Interplay of EXO70 and MLO proteins modulates trichome cell wall composition and susceptibility to powdery mildew

. 2024 Mar 29 ; 36 (4) : 1007-1035.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38124479

Grantová podpora
PA 861/20-1 DFG-GACR
Deutsche Forschungsgemeinschaft
German Research Foundation
Czech Science Foundation
GC19-02242J GACR
EXBIO -CZ.02.1.01/0.0/0.0/16_019/0000738 Ministry of Education, Youth and Sports of CR/MŠMT
Spanish Ministry of Science and Innovation
Vinicna Microscopy Core Facility
LM2023050 Czech-BioImaging
ZUK 32/2013 RWTH Aachen University
LM2018140 e-Infrastruktura CZ
Projects of Large Research
Development and Innovations Infrastructures

Exocyst component of 70-kDa (EXO70) proteins are constituents of the exocyst complex implicated in vesicle tethering during exocytosis. MILDEW RESISTANCE LOCUS O (MLO) proteins are plant-specific calcium channels and some MLO isoforms enable fungal powdery mildew pathogenesis. We here detected an unexpected phenotypic overlap of Arabidopsis thaliana exo70H4 and mlo2 mlo6 mlo12 triple mutant plants regarding the biogenesis of leaf trichome secondary cell walls. Biochemical and Fourier transform infrared spectroscopic analyses corroborated deficiencies in the composition of trichome cell walls in these mutants. Transgenic lines expressing fluorophore-tagged EXO70H4 and MLO exhibited extensive colocalization of these proteins. Furthermore, mCherry-EXO70H4 mislocalized in trichomes of the mlo triple mutant and, vice versa, MLO6-GFP mislocalized in trichomes of the exo70H4 mutant. Expression of GFP-marked PMR4 callose synthase, a known cargo of EXO70H4-dependent exocytosis, revealed reduced cell wall delivery of GFP-PMR4 in trichomes of mlo triple mutant plants. In vivo protein-protein interaction assays in plant and yeast cells uncovered isoform-preferential interactions between EXO70.2 subfamily members and MLO proteins. Finally, exo70H4 and mlo6 mutants, when combined, showed synergistically enhanced resistance to powdery mildew attack. Taken together, our data point to an isoform-specific interplay of EXO70 and MLO proteins in the modulation of trichome cell wall biogenesis and powdery mildew susceptibility.

Zobrazit více v PubMed

Acevedo-Garcia J, Gruner K, Reinstädler A, Kemen A, Kemen E, Cao L, Takken FLW, Reitz MU, Schäfer P, O’Connell RJ, et al. . The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens. Sci Rep. 2017:7(1):9319. 10.1038/s41598-017-07188-7 PubMed DOI PMC

Albertazzi L, Arosio D, Marchetti L, Ricci F, Beltram F. Quantitative FRET analysis with the EGFP-mCherry fluorescent protein pair. Photochem Photobiol. 2009:85(1):287–297. 10.1111/j.1751-1097.2008.00435.x PubMed DOI

Alonso-Simón A, García-Angulo P, Mélida H, Encina A, Álvarez JM, Acebes JL. The use of FTIR spectroscopy to monitor modifications in plant cell wall architecture caused by cellulose biosynthesis inhibitors. Plant Signal Behav. 2011:6(8):1104–1110. 10.4161/psb.6.8.15793 PubMed DOI PMC

Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, et al. . The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell. 2004:15(11):5118–5129. 10.1091/mbc.e04-02-0140 PubMed DOI PMC

Barclay JW, Morgan A, Burgoyne RD. Calcium-dependent regulation of exocytosis. Cell Calcium. 2005:38(3-4):343–353. 10.1016/j.ceca.2005.06.012 PubMed DOI

Bastiaens PI, Squire A. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 1999:9(2):48–52. 10.1016/S0962-8924(98)01410-X PubMed DOI

Becker W, Su B, Holub O, Weisshart K. FLIM and FCS detection in laser-scanning microscopes: increased efficiency by GaAsP hybrid detectors. Microsc Res Tech. 2011:74(9):804–811. 10.1002/jemt.20959 PubMed DOI

Bednarek P, Piślewska-Bednarek M, Svatoš A, Schneider B, Doubský J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, et al. . A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science. 2009:323(5910):101–106. 10.1126/science.1163732 PubMed DOI

Benjamini Y, Hochberg Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995:57(1):289–300. 10.1111/j.2517-6161.1995.tb02031.x DOI

Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R. Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci U S A. 2005:102(8):3135–3140. 10.1073/pnas.0500012102 PubMed DOI PMC

Bidzinski P, Noir S, Shahi S, Reinstädler A, Gratkowska DM, Panstruga R. Physiological characterization and genetic modifiers of aberrant root thigmomorphogenesis in mutants of Arabidopsis thaliana MILDEW LOCUS O genes. Plant Cell Environ. 2014:37(12):2738–2753. 10.1111/pce.12353 PubMed DOI

Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973:54(2):484–489. 10.1016/0003-2697(73)90377-1 PubMed DOI

Bolte S, Cordelières FP. A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2006:224(3):213–232. 10.1111/j.1365-2818.2006.01706.x PubMed DOI

Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, et al. . The barley Mlo gene: a novel control element of plant pathogen resistance. Cell. 1997:88(5):695–705. 10.1016/S0092-8674(00)81912-1 PubMed DOI

Campe R, Langenbach C, Leissing F, Popescu GV, Popescu SC, Goellner K, Beckers GJ, Conrath U. ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. New Phytol. 2016:209(1):294–306. 10.1111/nph.13582 PubMed DOI

Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, Tang X, Zhou J-M. Firefly Luciferase Complementation Imaging assay for protein-protein interactions in plants. Plant Physiol. 2008:146(2):323–324. 10.1104/pp.107.111740 PubMed DOI PMC

Chen Z, Noir S, Kwaaitaal M, Hartmann HA, Wu MJ, Mudgil Y, Sukumar P, Muday G, Panstruga R, Jones AM. Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis. Plant Cell. 2009:21(7):1972–1991. 10.1105/tpc.108.062653 PubMed DOI PMC

Chiniquy D, Underwood W, Corwin J, Ryan A, Szemenyei H, Lim CC, Stonebloom SH, Birdseye DS, Vogel J, Kliebenstein D, et al. . PMR5, an acetylation protein at the intersection of pectin biosynthesis and defense against fungal pathogens. Plant J. 2019:100(5):1022–1035. 10.1111/tpj.14497 PubMed DOI

Clough SJ, Bent AF. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998:16(6):735–743. 10.1046/j.1365-313x.1998.00343.x PubMed DOI

Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Hückelhoven R, Stein M, Freialdenhoven A, Somerville SC, et al. . SNARE-protein-mediated disease resistance at the plant cell wall. Nature. 2003:425(6961):973–977. 10.1038/nature02076 PubMed DOI

Consonni C, Bednarek P, Humphry M, Francocci F, Ferrari S, Harzen A, Ver Loren van Themaat E, Panstruga R. Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiol. 2010:152(3):1544–1561. 10.1104/pp.109.147660 PubMed DOI PMC

Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, et al. . Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet. 2006:38(6):716–720. 10.1038/ng1806 PubMed DOI

Cui F, Wu H, Safronov O, Zhang P, Kumar R, Kollist H, Salojärvi J, Panstruga R, Overmyer K. Arabidopsis MLO2 is a negative regulator of sensitivity to extracellular reactive oxygen species. Plant Cell Environ. 2018:41(4):782–796. 10.1111/pce.13144 PubMed DOI

Cvrčková F, Grunt M, Bezvoda R, Hála M, Kulich I, Rawat A, Žárský V. Evolution of the land plant exocyst complexes. Front Plant Sci. 2012:3:159. 10.3389/fpls.2012.00159 PubMed DOI PMC

Daly CJ, Parmryd I, McGrath JC. Visualization and analysis of vascular receptors using confocal laser scanning microscopy and fluorescent ligands. Methods Mol Biol. 2012:897:95–107. 10.1007/978-1-61779-909-9_5 PubMed DOI

Daudi A, O’Brien JA. Detection of hydrogen peroxide by DAB staining in Arabidopsis leaves. Bio Protoc. 2012:2(18):e263e263. 10.21769/BioProtoc.263 PubMed DOI PMC

Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh CS, Cohen FE, Emerson BC, Schulze-Lefert P, et al. . Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol. 2003:56(1):77–88. 10.1007/s00239-002-2382-5 PubMed DOI

Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Lefert P. Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J Biol Chem. 1999:274(49):34993–35004. 10.1074/jbc.274.49.34993 PubMed DOI

Elias M, Drdova E, Ziak D, Bavlnka B, Hala M, Cvrckova F, Soukupova H, Žárský V. The exocyst complex in plants. Cell Biol Int. 2003:27(3):199–201. 10.1016/S1065-6995(02)00349-9 PubMed DOI

Elliott C, Müller J, Miklis M, Bhat RA, Schulze-Lefert P, Panstruga R. Conserved extracellular cysteine residues and cytoplasmic loop–loop interplay are required for functionality of the heptahelical MLO protein. Biochem J. 2005:385(1):243–254. 10.1042/BJ20040993 PubMed DOI PMC

Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability. PLoS One. 2008:3(11):e3647. 10.1371/journal.pone.0003647 PubMed DOI PMC

Eschrich W, Currier HB. Identification of cauose by its diachrome and fluorochrome reactions. Stain Technol. 1964:39(5):303–307. 10.3109/10520296409061248 DOI

Falk A, Feys BJ, Frost LN, Jones JD, Daniels MJ, Parker JE. EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci U S A. 1999:96(6):3292–3297. 10.1073/pnas.96.6.3292 PubMed DOI PMC

Fendrych M, Synek L, Pečenková T, Drdová EJ, Sekeres J, de Rycke R, Nowack MK, Zársky V. Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana. Mol Biol Cell. 2013:24(4):510–520. 10.1091/mbc.e12-06-0492 PubMed DOI PMC

Folkers U, Berger J, Hülskamp M. Cell morphogenesis of trichomes in Arabidopsis: differential control of primary and secondary branching by branch initiation regulators and cell growth. Development. 1997:124(19):3779–3786. 10.1242/dev.124.19.3779 PubMed DOI

Fujisaki K, Abe Y, Ito A, Saitoh H, Yoshida K, Kanzaki H, Kanzaki E, Utsushi H, Yamashita T, Kamoun S, et al. . Rice Exo70 interacts with a fungal effector, AVR-Pii, and is required for AVR-Pii-triggered immunity. Plant J. 2015:83(5):875–887. 10.1111/tpj.12934 PubMed DOI

Gao Q, Wang C, Xi Y, Shao Q, Li L, Luan S. A receptor–channel trio conducts Ca2+ signalling for pollen tube reception. Nature. 2022:607(7919):534–539. 10.1038/s41586-022-04923-7 PubMed DOI PMC

Gastwirth JL, Gel YR, Miao W. The impact of Levene's test of equality of variances on statistical theory and practice. Statist Sci. 2009:24(3):343–360. 10.1214/09-STS301 DOI

Gietz RD, Woods RA. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. In: Fink GR, Guthrie C, editors. Guide to yeast genetics and molecular and cell biology. Amsterdam: Academic Pr; 2002. p. 87–96.

Gilding EK, Marks MD. Analysis of purified glabra3-shapeshifter trichomes reveals a role for NOECK in regulating early trichome morphogenic events. Plant J. 2010:64(2):304–317. 10.1111/j.1365-313X.2010.04329.x PubMed DOI

Grefen C, Donald N, Hashimoto K, Kudla J, Schumacher K, Blatt MR. A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant J. 2010:64(2):355–365. 10.1111/j.1365-313X.2010.04322.x PubMed DOI

Gruner K, Leissing F, Sinitski D, Thieron H, Axstmann C, Baumgarten K, Reinstädler A, Winkler P, Altmann M, Flatley A, et al. . Chemokine-like MDL proteins modulate flowering time and innate immunity in plants. J Biol Chem. 2021:296:100611. 10.1016/j.jbc.2021.100611 PubMed DOI PMC

Gruner K, Zeier T, Aretz C, Zeier J. A critical role for Arabidopsis MILDEW RESISTANCE LOCUS O2 in systemic acquired resistance. Plant J. 2018:94(6):1064–1082. 10.1111/tpj.13920 PubMed DOI

Gupta C, Pereira A. Recent advances in gene function prediction using context-specific coexpression networks in plants. F1000Res. 2019:8:F1000 Faculty Rev-153. 10.12688/f1000research.17207.1 PubMed DOI PMC

Heider MR, Munson M. Exorcising the exocyst complex. Traffic. 2012:13(7):898–907. 10.1111/j.1600-0854.2012.01353.x PubMed DOI PMC

Holden S, Bergum M, Green P, Bettgenhaeuser J, Hernández-Pinzón I, Thind A, Clare S, Russell JM, Hubbard A, Taylor J, et al. . A lineage-specific Exo70 is required for receptor kinase–mediated immunity in barley. Sci Adv. 2022:8(27):eabn7258. 10.1126/sciadv.abn7258 PubMed DOI PMC

Huebbers JW, Büttgen K, Leissing F, Mantz M, Pauly M, Huesgen PF, Panstruga R. An advanced method for the release, enrichment and purification of high-quality Arabidopsis thaliana rosette leaf trichomes enables profound insights into the trichome proteome. Plant Methods. 2022:18(1):12. 10.1186/s13007-021-00836-0 PubMed DOI PMC

Hülskamp M, Misŕa S, Jürgens G. Genetic dissection of trichome cell development in Arabidopsis. Cell. 1994:76(3):555–566. 10.1016/0092-8674(94)90118-X PubMed DOI

Humphry M, Bednarek P, Kemmerling B, Koh S, Stein M, Göbel U, Stüber K, Piślewska-Bednarek M, Loraine A, Schulze-Lefert P, et al. . A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity. Proc Natl Acad Sci U S A. 2010:107(50):21896–21901. 10.1073/pnas.1003619107 PubMed DOI PMC

Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher GB. An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell. 2003:15(11):2503–2513. 10.1105/tpc.016097 PubMed DOI PMC

Jakoby MJ, Falkenhan D, Mader MT, Brininstool G, Wischnitzki E, Platz N, Hudson A, Hülskamp M, Larkin J, Schnittger A. Transcriptional profiling of mature Arabidopsis trichomes reveals that NOECK encodes the MIXTA-like transcriptional regulator MYB106. Plant Physiol. 2008:148(3):1583–1602. 10.1104/pp.108.126979 PubMed DOI PMC

James P, Halladay J, Craig EA. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics. 1996:144(4):1425–1436. 10.1093/genetics/144.4.1425 PubMed DOI PMC

Jørgensen JH. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica. 1992:63(1–2):141–152. 10.1007/BF00023919 DOI

Ju Y, Yuan J, Jones DS, Zhang W, Staiger CJ, Kessler SA. Polarized NORTIA accumulation in response to pollen tube arrival at synergids promotes fertilization. Dev Cell. 2021:56(21):2938–2951.e6. 10.1016/j.devcel.2021.09.026 PubMed DOI

Karimi M, de Meyer B, Hilson P. Modular cloning in plant cells. Trends Plant Sci. 2005:10(3):103–105. 10.1016/j.tplants.2005.01.008 PubMed DOI

Kassambara A, Mundt F. Factoextra: Extract and visualize the results of multivariate data analyses. R Package Version 1.0.7. 2020. https://CRAN.R-project.org/package=factoextra

Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G, Panstruga R, Grossniklaus U. Conserved molecular components for pollen tube reception and fungal invasion. Science. 2010:330(6006):968–971. 10.1126/science.1195211 PubMed DOI

Kim MC, Panstruga R, Elliott C, Müller J, Devoto A, Yoon HW, Park HC, Cho MJ, Schulze-Lefert P. Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature. 2002:416(6879):447–450. 10.1038/416447a PubMed DOI

Kim S, Kim H, Park K, Cho DJ, Kim MK, Kwon C, Yun HS. Synaptotagmin 5 controls SYP132–VAMP721/722 interaction for Arabidopsis immunity to Pseudomonas syringae pv tomato DC3000. Mol Cells. 2021:44(9):670–679. 10.14348/molcells.2021.0100 PubMed DOI PMC

Koncz C, Schell J. The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet. 1986:204(3):383–396. 10.1007/BF00331014 DOI

Kubátová Z, Pejchar P, Potocký M, Sekereš J, Žárský V, Kulich I. Arabidopsis trichome contains two plasma membrane domains with different lipid compositions which attract distinct EXO70 subunits. Int J Mol Sci. 2019:20(15):3803. 10.3390/ijms20153803 PubMed DOI PMC

Kulich I, Cole R, Drdová E, Cvrcková F, Soukup A, Fowler J, Zárský V. Arabidopsis exocyst subunits SEC8 and EXO70A1 and exocyst interactor ROH1 are involved in the localized deposition of seed coat pectin. New Phytol. 2010:188(2):615–625. 10.1111/j.1469-8137.2010.03372.x PubMed DOI

Kulich I, Vojtíková Z, Glanc M, Ortmannová J, Rasmann S, Žárský V. Cell wall maturation of Arabidopsis trichomes is dependent on exocyst subunit EXO70H4 and involves callose deposition. Plant Physiol. 2015:168(1):120–131. 10.1104/pp.15.00112 PubMed DOI PMC

Kulich I, Vojtíková Z, Sabol P, Ortmannová J, Neděla V, Tihlaříková E, Žárský V. Exocyst subunit EXO70H4 has a specific role in callose synthase secretion and silica accumulation. Plant Physiol. 2018:176(3):2040–2051. 10.1104/pp.17.01693 PubMed DOI PMC

Kusch S, Panstruga R. mlo-based resistance: an apparently universal “weapon” to defeat powdery mildew disease. Mol Plant Microbe Interact. 2017:30(3):179–189. 10.1094/MPMI-12-16-0255-CR PubMed DOI

Kusch S, Pesch L, Panstruga R. Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins. Genome Biol Evol. 2016:8(3):878–895. 10.1093/gbe/evw036 PubMed DOI PMC

Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, et al. . Co-option of a default secretory pathway for plant immune responses. Nature. 2008a:451(7180):835–840. 10.1038/nature06545 PubMed DOI

Kwon C, Panstruga R, Schulze-Lefert P. Les liaisons dangereuses: immunological synapse formation in animals and plants. Trends Immunol. 2008b:29(4):159–166. 10.1016/j.it.2008.01.004 PubMed DOI

Lalonde S, Ehrhardt DW, Loqué D, Chen J, Rhee SY, Frommer WB. Molecular and cellular approaches for the detection of protein–protein interactions: latest techniques and current limitations. Plant J. 2008:53(4):610–635. 10.1111/j.1365-313X.2007.03332.x PubMed DOI

Larson ER, Ortmannová J, Donald NA, Alvim J, Blatt MR, Žárský V. Synergy among exocyst and SNARE interactions identifies a functional hierarchy in secretion during vegetative growth. Plant Cell. 2020:32(9):2951–2963. 10.1105/tpc.20.00280 PubMed DOI PMC

Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Soft. 2008:25(1):1–18. 10.18637/jss.v025.i01 DOI

Lei Y, Lu L, Liu H-Y, Li S, Xing F, Chen L-L. CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant. 2014:7(9):1494–1496. 10.1093/mp/ssu044 PubMed DOI

Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Statist. 1947:18(1):50–60. 10.1214/aoms/1177730491 DOI

Marks MD, Wenger JP, Gilding E, Jilk R, Dixon RA. Transcriptome analysis of Arabidopsis wild-type and gl3-sst sim trichomes identifies four additional genes required for trichome development. Mol Plant. 2009:2(4):803–822. 10.1093/mp/ssp037 PubMed DOI PMC

Martin KJ, McGhee EJ, Schwarz JP, Drysdale M, Brachmann SM, Stucke V, Sansom OJ, Anderson KI. Accepting from the best donor; analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic FLIM-based FRET experiments. PLoS One. 2018:13(1):e0183585. 10.1371/journal.pone.0183585 PubMed DOI PMC

Meng J-G, Liang L, Jia P-F, Wang Y-C, Li H-J, Yang W-C. Integration of ovular signals and exocytosis of a Ca2+ channel by MLOs in pollen tube guidance. Nat Plants. 2020:6(2):143–153. 10.1038/s41477-020-0599-1 PubMed DOI

Meyer D, Pajonk S, Micali C, O’Connell R, Schulze-Lefert P. Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J. 2009:57(6):986–999. 10.1111/j.1365-313X.2008.03743.x PubMed DOI

Michalopoulou VA, Mermigka G, Kotsaridis K, Mentzelopoulou A, Celie PHN, Moschou PN, Jones JDG, Sarris PF. The host exocyst complex is targeted by a conserved bacterial type-III effector that promotes virulence. Plant Cell. 2022:34(9):3400–3424. 10.1093/plcell/koac162 PubMed DOI PMC

Nishimura MT, Stein M, Hou BH, Vogel JP, Edwards H, Somerville SC. Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science. 2003:301(5635):969–972. 10.1126/science.1086716 PubMed DOI

Ortmannová J, Sekereš J, Kulich I, Šantrůček J, Dobrev P, Žárský V, Pečenková T. Arabidopsis EXO70B2 exocyst subunit contributes to papillae and encasement formation in antifungal defence. J Exp Bot. 2022:73(3):742–755. 10.1093/jxb/erab457 PubMed DOI

Pang ZP, Südhof TC. Cell biology of Ca2+-triggered exocytosis. Curr Opin Cell Biol. 2010:22(4):496–505. 10.1016/j.ceb.2010.05.001 PubMed DOI PMC

Pearson K. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Lond Edinb Dubl Phil Mag J Sci. 1900:50(302):157–175. 10.1080/14786440009463897 DOI

Pečenková T, Hala M, Kulich I, Kocourkova D, Drdova E, Fendrych M, Toupalova H, Žárský V. The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant–pathogen interaction. J Exp Bot. 2011:62(6):2107–2116. 10.1093/jxb/erq402 PubMed DOI PMC

Pečenková T, Markovic V, Sabol P, Kulich I, Žárský V. Exocyst and autophagy-related membrane trafficking in plants. J Exp Bot. 2017:69(1):47–57. 10.1093/jxb/erx363 PubMed DOI

Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins NC, Panstruga R, Schulze-Lefert P. The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol. 2002:129(3):1076–1085. 10.1104/pp.010954 PubMed DOI PMC

Pradhan Mitra P, Loqué D. Histochemical staining of Arabidopsis thaliana secondary cell wall elements. J Vis Exp. 2014:(87):51381. 10.3791/51381 PubMed DOI PMC

Ricachenevsky FK, Punshon T, Salt DE, Fett JP, Guerinot ML. Arabidopsis thaliana zinc accumulation in leaf trichomes is correlated with zinc concentration in leaves. Sci Rep. 2021:11(1):5278. 10.1038/s41598-021-84508-y PubMed DOI PMC

Rossi G, Lepore D, Kenner L, Czuchra AB, Plooster M, Frost A, Munson M, Brennwald P. Exocyst structural changes associated with activation of tethering downstream of Rho/Cdc42 GTPases. J Cell Biol. 2020:219(2):e201904161. 10.1083/jcb.201904161 PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. . Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012:9(7):676–682. 10.1038/nmeth.2019 PubMed DOI PMC

Schmelzer E. Cell polarization, a crucial process in fungal defence. Trends Plant Sci. 2002:7(9):411–415. 10.1016/S1360-1385(02)02307-5 PubMed DOI

Sekereš J, Pejchar P, Šantrůček J, Vukašinović N, Žárský V, Potocký M. Analysis of exocyst subunit EXO70 family reveals distinct membrane polar domains in tobacco pollen tubes. Plant Physiol. 2017:173(3):1659–1675. 10.1104/pp.16.01709 PubMed DOI PMC

Seregin IV, Ivanov VB. Histochemical investigation of cadmium and lead distribution in plants. Russ J Plant Physiol. 1997:44(6):791–796.

Shapiro SS, Wilk MB. An analysis of variance test for normality (complete samples). Biometrika. 1965:52(3–4):591–611. 10.1093/biomet/52.3-4.591 DOI

Stegmann M, Anderson RG, Westphal L, Rosahl S, McDowell JM, Trujillo M. The exocyst subunit Exo70B1 is involved in the immune response of Arabidopsis thaliana to different pathogens and cell death. Plant Signal Behav. 2013:8(12):e27421. 10.4161/psb.27421 PubMed DOI PMC

Stein M, Dittgen J, Sanchez-Rodriguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance to inappropriate pathogens that enter by direct penetration. Plant Cell. 2006:18(3):731–746. 10.1105/tpc.105.038372 PubMed DOI PMC

Student . The probable error of a mean. Biometrika. 1908:6(1):1–25. 10.2307/2331554 DOI

Synek L, Pleskot R, Sekereš J, Serrano N, Vukašinović N, Ortmannová J, Klejchová M, Pejchar P, Batystová K, Gutkowska M, et al. . Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit. Proc Natl Acad Sci U S A. 2021:118(36):e2105287118. 10.1073/pnas.2105287118 PubMed DOI PMC

Synek L, Schlager N, Eliás M, Quentin M, Hauser M-T, Žárský V. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 2006:48(1):54–72. 10.1111/j.1365-313X.2006.02854.x PubMed DOI PMC

Szymanski DB, Jilk RA, Pollock SM, Marks MD. Control of GL2 expression in Arabidopsis leaves and trichomes. Development. 1998:125(7):1161–1171. 10.1242/dev.125.7.1161 PubMed DOI

TerBush DR, Maurice T, Roth D, Novick P. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 1996:15(23):6483–6494. 10.1002/j.1460-2075.1996.tb01039.x PubMed DOI PMC

Thomas M, Huck N, Hoehenwarter W, Conrath U, Beckers GJM. Combining metabolic 15N labeling with improved tandem MOAC for enhanced probing of the phosphoproteome. In: Schulze WX, editors. Plant phosphoproteomics. New York (NY): Springer New York; 2015. p. 81–96. PubMed

van Leeuwen W, Vermeer JEM, Gadella TW Jr, Munnik T. Visualization of phosphatidylinositol 4,5-bisphosphate in the plasma membrane of suspension-cultured tobacco BY-2 cells and whole Arabidopsis seedlings. Plant J. 2007:52(6):1014–1026. 10.1111/j.1365-313X.2007.03292.x PubMed DOI

Vogel JP, Raab TK, Schiff C, Somerville SC. PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell. 2002:14(9):2095–2106. 10.1105/tpc.003509 PubMed DOI PMC

Vogel JP, Raab TK, Somerville CR, Somerville SC. Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J. 2004:40(6):968–978. 10.1111/j.1365-313X.2004.02264.x PubMed DOI

Vogel J, Somerville S. Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proc Natl Acad Sci U S A. 2000:97(4):1897–1902. 10.1073/pnas.030531997 PubMed DOI PMC

Wang W, Liu N, Gao C, Cai H, Romeis T, Tang D. The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytol. 2020:227(2):529–544. 10.1111/nph.16515 PubMed DOI

Wang W, Liu N, Gao C, Rui L, Tang D. The Pseudomonas syringae effector AvrPtoB associates with and ubiquitinates Arabidopsis exocyst subunit EXO70B1. Front Plant Sci. 2019:10:1027. 10.3389/fpls.2019.01027 PubMed DOI PMC

Wei T, Simko V. R package ‘corrplot’: Visualization of a correlation matrix (version 0.92). 2021. https://github.com/taiyun/corrplot

Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R, Grolemund G, Hayes A, Henry L, Hester J, et al. . Welcome to the Tidyverse. J Open Source Softw. 2019:4(43):1686. 10.21105/joss.01686 DOI

Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ, Baxter I. An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE. 2007:2(8):e718. 10.1371/journal.pone.0000718 PubMed DOI PMC

Wolter M, Hollricher K, Salamini F, Schulze-Lefert P. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol Gen Genet. 1993:239(1–2):122–128. 10.1007/BF00281610 PubMed DOI

Wood PJ. Specificity in the interaction of direct dyes with polysaccharides. Carbohydr Res. 1980:85(2):271–287. 10.1016/S0008-6215(00)84676-5 DOI

Xing H-L, Dong L, Wang Z-P, Zhang H-Y, Han C-Y, Liu B, Wang X-C, Chen Q-J. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biol. 2014:14(1):327. 10.1186/s12870-014-0327-y PubMed DOI PMC

Yeats T, Vellosillo T, Sorek N, Ibáñez A, Bauer S. Rapid determination of cellulose, neutral sugars, and uronic acids from plant cell walls by one-step two-step hydrolysis and HPAEC-PAD. Bio Protoc. 2016:6(20):e1978. 10.21769/BioProtoc.1978 DOI

Yun HS, Panstruga R, Schulze-Lefert P, Kwon C. Ready to fire: secretion in plant immunity. Plant Signal Behav. 2008:3(7):505–508. 10.4161/psb.3.7.6098 PubMed DOI PMC

Žárský V, Sekereš J, Kubátová Z, Pečenková T, Cvrčková F. Three subfamilies of exocyst EXO70 family subunits in land plants: early divergence and ongoing functional specialization. J Exp Bot. 2020:71(1):49–62. 10.1093/jxb/erz423 PubMed DOI

Zhao T, Rui L, Li J, Nishimura MT, Vogel JP, Liu N, Liu S, Zhao Y, Dangl JL, Tang D. A truncated NLR protein, TIR-NBS2, is required for activated defense responses in the exo70B1 mutant. PLoS Genet. 2015:11(1):e1004945. 10.1371/journal.pgen.1004945 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...