kinase-mediated immunity in barley
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35857460
PubMed Central
PMC9258809
DOI
10.1126/sciadv.abn7258
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In the evolution of land plants, the plant immune system has experienced expansion in immune receptor and signaling pathways. Lineage-specific expansions have been observed in diverse gene families that are potentially involved in immunity but lack causal association. Here, we show that Rps8-mediated resistance in barley to the pathogen Puccinia striiformis f. sp. tritici (wheat stripe rust) is conferred by a genetic module: Pur1 and Exo70FX12, which are together necessary and sufficient. Pur1 encodes a leucine-rich repeat receptor kinase and is the ortholog of rice Xa21, and Exo70FX12 belongs to the Poales-specific Exo70FX clade. The Exo70FX clade emerged after the divergence of the Bromeliaceae and Poaceae and comprises from 2 to 75 members in sequenced grasses. These results demonstrate the requirement of a lineage-specific Exo70FX12 in Pur1-mediated immunity and suggest that the Exo70FX clade may have evolved a specialized role in receptor kinase signaling.
Australian Tropical Herbarium James Cook University Smithfield 4878 Australia
Department of Plant Physiology RWTH Aachen University 52056 Aachen Germany
NIAB 93 Lawrence Weaver Road Cambridge CB3 0LE England UK
The Sainsbury Laboratory University of East Anglia Norwich Research Park Norwich NR4 7UH UK
Zobrazit více v PubMed
Dodds P. N., Rathjen J. P., Plant immunity: Towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 11, 539–548 (2010). PubMed
Lo Presti L., Lanver D., Schweizer G., Tanaka S., Liang L., Tollot M., Zuccaro A., Reissmann S., Kahmann R., Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 66, 513–545 (2015). PubMed
Toruño T. Y., Stergiopoulos I., Coaker G., Plant-pathogen effectors: Cellular probes interfering with plant defenses in spatial and temporal manners. Annu. Rev. Phytopathol. 54, 419–441 (2016). PubMed PMC
Cui H., Tsuda K., Parker J. E., Effector-triggered immunity: From pathogen perception to robust defense. Annu. Rev. Plant Biol. 66, 487–511 (2015). PubMed
Zipfel C., Oldroyd G. E., Plant signalling in symbiosis and immunity. Nature 543, 328–336 (2017). PubMed
Boutrot F., Zipfel C., Function, discovery, and exploitation of plant pattern recognition receptors for broad-spectrum disease resistance. Annu. Rev. Phytopathol. 55, 257–286 (2017). PubMed
Pruitt R. N., Schwessinger B., Joe A., Thomas N., Liu F., Albert M., Robinson M. R., Chan L. J. G., Luu D. D., Chen H., Bahar O., Daudi A., de Vleesschauwer D., Caddell D., Zhang W., Zhao X., Li X., Heazlewood J. L., Ruan D., Majumder D., Chern M., Kalbacher H., Midha S., Patil P. B., Sonti R. V., Petzold C. J., Liu C. C., Brodbelt J. S., Felix G., Ronald P. C., The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci. Adv. 1, e1500245 (2015). PubMed PMC
Song W.-Y., Wang G. L., Chen L. L., Kim H. S., Pi L. Y., Holsten T., Gardner J., Wang B., Zhai W. X., Zhu L. H., Fauquet C., Ronald P., A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270, 1804–1806 (1995). PubMed
Saintenac C., Lee W. S., Cambon F., Rudd J. J., King R. C., Marande W., Powers S. J., Bergès H., Phillips A. L., Uauy C., Hammond-Kosack K. E., Langin T., Kanyuka K., Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici. Nat. Genet. 50, 368–374 (2018). PubMed
Shiu S.-H., Karlowski W. M., Pan R., Tzeng Y. H., Mayer K. F. X., Li W. H., Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16, 1220–1234 (2004). PubMed PMC
Kobe B., Kajava A. V., The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 11, 725–732 (2001). PubMed
Morillo S. A., Tax F. E., Functional analysis of receptor-like kinases in monocots and dicots. Curr. Opin. Plant Biol. 9, 460–469 (2006). PubMed
Gomez-Gomez L., Boller T., FLS2: An LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011 (2000). PubMed
Zipfel C., Kunze G., Chinchilla D., Caniard A., Jones J. D. G., Boller T., Felix G., Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749–760 (2006). PubMed
Chinchilla D., Bauer Z., Regenass M., Boller T., Felix G., The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18, 465–476 (2006). PubMed PMC
Pruitt R. N., Joe A., Zhang W., Feng W., Stewart V., Schwessinger B., Dinneny J. R., Ronald P. C., A microbially derived tyrosine-sulfated peptide mimics a plant peptide hormone. New Phytol. 215, 725–736 (2017). PubMed PMC
Chinchilla D., Zipfel C., Robatzek S., Kemmerling B., Nürnberger T., Jones J. D. G., Felix G., Boller T., A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497–500 (2007). PubMed
Schulze B., Mentzel T., Jehle A. K., Mueller K., Beeler S., Boller T., Felix G., Chinchilla D., Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J. Biol. Chem. 285, 9444–9451 (2010). PubMed PMC
Sun Y., Li L., Macho A. P., Han Z., Hu Z., Zipfel C., Zhou J. M., Chai J., Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342, 624–628 (2013). PubMed
Meng X., Zhang S., MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51, 245–266 (2013). PubMed
Chen X., Zuo S., Schwessinger B., Chern M., Canlas P. E., Ruan D., Zhou X., Wang J., Daudi A., Petzold C. J., Heazlewood J. L., Ronald P. C., An XA21-associated kinase (OsSERK2) regulates immunity mediated by the XA21 and XA3 immune receptors. Mol. Plant 7, 874–892 (2014). PubMed PMC
S. Duplessis, G. Bakkeren, R. Hamelin, in Adv. Bot. Res., F. M. Martin, Ed. (Academic Press, 2014), vol. 70, pp. 173–209.
Savary S., Willocquet L., Pethybridge S. J., Esker P., McRoberts N., Nelson A., The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3, 430–439 (2019). PubMed
Hovmøller M. S., Sørensen C. K., Walter S., Justesen A. F., Diversity of Puccinia striiformis on cereals and grasses. Annu. Rev. Phytopathol. 49, 197–217 (2011). PubMed
J. Eriksson, Ueber die Specialisirung des Parasitismus bei den Getreiderostpilzen (G. Borntraeger, 1894).
Wellings C., Puccinia striiformis in Australia: A review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Crop Pasture Sci. 58, 567–575 (2007).
Bettgenhaeuser J., Hernández-Pinzón I., Dawson A. M., Gardiner M., Green P., Taylor J., Smoker M., Ferguson J. N., Emmrich P., Hubbard A., Bayles R., Waugh R., Steffenson B. J., Wulff B. B. H., Dreiseitl A., Ward E. R., Moscou M. J., The barley immune receptor Mla recognizes multiple pathogens and contributes to host range dynamics. Nat. Commun. 12, 6915 (2021). PubMed PMC
Dawson A. M., Ferguson J. N., Gardiner M., Green P., Hubbard A., Moscou M. J., Isolation and fine mapping of Rps6: An intermediate host resistance gene in barley to wheat stripe rust. Theor. Appl. Genet. 129, 831–843 (2016). PubMed PMC
Li K., Hegarty J., Zhang C., Wan A., Wu J., Guedira G. B., Chen X., Muñoz-Amatriaín M., Fu D., Dubcovsky J., Fine mapping of barley locus Rps6 conferring resistance to wheat stripe rust. Theor. Appl. Genet. 129, 845–859 (2016). PubMed PMC
Yeo F. K. S., Hensel G., Vozábová T., Martin-Sanz A., Marcel T. C., Kumlehn J., Niks R. E., Golden SusPtrit: A genetically well transformable barley line for studies on the resistance to rust fungi. Theor. Appl. Genet. 127, 325–337 (2014). PubMed
Mascher M., Wicker T., Jenkins J., Plott C., Lux T., Koh C. S., Ens J., Gundlach H., Boston L. B., Tulpová Z., Holden S., Hernández-Pinzón I., Scholz U., Mayer K. F. X., Spannagl M., Pozniak C. J., Sharpe A. G., Šimková H., Moscou M. J., Grimwood J., Schmutz J., Stein N., Long-read sequence assembly: A technical evaluation in barley. Plant Cell 33, 1888–1906 (2021). PubMed PMC
Schreiber M., Mascher M., Wright J., Padmarasu S., Himmelbach A., Heavens D., Milne L., Clavijo B. J., Stein N., Waugh R., A genome assembly of the barley ‘transformation reference’ cultivar golden promise. Genes Genomes Genetics 10, 1823–1827 (2020). PubMed PMC
Jayakodi M., Padmarasu S., Haberer G., Bonthala V. S., Gundlach H., Monat C., Lux T., Kamal N., Lang D., Himmelbach A., Ens J., Zhang X. Q., Angessa T. T., Zhou G., Tan C., Hill C., Wang P., Schreiber M., Boston L. B., Plott C., Jenkins J., Guo Y., Fiebig A., Budak H., Xu D., Zhang J., Wang C., Grimwood J., Schmutz J., Guo G., Zhang G., Mochida K., Hirayama T., Sato K., Chalmers K. J., Langridge P., Waugh R., Pozniak C. J., Scholz U., Mayer K. F. X., Spannagl M., Li C., Mascher M., Stein N., The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 588, 284–289 (2020). PubMed PMC
Sato K., Mascher M., Himmelbach A., Haberer G., Spannagl M., Stein N., Chromosome-scale assembly of wild barley accession "OUH602". Genes Genomes Genetics 11, jkab244 (2021). PubMed PMC
Talamè V., Bovina R., Sanguineti M. C., Tuberosa R., Lundqvist U., Salvi S., TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol. J. 6, 477–485 (2008). PubMed
Lehti-Shiu M. D., Shiu S. H., Diversity, classification and function of the plant protein kinase superfamily. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 2619–2639 (2012). PubMed PMC
Cantu D., Yang B., Ruan R., Li K., Menzo V., Fu D., Chern M., Ronald P. C., Dubcovsky J., Comparative analysis of protein-protein interactions in the defense response of rice and wheat. BMC Genomics 14, 166 (2013). PubMed PMC
Wang J., Wang J., Shang H., Chen X., Xu X., Hu X., TaXa21, a leucine-rich repeat receptor-like kinase gene associated with TaWRKY76 and TaWRKY62, plays positive roles in wheat high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici. Mol. Plant Microbe Interact. 32, 1526–1535 (2019). PubMed
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., Bridgland A., Meyer C., Kohl S. A. A., Ballard A. J., Cowie A., Romera-Paredes B., Nikolov S., Jain R., Adler J., Back T., Petersen S., Reiman D., Clancy E., Zielinski M., Steinegger M., Pacholska M., Berghammer T., Bodenstein S., Silver D., Vinyals O., Senior A. W., Kavukcuoglu K., Kohli P., Hassabis D., Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). PubMed PMC
Guo W., Grant A., Novick P., Exo84p is an exocyst protein essential for secretion. J. Biol. Chem. 274, 23558–23564 (1999). PubMed
TerBush D. R., Maurice T., Roth D., Novick P., The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. The EMBO J. 15, 6483–6494 (1996). PubMed PMC
Heider M. R., Munson M., Exorcising the exocyst complex. Traffic 13, 898–907 (2012). PubMed PMC
Chi Y., Yang Y., Li G., Wang F., Fan B., Chen Z., Identification and characterization of a novel group of legume-specific, Golgi apparatus-localized WRKY and Exo70 proteins from soybean. J. Exp. Bot. 66, 3055–3070 (2015). PubMed PMC
Cvrčková F., Grunt M., Bezvoda R., Hála M., Kulich I., Rawat A., Žárský V., Evolution of the land plant Exocyst complexes. Front. Plant Sci. 3, 159 (2012). PubMed PMC
Synek L., Schlager N., Eliáš M., Quentin M., Hauser M. T., Žárský V., AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 48, 54–72 (2006). PubMed PMC
Seetharam A. S., Yu Y., Bélanger S., Clark L. G., Meyers B. C., Kellogg E. A., Hufford M. B., The Streptochaeta genome and the evolution of the grasses. Front. Plant Sci. 12, 710383 (2021). PubMed PMC
Ma P. F., Liu Y. L., Jin G. H., Liu J. X., Wu H., He J., Guo Z. H., Li D. Z., The Pharus latifolius genome bridges the gap of early grass evolution. Plant Cell 33, 846–864 (2021). PubMed PMC
Ming R., VanBuren R., Wai C. M., Tang H., Schatz M. C., Bowers J. E., Lyons E., Wang M. L., Chen J., Biggers E., Zhang J., Huang L., Zhang L., Miao W., Zhang J., Ye Z., Miao C., Lin Z., Wang H., Zhou H., Yim W. C., Priest H. D., Zheng C., Woodhouse M., Edger P. P., Guyot R., Guo H. B., Guo H., Zheng G., Singh R., Sharma A., Min X., Zheng Y., Lee H., Gurtowski J., Sedlazeck F. J., Harkess A., McKain M. R., Liao Z., Fang J., Liu J., Zhang X., Zhang Q., Hu W., Qin Y., Wang K., Chen L. Y., Shirley N., Lin Y. R., Liu L. Y., Hernandez A. G., Wright C. L., Bulone V., Tuskan G. A., Heath K., Zee F., Moore P. H., Sunkar R., Leebens-Mack J. H., Mockler T., Bennetzen J. L., Freeling M., Sankoff D., Paterson A. H., Zhu X., Yang X., Smith J. A. C., Cushman J. C., Paull R. E., Yu Q., The pineapple genome and the evolution of CAM photosynthesis. Nat. Genet. 47, 1435–1442 (2015). PubMed PMC
D’Hont A., Denoeud F., Aury J.-M., Baurens F.-C., Carreel F., Garsmeur O., Noel B., Bocs S., Droc G., Rouard M., Da Silva C., Jabbari K., Cardi C., Poulain J., Souquet M., Labadie K., Jourda C., Lengellé J., Rodier-Goud M., Alberti A., Bernard M., Correa M., Ayyampalayam S., Mckain M. R., Leebens-Mack J., Burgess D., Freeling M., Mbéguié-A-Mbéguié D., Chabannes M., Wicker T., Panaud O., Barbosa J., Hribova E., Heslop-Harrison P., Habas R., Rivallan R., Francois P., Poiron C., Kilian A., Burthia D., Jenny C., Bakry F., Brown S., Guignon V., Kema G., Dita M., Waalwijk C., Joseph S., Dievart A., Jaillon O., Leclercq J., Argout X., Lyons E., Almeida A., Jeridi M., Dolezel J., Roux N., Risterucci A.-M., Weissenbach J., Ruiz M., Glaszmann J.-C., Quétier F., Yahiaoui N., Wincker P., The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217 (2012). PubMed
Ostertag M., Stammler J., Douchkov D., Eichmann R., Hückelhoven R., The conserved oligomeric Golgi complex is involved in penetration resistance of barley to the barley powdery mildew fungus. Mol. Plant Pathol. 14, 230–240 (2013). PubMed PMC
Mei K., Li Y., Wang S., Shao G., Wang J., Ding Y., Luo G., Yue P., Liu J.-J., Wang X., Dong M.-Q., Wang H.-W., Guo W., Cryo-EM structure of the exocyst complex. Nat. Struct. Mol. Biol. 25, 139–146 (2018). PubMed PMC
Wu B., Guo W., The Exocyst at a Glance. J. Cell Sci. 128, 2957–2964 (2015). PubMed PMC
Lespinet O., Wolf Y. I., Koonin E. V., Aravind L., The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 12, 1048–1059 (2002). PubMed PMC
Fischer I., Diévart A., Droc G., Dufayard J.-F., Chantret N., Evolutionary dynamics of the leucine-rich repeat receptor-like kinase (LRR-RLK) subfamily in angiosperms. Plant Physiol. 170, 1595–1610 (2016). PubMed PMC
Kumar S., Stecher G., Suleski M., Hedges S. B., TimeTree: A resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017). PubMed
Wang L., Ma Z., Kang H., Gu S., Mukhina Z., Wang C., Wang H., Bai Y., Sui G., Zheng W., Ma D., Cloning and functional analysis of the novel rice blast resistance gene Pi65 in japonica rice. Theor. Appl. Genet. 135, 173–183 (2022). PubMed
Li S., van Os G. M. A., Ren S., Yu D., Ketelaar T., Emons A. M. C., Liu C.-M., Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis. Plant Physiol. 154, 1819–1830 (2010). PubMed PMC
Žárský V., Sekereš J., Kubátová Z., Pečenková T., Cvrčková F., Three subfamilies of exocyst EXO70 family subunits in land plants: Early divergence and ongoing functional specialization. J. Exp. Bot. 71, 49–62 (2019). PubMed
Zhang X., Pumplin N., Ivanov S., Harrison M. J., EXO70I is required for development of a sub-domain of the periarbuscular membrane during arbuscular mycorrhizal symbiosis. Curr. Biol. 25, 2189–2195 (2015). PubMed
Kulich I., Pečenková T., Sekereš J., Smetana O., Fendrych M., Foissner I., Höftberger M., Zárský V., Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic 14, 1155–1165 (2013). PubMed
Kulich I., Vojtíková Z., Glanc M.¡., Ortmannová J., Rasmann S., Žárský V., Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiol. 168, 120–131 (2015). PubMed PMC
Bailey P. C., Schudoma C., Jackson W., Baggs E., Dagdas G., Haerty W., Moscou M., Krasileva K. V., Dominant integration locus drives continuous diversification of plant immune receptors with exogenous domain fusions. Genome Biol. 19, 1–18 (2018). PubMed PMC
Fujisaki K., Abe Y., Ito A., Saitoh H., Yoshida K., Kanzaki H., Kanzaki E., Utsushi H., Yamashita T., Kamoun S., Terauchi R., Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity. Plant J. 83, 875–887 (2015). PubMed
Couto D., Zipfel C., Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16, 537–552 (2016). PubMed
Chen F., Gao M. J., Miao Y. S., Yuan Y. X., Wang M. Y., Li Q., Mao B. Z., Jiang L. W., He Z. H., Plasma membrane localization and potential endocytosis of constitutively expressed XA21 proteins in transgenic rice. Mol. Plant 3, 917–926 (2010). PubMed
Li J., Zhao-Hui C., Batoux M., Nekrasov V., Roux M., Chinchilla D., Zipfel C., Jones J. D. G., Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proc. Natl. Acad. Sci. U.S.A. 106, 15973–15978 (2009). PubMed PMC
Lu X., Tintor N., Mentzel T., Kombrink E., Boller T., Robatzek S., Schulze-Lefert P., Saijo Y., Uncoupling of sustained MAMP receptor signaling from early outputs in an Arabidopsis endoplasmic reticulum glucosidase II allele. Proc. Natl. Acad. Sci. U.S.A. 106, 22522–22527 (2009). PubMed PMC
Nekrasov V., Li J., Batoux M., Roux M., Chu Z. H., Lacombe S., Rougon A., Bittel P., Kiss-Papp M., Chinchilla D., van Esse H. P., Jorda L., Schwessinger B., Nicaise V., Thomma B. P. H. J., Molina A., Jones J. D. G., Zipfel C., Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO J. 28, 3428–3438 (2009). PubMed PMC
Pečenková T., Hála M., Kulich I., Kocourková D., Drdová E., Fendrych M., Toupalová H., Žárský V., The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant–pathogen interaction. J. Exp. Bot. 62, 2107–2116 (2011). PubMed PMC
Stegmann M., Anderson R. G., Ichimura K., Pecenkova T., Reuter P., Žárský V., McDowell J. M., Shirasu K., Trujillo M., The ubiquitin ligase PUB22 targets a subunit of the exocyst complex required for PAMP-triggered responses in Arabidopsis. Plant Cell 24, 4703–4716 (2012). PubMed PMC
Wang W., Liu N., Gao C., Cai H., Romeis T., Tang D., The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytol. 227, 529–544 (2020). PubMed
Hou H., Fang J., Liang J., Diao Z., Wang W., Yang D., Li S., Tang D., OsExo70B1 positively regulates disease resistance to Magnaporthe oryzae in rice. Int. J. Mol. Sci. 21, 7049 (2020). PubMed PMC
Acheampong A. K., Shanks C., Cheng C. Y., Schaller G. E., Dagdas Y., Kieber J. J., EXO70D isoforms mediate selective autophagic degradation of type-A ARR proteins to regulate cytokinin sensitivity. Proc. Natl. Acad. Sci. 117, 27034–27043 (2020). PubMed PMC
Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle E. D., Tanksley S. D., Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262, 1432–1436 (1993). PubMed
Salmeron J. M., Oldroyd G. E. D., Rommens C. M. T., Scofield S. R., Kim H. S., Lavelle D. T., Dahlbeck D., Staskawicz B. J., Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86, 123–133 (1996). PubMed
Sinapidou E., Williams K., Nott L., Bahkt S., Tör M., Crute I., Bittner-Eddy P., Beynon J., Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis. Plant J. 38, 898–909 (2004). PubMed
Dawson A. M., Bettgenhaeuser J., Gardiner M., Green P., Hernández-Pinzón I., Hubbard A., Moscou M. J., The development of quick, robust, quantitative phenotypic assays for describing the host-nonhost landscape to stripe rust. Front. Plant Sci. 6, 876 (2015). PubMed PMC
Doležel J., Vrána J., Šafář J., Bartoš J., Kubaláková M., Šimková H., Chromosomes in the flow to simplify genome analysis. Funct. Integr. Genomics 12, 397–416 (2012). PubMed PMC
Thind A. K., Wicker T., Šimková H., Fossati D., Moullet O., Brabant C., Vrána J., Doležel J., Krattinger S. G., Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat. Biotechnol. 35, 793–796 (2017). PubMed
Gibson D. G., Young L., Chuang R.-Y., Venter J. C., Hutchison C. A. III, Smith H. O., Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009). PubMed
G. Hensel, J. Kumlehn, in Transgenic Crops of the World (Springer, 2004), pp. 35–44.
Barley MLA3 recognizes the host-specificity effector Pwl2 from Magnaporthe oryzae