• This record comes from PubMed

Comprehensive comparative assessment of the Arabidopsis thaliana MLO2-calmodulin interaction by various in vitro and in vivo protein-protein interaction assays

. 2023 Jan 25 ; () : . [epub] 20230125

Status PubMed-not-MEDLINE Language English Country United States Media electronic

Document type Preprint, Journal Article

Grant support
R01 GM129325 NIGMS NIH HHS - United States

Links

PubMed 36747653
PubMed Central PMC9900802
DOI 10.1101/2023.01.25.525488
PII: 2023.01.25.525488
Knihovny.cz E-resources

Mildew resistance locus o (MLO) proteins are heptahelical integral membrane proteins of which some isoforms act as susceptibility factors for the fungal powdery mildew pathogen. In many angiosperm plant species, loss-of-function mlo mutants confer durable broad-spectrum resistance against the powdery mildew disease. Barley Mlo is known to interact via a cytosolic carboxyl-terminal domain with the intracellular calcium sensor calmodulin (CAM) in a calcium-dependent manner. Site-directed mutagenesis has revealed key amino acid residues in the barley Mlo calcium-binding domain (CAMBD) that, when mutated, affect the MLO-CAM association. We here tested the respective interaction between Arabidopsis thaliana MLO2 and CAM2 using seven different types of in vitro and in vivo protein-protein interaction assays. In each assay, we deployed a wild-type version of either the MLO2 carboxyl terminus (MLO2 CT ), harboring the CAMBD, or the MLO2 full-length protein and corresponding mutant variants in which two key residues within the CAMBD were substituted by non-functional amino acids. We focused in particular on the substitution of two hydrophobic amino acids (LW/RR mutant) and found in most protein-protein interaction experiments reduced binding of CAM2 to the corresponding MLO2/MLO2 CT LW/RR mutant variants in comparison to the respective wild-type versions. However, the Ura3-based yeast split-ubiquitin system and in planta bimolecular fluorescence complementation (BiFC) assays failed to indicate reduced CAM2 binding to the mutated CAMBD. Our data shed further light on the interaction of MLO and CAM proteins and provide a comprehensive comparative assessment of different types of protein-protein interaction assays with wild-type and mutant versions of an integral membrane protein.

Update In

PubMed

See more in PubMed

Arora D., Abel N.B., Liu C., van Damme P., Yperman K., Eeckhout D., et al. (2020) Establishment of proximity-dependent biotinylation approaches in different plant model systems. Plant Cell, 32: 3388–3407. PubMed PMC

Bhat R.A., Miklis M., Schmelzer E., Schulze-Lefert P., and Panstruga R. (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proceedings of the National Academy of Sciences of the United States of America, 102: 3135–3140. PubMed PMC

Bidzinski P., Noir S., Shahi S., Reinstädler A., Gratkowska D.M., and Panstruga R. (2014) Physiological characterization and genetic modifiers of aberrant root thigmomorphogenesis in mutants of Arabidopsis thaliana MILDEW LOCUS O genes. Plant, Cell & Environment, 37: 2738–2753. PubMed

Boeke J.D., Trueheart J., Natsoulis G., and Fink G.R. (1987) 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. In Recombinant DNA. Wu R. (ed). San Diego, Calif.: Academic Press, pp. 164–175. PubMed

Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254. PubMed

Branon T.C., Bosch J.A., Sanchez A.D., Udeshi N.D., Svinkina T., Carr S.A., et al. (2018) Efficient proximity labeling in living cells and organisms with TurboID. Nature Biotechnology, 36: 880–887. PubMed PMC

Campe R., Langenbach C., Leissing F., Popescu G.V., Popescu S.C., Goellner K., Beckers Gerold J M, and Conrath U. (2016) ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis nonhost resistance. New Phytologist, 209: 294–306. PubMed

Chen H.M., Zou Y., Shang Y.L., Lin H.Q., Wang Y.J., Cai R., Tang X.Y., and Zhou J.M. (2008) Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiology, 146: 368–376. PubMed PMC

Chen Z.Y., Noir S., Kwaaitaal M., Hartmann H.A., Wu M.J., Mudgil Y., et al. (2009) Two seven-transmembrane domain MILDEW RESISTANCE LOCUS O proteins cofunction in Arabidopsis root thigmomorphogenesis. Plant Cell, 21: 1972–1991. PubMed PMC

Consonni C., Bednarek P., Humphry M., Francocci F., Ferrari S., Harzen A., van Themaat E.V.L., and Panstruga R. (2010) Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiology, 152: 1544–1561. PubMed PMC

Consonni C., Humphry M.E., Hartmann H.A., Livaja M., Durner J., Westphal L., et al. (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genetics, 38: 716–720. PubMed

Cox J.S., Chapman R.E., and Walter P. (1997) The unfolded protein response coordinates the production of endoplasmic reticulum protein and endoplasmic reticulum membrane. Molecular Biology of the Cell, 8: 1805–1814. PubMed PMC

Cui F., Wu H., Safronov O., Zhang P., Kumar R., Kollist H., et al. (2018) Arabidopsis MLO2 is a negative regulator of sensitivity to extracellular reactive oxygen species. Plant, Cell & Environment, 41: 782–796. PubMed

Deslandes L., Olivier J., Peeters N., Feng D.X., Khounlotham M., Boucher C., et al. (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proceedings of the National Academy of Sciences of the United States of America, 100: 8024–8029. PubMed PMC

Devoto A., Hartmann H.A., Piffanelli P., Elliott C., Simmons C., Taramino G., et al. (2003) Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. Journal of Molecular Evolution, 56: 77–88. PubMed

Devoto A., Piffanelli P., Nilsson I., Wallin E., Panstruga R., von Heijne G., and Schulze-Lefert P. (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants. Journal of Biological Chemistry, 274: 34993–35004. PubMed

Dohmen R.J., Stappen R., McGrath J.P., Forrová H., Kolarov J., Goffeau A., and Varshavsky A. (1995) An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. Journal of Biological Chemistry, 270: 18099–18109. PubMed

Duan G., and Walther D. (2015) The roles of post-translational modifications in the context of protein interaction networks. PLoS Computational Biology, 11: e1004049. PubMed PMC

Earley K.W., Haag J.R., Pontes O., Opper K., Juehne T., Song K., and Pikaard C.S. (2006) Gateway-compatible vectors for plant functional genomics and proteomics. Plant Journal, 45: 616–629. PubMed

Ebel C. (2007) Solvent mediated protein–protein interactions. In Protein interactions. Biophysical approaches for the study of complex reversible systems. Schuck P. (ed). New York, NY: Springer, pp. 255–287.

Elliott C., Müller J., Miklis M., Bhat R.A., Schulze-Lefert P., and Panstruga R. (2005) Conserved extracellular cysteine residues and cytoplasmic loop-loop interplay are required for functionality of the heptahelical MLO protein. Biochemical Journal, 385: 243–254. PubMed PMC

Erijman A., Rosenthal E., and Shifman J.M. (2014) How structure defines affinity in protein-protein interactions. PLoS One, 9: e110085. PubMed PMC

Gao Q., Wang C., Xi Y., Shao Q., Li L., and Luan S. (2022) A receptor–channel trio conducts Ca2+ signalling for pollen tube reception. Nature, 607: 534–539. PubMed PMC

Gibson D.G., Young L., Chuang R.-Y., Venter J.C., Hutchison C.A., and Smith H.O. (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 6: 343–345. PubMed

Gietz R.D., and Woods R.A. (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. In Guide to yeast genetics and molecular and cell biology. Fink G.R., and Guthrie C. (eds). Amsterdam: Academic Pr, pp. 87–96. PubMed

Grefen C., Donald N., Hashimoto K., Kudla J., Schumacher K., and Blatt M.R. (2010) A ubiquitin-10 promoter-based vector set for fluorescent protein tagging facilitates temporal stability and native protein distribution in transient and stable expression studies. Plant Journal, 64: 355–365. PubMed

Grefen C., Obrdlik P., and Harter K. (2009) The determination of protein-protein interactions by the mating-based split-ubiquitin system (mbSUS). Methods in Molecular Biology, 479: 217–233. PubMed

Gruner K., Leissing F., Sinitski D., Thieron H., Axstmann C., Baumgarten K., et al. (2021) Chemokine-like MDL proteins modulate flowering time and innate immunity in plants. Journal of Biological Chemistry, 296: 100611. PubMed PMC

Harty C., and Römisch K. (2013) Analysis of Sec61p and Ssh1p interactions in the ER membrane using the split-ubiquitin system. BMC Cell Biology, 14: 14. PubMed PMC

Huebbers J.W., Caldarescu G.A., Kubátová Z., Sabol P., Levecque S.C.J., Kuhn H., et al. (2022) Interplay of EXO70 and MLO proteins modulates trichome cell wall composition and powdery mildew susceptibility. bioRxiv. PubMed PMC

James P., Halladay J., and Craig E.A. (1996) Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics, 144: 1425–1436. PubMed PMC

Johnsson N., and Varshavsky A. (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proceedings of the National Academy of Sciences of the United States of America, 91: 10340–10344. PubMed PMC

Jones D.S., Yuan J., Smith B.E., Willoughby A.C., Kumimoto E.L., and Kessler S.A. (2017) MILDEW RESISTANCE LOCUS O function in pollen tube reception is linked to its oligomerization and subcellular sistribution. Plant Physiology, 175: 172–185. PubMed PMC

Jørgensen J.H. (1992) Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica, 63: 141–152.

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature, 596: 583–589. PubMed PMC

Karimi M., de Meyer B., and Hilson P. (2005) Modular cloning in plant cells. Trends in Plant Science, 10: 103–105. PubMed

Kessler S.A., Shimosato-Asano H., Keinath N.F., Wuest S.E., Ingram G., Panstruga R., and Grossniklaus U. (2010) Conserved molecular components for pollen tube reception and fungal invasion. Science, 330: 968–971. PubMed

Kim D.S., Choi H.W., and Hwang B.K. (2014) Pepper mildew resistance locus O interacts with pepper calmodulin and suppresses Xanthomonas AvrBsT-triggered cell death and defense responses. Planta, 240: 827–839. PubMed

Kim M.C., Lee S.H., Kim J.K., Chun H.J., Choi M.S., Chung W.S., et al. (2002a) Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein - Isolation and characterization of a rice Mlo homologue. Journal of Biological Chemistry, 277: 19304–19314. PubMed

Kim M.C., Panstruga R., Elliott C., Müller J., Devoto A., Yoon H.W., et al. (2002b) Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature, 416: 447–450. PubMed

Kudla J., and Bock R. (2016) Lighting the way to protein-protein interactions: Recommendations on best practices for Bimolecular Fluorescence Complementation analyses. Plant Cell, 28: 1002–1008. PubMed PMC

Kusch S., and Panstruga R. (2017) mlo-based resistance: An apparently universal "weapon" to defeat powdery mildew disease. Molecular Plant-Microbe Interactions, 30: 179–189. PubMed

Kusch S., Pesch L., and Panstruga R. (2016) Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins. Genome Biology and Evolution, 8: 878–895. PubMed PMC

Kusch S., Thiery S., Reinstadler A., Gruner K., Zienkiewicz K., Feussner I., and Panstruga R. (2019) Arabidopsis mlo3 mutant plants exhibit spontaneous callose deposition and signs of early leaf senescence. Plant Molecular Biology, 101: 21–40. PubMed

Lyngkjær M.F., Newton A.C., Atzema J.L., and Baker S.J. (2000) The barley mlo gene: an important powdery mildew resistance source. Agronomie, 20: 745–756.

Mair A., Xu S.-L., Branon T.C., Ting A.Y., and Bergmann D.C. (2019) Proximity labeling of protein complexes and cell-type-specific organellar proteomes in Arabidopsis enabled by TurboID. eLife, 8. PubMed PMC

McCormack E., Tsai Y.-C., and Braam J. (2005) Handling calcium signaling: Arabidopsis CaMs and CMLs. Trends in Plant Science, 10: 383–389. PubMed

Meng J.-G., Liang L., Jia P.-F., Wang Y.-C., Li H.-J., and Yang W.-C. (2020) Integration of ovular signals and exocytosis of a Ca2+ channel by MLOs in pollen tube guidance. Nature Plants, 6: 143–153. PubMed

Miller K.E., Kim Y., Huh W.-K., and Park H.-O. (2015) Bimolecular Fluorescence Complementation (BiFC) analysis: Advances and recent applications for genome-wide interaction studies. Journal of Molecular Biology, 427: 2039–2055. PubMed PMC

Möckli N., Deplazes A., Hassa P.O., Zhang Z., Peter M., Hottiger M.O., Stagljar I., and Auerbach D. (2007) Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins. Bio Techniques, 42: 725–730. PubMed

Obrdlik P., El-Bakkoury M., Hamacher T., Cappellaro C., Vilarino C., Fleischer C., et al. (2004) K+ channel interactions detected by a genetic system optimized for systematic studies of membrane protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 101: 12242–12247. PubMed PMC

Panstruga R. (2005) Discovery of novel conserved peptide domains by ortholog comparison within plant multi-protein families. Plant Molecular Biology, 59: 485–500. PubMed

Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., and Ferrin T.E. (2021) UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science, 30: 70–82. PubMed PMC

Piffanelli P., Devoto A., and Schulze-Lefert P. (1999) Defence signalling pathways in cereals. Current Opinion in Plant Biology, 2: 295–300. PubMed

Samalova M., Brzobohaty B., and Moore I. (2005) pOp6/LhGR: A stringently regulated and highly responsive dexamethasone-inducible gene expression system for tobacco. Plant Journal, 41: 919–935. PubMed

Schütze K., Harter K., and Chaban C. (2009) Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells. Methods in Molecular Biology, 479: 189–202. PubMed

Stagljar I., Korostensky C., Johnsson N., and te Heesen S. (1998) A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proceedings of the National Academy of Sciences of the United States of America, 95: 5187–5192. PubMed PMC

Walter M., Chaban C., Schutze K., Batistic O., Weckermann K., Nake C., et al. (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant Journal, 40: 428–438. PubMed

Wittke S., Lewke N., Müller S., and Johnsson N. (1999) Probing the molecular environment of membrane proteins in vivo. Molecular Biology of the Cell, 10: 2519–2530. PubMed PMC

Xing S., Wallmeroth N., Berendzen K.W., and Grefen C. (2016) Techniques for the analysis of protein-protein interactions in vivo. Plant Physiology, 171: 727–758. PubMed PMC

Xue B., Dunbrack R.L., Williams R.W., Dunker A.K., and Uversky V.N. (2010) PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochimica Et Biophysica Acta, 1804: 996–1010. PubMed PMC

Yang X., Wen Z., Zhang D., Li Z., Li D., Nagalakshmi U., Dinesh-Kumar S.P., and Zhang Y. (2021) Proximity labeling: an emerging tool for probing in planta molecular interactions. Plant Communications, 2: 100137. PubMed PMC

Yu G., Wang X., Chen Q., Cui N., Yu Y., and Fan H. (2019) Cucumber Mildew Resistance Locus O interacts with calmodulin and regulates plant cell death associated with plant immunity. International Journal of Molecular Sciences, 20. PubMed PMC

Zhang Y., Li Y., Yang X., Wen Z., Nagalakshmi U., and Dinesh-Kumar S.P. (2020) TurboID-based proximity labeling for in planta identification of protein-protein interaction networks. Journal of Visualized Experiments : JoVE. PubMed PMC

Zhu L., Zhang X.-Q., Ye de, and Chen L.-Q. (2021) The Mildew Resistance Locus O 4 interacts with CaM/CML and is involved in root gravity response. International Journal of Molecular Sciences, 22: 5962. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...