Comprehensive comparative assessment of the Arabidopsis thaliana MLO2-calmodulin interaction by various in vitro and in vivo protein-protein interaction assays
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu preprinty, časopisecké články
Grantová podpora
R01 GM129325
NIGMS NIH HHS - United States
PubMed
36747653
PubMed Central
PMC9900802
DOI
10.1101/2023.01.25.525488
PII: 2023.01.25.525488
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Mildew resistance locus o (MLO) proteins are heptahelical integral membrane proteins of which some isoforms act as susceptibility factors for the fungal powdery mildew pathogen. In many angiosperm plant species, loss-of-function mlo mutants confer durable broad-spectrum resistance against the powdery mildew disease. Barley Mlo is known to interact via a cytosolic carboxyl-terminal domain with the intracellular calcium sensor calmodulin (CAM) in a calcium-dependent manner. Site-directed mutagenesis has revealed key amino acid residues in the barley Mlo calcium-binding domain (CAMBD) that, when mutated, affect the MLO-CAM association. We here tested the respective interaction between Arabidopsis thaliana MLO2 and CAM2 using seven different types of in vitro and in vivo protein-protein interaction assays. In each assay, we deployed a wild-type version of either the MLO2 carboxyl terminus (MLO2 CT ), harboring the CAMBD, or the MLO2 full-length protein and corresponding mutant variants in which two key residues within the CAMBD were substituted by non-functional amino acids. We focused in particular on the substitution of two hydrophobic amino acids (LW/RR mutant) and found in most protein-protein interaction experiments reduced binding of CAM2 to the corresponding MLO2/MLO2 CT LW/RR mutant variants in comparison to the respective wild-type versions. However, the Ura3-based yeast split-ubiquitin system and in planta bimolecular fluorescence complementation (BiFC) assays failed to indicate reduced CAM2 binding to the mutated CAMBD. Our data shed further light on the interaction of MLO and CAM proteins and provide a comprehensive comparative assessment of different types of protein-protein interaction assays with wild-type and mutant versions of an integral membrane protein.
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Arora D., Abel N.B., Liu C., van Damme P., Yperman K., Eeckhout D., et al. (2020) Establishment of proximity-dependent biotinylation approaches in different plant model systems. Plant Cell, 32: 3388–3407. PubMed PMC
Bhat R.A., Miklis M., Schmelzer E., Schulze-Lefert P., and Panstruga R. (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proceedings of the National Academy of Sciences of the United States of America, 102: 3135–3140. PubMed PMC
Bidzinski P., Noir S., Shahi S., Reinstädler A., Gratkowska D.M., and Panstruga R. (2014) Physiological characterization and genetic modifiers of aberrant root thigmomorphogenesis in mutants of Arabidopsis thaliana MILDEW LOCUS O genes. Plant, Cell & Environment, 37: 2738–2753. PubMed
Boeke J.D., Trueheart J., Natsoulis G., and Fink G.R. (1987) 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. In Recombinant DNA. Wu R. (ed). San Diego, Calif.: Academic Press, pp. 164–175. PubMed
Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254. PubMed
Branon T.C., Bosch J.A., Sanchez A.D., Udeshi N.D., Svinkina T., Carr S.A., et al. (2018) Efficient proximity labeling in living cells and organisms with TurboID. Nature Biotechnology, 36: 880–887. PubMed PMC
Campe R., Langenbach C., Leissing F., Popescu G.V., Popescu S.C., Goellner K., Beckers Gerold J M, and Conrath U. (2016) ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. New Phytologist, 209: 294–306. PubMed
Chen H.M., Zou Y., Shang Y.L., Lin H.Q., Wang Y.J., Cai R., Tang X.Y., and Zhou J.M. (2008) Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiology, 146: 368–376. PubMed PMC
Chen Z.Y., Noir S., Kwaaitaal M., Hartmann H.A., Wu M.J., Mudgil Y., et al. (2009) Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis. Plant Cell, 21: 1972–1991. PubMed PMC
Consonni C., Bednarek P., Humphry M., Francocci F., Ferrari S., Harzen A., van Themaat E.V.L., and Panstruga R. (2010) Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiology, 152: 1544–1561. PubMed PMC
Consonni C., Humphry M.E., Hartmann H.A., Livaja M., Durner J., Westphal L., et al. (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genetics, 38: 716–720. PubMed
Cox J.S., Chapman R.E., and Walter P. (1997) The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Molecular Biology of the Cell, 8: 1805–1814. PubMed PMC
Cui F., Wu H., Safronov O., Zhang P., Kumar R., Kollist H., et al. (2018) Arabidopsis MLO2 is a negative regulator of sensitivity to extracellular reactive oxygen species. Plant, Cell & Environment, 41: 782–796. PubMed
Deslandes L., Olivier J., Peeters N., Feng D.X., Khounlotham M., Boucher C., et al. (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proceedings of the National Academy of Sciences of the United States of America, 100: 8024–8029. PubMed PMC
Devoto A., Hartmann H.A., Piffanelli P., Elliott C., Simmons C., Taramino G., et al. (2003) Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. Journal of Molecular Evolution, 56: 77–88. PubMed
Devoto A., Piffanelli P., Nilsson I., Wallin E., Panstruga R., von Heijne G., and Schulze-Lefert P. (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. Journal of Biological Chemistry, 274: 34993–35004. PubMed
Dohmen R.J., Stappen R., McGrath J.P., Forrová H., Kolarov J., Goffeau A., and Varshavsky A. (1995) An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. Journal of Biological Chemistry, 270: 18099–18109. PubMed
Duan G., and Walther D. (2015) The roles of post-translational modifications in the context of protein interaction networks. PLoS Computational Biology, 11: e1004049. PubMed PMC
Earley K.W., Haag J.R., Pontes O., Opper K., Juehne T., Song K., and Pikaard C.S. (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant Journal, 45: 616–629. PubMed
Ebel C. (2007) Solvent mediated protein–protein interactions. In Protein interactions. Biophysical approaches for the study of complex reversible systems. Schuck P. (ed). New York, NY: Springer, pp. 255–287.
Elliott C., Müller J., Miklis M., Bhat R.A., Schulze-Lefert P., and Panstruga R. (2005) Conserved extracellular cysteine residues and cytoplasmic loop-loop interplay are required for functionality of the heptahelical MLO protein. Biochemical Journal, 385: 243–254. PubMed PMC
Erijman A., Rosenthal E., and Shifman J.M. (2014) How structure defines affinity in protein-protein interactions. PLoS One, 9: e110085. PubMed PMC
Gao Q., Wang C., Xi Y., Shao Q., Li L., and Luan S. (2022) A receptor–channel trio conducts Ca2+ signalling for pollen tube reception. Nature, 607: 534–539. PubMed PMC
Gibson D.G., Young L., Chuang R.-Y., Venter J.C., Hutchison C.A., and Smith H.O. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6: 343–345. PubMed
Gietz R.D., and Woods R.A. (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. In Guide to yeast genetics and molecular and cell biology. Fink G.R., and Guthrie C. (eds). Amsterdam: Academic Pr, pp. 87–96. PubMed
Grefen C., Donald N., Hashimoto K., Kudla J., Schumacher K., and Blatt M.R. (2010) A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant Journal, 64: 355–365. PubMed
Grefen C., Obrdlik P., and Harter K. (2009) The determination of protein-protein interactions by the mating-based split-ubiquitin system (mbSUS). Methods in Molecular Biology, 479: 217–233. PubMed
Gruner K., Leissing F., Sinitski D., Thieron H., Axstmann C., Baumgarten K., et al. (2021) Chemokine-like MDL proteins modulate flowering time and innate immunity in plants. Journal of Biological Chemistry, 296: 100611. PubMed PMC
Harty C., and Römisch K. (2013) Analysis of Sec61p and Ssh1p interactions in the ER membrane using the split-ubiquitin system. BMC Cell Biology, 14: 14. PubMed PMC
Huebbers J.W., Caldarescu G.A., Kubátová Z., Sabol P., Levecque S.C.J., Kuhn H., et al. (2022) Interplay of EXO70 and MLO proteins modulates trichome cell wall composition and powdery mildew susceptibility. bioRxiv. PubMed PMC
James P., Halladay J., and Craig E.A. (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics, 144: 1425–1436. PubMed PMC
Johnsson N., and Varshavsky A. (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proceedings of the National Academy of Sciences of the United States of America, 91: 10340–10344. PubMed PMC
Jones D.S., Yuan J., Smith B.E., Willoughby A.C., Kumimoto E.L., and Kessler S.A. (2017) MILDEW RESISTANCE LOCUS O function in pollen tube reception is linked to its oligomerization and subcellular sistribution. Plant Physiology, 175: 172–185. PubMed PMC
Jørgensen J.H. (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica, 63: 141–152.
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596: 583–589. PubMed PMC
Karimi M., de Meyer B., and Hilson P. (2005) Modular cloning in plant cells. Trends in Plant Science, 10: 103–105. PubMed
Kessler S.A., Shimosato-Asano H., Keinath N.F., Wuest S.E., Ingram G., Panstruga R., and Grossniklaus U. (2010) Conserved molecular components for pollen tube reception and fungal invasion. Science, 330: 968–971. PubMed
Kim D.S., Choi H.W., and Hwang B.K. (2014) Pepper mildew resistance locus O interacts with pepper calmodulin and suppresses Xanthomonas AvrBsT-triggered cell death and defense responses. Planta, 240: 827–839. PubMed
Kim M.C., Lee S.H., Kim J.K., Chun H.J., Choi M.S., Chung W.S., et al. (2002a) Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein - Isolation and characterization of a rice Mlo homologue. Journal of Biological Chemistry, 277: 19304–19314. PubMed
Kim M.C., Panstruga R., Elliott C., Müller J., Devoto A., Yoon H.W., et al. (2002b) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature, 416: 447–450. PubMed
Kudla J., and Bock R. (2016) Lighting the way to protein-protein interactions: Recommendations on best practices for Bimolecular Fluorescence Complementation analyses. Plant Cell, 28: 1002–1008. PubMed PMC
Kusch S., and Panstruga R. (2017) mlo-based resistance: An apparently universal "weapon" to defeat powdery mildew disease. Molecular Plant-Microbe Interactions, 30: 179–189. PubMed
Kusch S., Pesch L., and Panstruga R. (2016) Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins. Genome Biology and Evolution, 8: 878–895. PubMed PMC
Kusch S., Thiery S., Reinstadler A., Gruner K., Zienkiewicz K., Feussner I., and Panstruga R. (2019) Arabidopsis mlo3 mutant plants exhibit spontaneous callose deposition and signs of early leaf senescence. Plant Molecular Biology, 101: 21–40. PubMed
Lyngkjær M.F., Newton A.C., Atzema J.L., and Baker S.J. (2000) The barley mlo gene: an important powdery mildew resistance source. Agronomie, 20: 745–756.
Mair A., Xu S.-L., Branon T.C., Ting A.Y., and Bergmann D.C. (2019) Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. eLife, 8. PubMed PMC
McCormack E., Tsai Y.-C., and Braam J. (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends in Plant Science, 10: 383–389. PubMed
Meng J.-G., Liang L., Jia P.-F., Wang Y.-C., Li H.-J., and Yang W.-C. (2020) Integration of ovular signals and exocytosis of a Ca2+ channel by MLOs in pollen tube guidance. Nature Plants, 6: 143–153. PubMed
Miller K.E., Kim Y., Huh W.-K., and Park H.-O. (2015) Bimolecular Fluorescence Complementation (BiFC) analysis: Advances and recent applications for genome-wide interaction studies. Journal of Molecular Biology, 427: 2039–2055. PubMed PMC
Möckli N., Deplazes A., Hassa P.O., Zhang Z., Peter M., Hottiger M.O., Stagljar I., and Auerbach D. (2007) Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins. Bio Techniques, 42: 725–730. PubMed
Obrdlik P., El-Bakkoury M., Hamacher T., Cappellaro C., Vilarino C., Fleischer C., et al. (2004) K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 101: 12242–12247. PubMed PMC
Panstruga R. (2005) Discovery of novel conserved peptide domains by ortholog comparison within plant multi-protein families. Plant Molecular Biology, 59: 485–500. PubMed
Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., and Ferrin T.E. (2021) UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science, 30: 70–82. PubMed PMC
Piffanelli P., Devoto A., and Schulze-Lefert P. (1999) Defence signalling pathways in cereals. Current Opinion in Plant Biology, 2: 295–300. PubMed
Samalova M., Brzobohaty B., and Moore I. (2005) pOp6/LhGR: A stringently regulated and highly responsive dexamethasone-inducible gene expression system for tobacco. Plant Journal, 41: 919–935. PubMed
Schütze K., Harter K., and Chaban C. (2009) Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells. Methods in Molecular Biology, 479: 189–202. PubMed
Stagljar I., Korostensky C., Johnsson N., and te Heesen S. (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proceedings of the National Academy of Sciences of the United States of America, 95: 5187–5192. PubMed PMC
Walter M., Chaban C., Schutze K., Batistic O., Weckermann K., Nake C., et al. (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant Journal, 40: 428–438. PubMed
Wittke S., Lewke N., Müller S., and Johnsson N. (1999) Probing the molecular environment of membrane proteins in vivo. Molecular Biology of the Cell, 10: 2519–2530. PubMed PMC
Xing S., Wallmeroth N., Berendzen K.W., and Grefen C. (2016) Techniques for the analysis of protein-protein interactions in vivo. Plant Physiology, 171: 727–758. PubMed PMC
Xue B., Dunbrack R.L., Williams R.W., Dunker A.K., and Uversky V.N. (2010) PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochimica Et Biophysica Acta, 1804: 996–1010. PubMed PMC
Yang X., Wen Z., Zhang D., Li Z., Li D., Nagalakshmi U., Dinesh-Kumar S.P., and Zhang Y. (2021) Proximity labeling: an emerging tool for probing in planta molecular interactions. Plant Communications, 2: 100137. PubMed PMC
Yu G., Wang X., Chen Q., Cui N., Yu Y., and Fan H. (2019) Cucumber Mildew Resistance Locus O interacts with calmodulin and regulates plant cell death associated with plant immunity. International Journal of Molecular Sciences, 20. PubMed PMC
Zhang Y., Li Y., Yang X., Wen Z., Nagalakshmi U., and Dinesh-Kumar S.P. (2020) TurboID-based proximity labeling for in planta identification of protein-protein interaction networks. Journal of Visualized Experiments : JoVE. PubMed PMC
Zhu L., Zhang X.-Q., Ye de, and Chen L.-Q. (2021) The Mildew Resistance Locus O 4 interacts with CaM/CML and is involved in root gravity response. International Journal of Molecular Sciences, 22: 5962. PubMed PMC