Synergy among Exocyst and SNARE Interactions Identifies a Functional Hierarchy in Secretion during Vegetative Growth

. 2020 Sep ; 32 (9) : 2951-2963. [epub] 20200722

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32699172

Grantová podpora
BB/D001528/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/N01832X/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/N006909/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/P011586/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/H009817/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/L019025/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/F001630/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Vesicle exocytosis underpins signaling and development in plants and is vital for cell expansion. Vesicle tethering and fusion are thought to occur sequentially, with tethering mediated by the exocyst and fusion driven by assembly of soluble NSF attachment protein receptor (SNARE) proteins from the vesicle membrane (R-SNAREs or vesicle-associated membrane proteins [VAMPs]) and the target membrane (Q-SNAREs). Interactions between exocyst and SNARE protein complexes are known, but their functional consequences remain largely unexplored. We now identify a hierarchy of interactions leading to secretion in Arabidopsis (Arabidopsis thaliana). Mating-based split-ubiquitin screens and in vivo Förster resonance energy transfer analyses showed that exocyst EXO70 subunits bind preferentially to cognate plasma membrane SNAREs, notably SYP121 and VAMP721. The exo70A1 mutant affected SNARE distribution and suppressed vesicle traffic similarly to the dominant-negative truncated protein SYP121ΔC, which blocks secretion at the plasma membrane. These phenotypes are consistent with the epistasis of exo70A1 in the exo70A1 syp121 double mutant, which shows decreased growth similar to exo70A1 single mutants. However, the exo70A1 vamp721 mutant showed a strong, synergy, suppressing growth and cell expansion beyond the phenotypic sum of the two single mutants. These data are best explained by a hierarchy of SNARE recruitment to the exocyst at the plasma membrane, dominated by the R-SNARE and plausibly with the VAMP721 longin domain as a nexus for binding.

Zobrazit více v PubMed

Bassham D.C., Blatt M.R.(2008). SNAREs: Cogs and coordinators in signaling and development. Plant Physiol. 147: 1504–1515. PubMed PMC

Blatt M.R., Thiel G.(2003). SNARE components and mechanisms of exocytosis in plants In The Golgi Apparatus and the Plant Secretory Pathway, Robinson D.G., ed (Oxford: Blackwell Publishing - CRC Press; ), pp. 208–237.

Cai H., Reinisch K., Ferro-Novick S.(2007). Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12: 671–682. PubMed

Collins N.C., Thordal-Christensen H., Lipka V., Bau S., Kombrink E., Qiu J.L., Hückelhoven R., Stein M., Freialdenhoven A., Somerville S.C., Schulze-Lefert P.(2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425: 973–977. PubMed

Cvrčková F., Grunt M., Bezvoda R., Hála M., Kulich I., Rawat A., Zárský V.(2012). Evolution of the land plant exocyst complexes. Front. Plant Sci. 3: 159. PubMed PMC

Eisenach C., Chen Z.H., Grefen C., Blatt M.R.(2012). The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth. Plant J. 69: 241–251. PubMed

Fasshauer D., Sutton R.B., Brunger A.T., Jahn R.(1998). Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl. Acad. Sci. USA 95: 15781–15786. PubMed PMC

Feige J.N., Sage D., Wahli W., Desvergne B., Gelman L.(2005). PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc. Res. Tech. 68: 51–58. PubMed

Fendrych M., Synek L., Pecenková T., Drdová E.J., Sekeres J., de Rycke R., Nowack M.K., Zársky V.(2013). Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana. Mol. Biol. Cell 24: 510–520. PubMed PMC

Fendrych M., Synek L., Pecenková T., Toupalová H., Cole R., Drdová E., Nebesárová J., Sedinová M., Hála M., Fowler J.E., Zársky V.(2010). The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell 22: 3053–3065. PubMed PMC

Geelen D., Leyman B., Batoko H., Di Sansebastiano G.P., Moore I., Blatt M.R.(2002). The abscisic acid-related SNARE homolog NtSyr1 contributes to secretion and growth: Evidence from competition with its cytosolic domain. Plant Cell 14: 387–406. PubMed PMC

Grefen C., Blatt M.R.(2012). A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). Biotechniques 53: 311–314. PubMed

Grefen C., Karnik R., Larson E., Lefoulon C., Wang Y., Waghmare S., Zhang B., Hills A., Blatt M.R.(2015). A vesicle-trafficking protein commandeers Kv channel voltage sensors for voltage-dependent secretion. Nat. Plants 1: 15108–15119. PubMed

Hashimoto-Sugimoto M., Higaki T., Yaeno T., Nagami A., Irie M., Fujimi M., Miyamoto M., Akita K., Negi J., Shirasu K., Hasezawa S., Iba K.(2013). A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses. Nat. Commun. 4: 2215. PubMed PMC

Hecker A., Wallmeroth N., Peter S., Blatt M.R., Harter K., Grefen C.(2015). Binary 2in1 vectors improve in planta (co-) localisation and dynamic protein interaction studies. Plant Physiol. 168: 776–787. PubMed PMC

Honsbein A., Sokolovski S., Grefen C., Campanoni P., Pratelli R., Paneque M., Chen Z.H., Johansson I., Blatt M.R.(2009). A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis. Plant Cell 21: 2859–2877. PubMed PMC

Jahn R., Scheller R.H.(2006). SNAREs--Engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7: 631–643. PubMed

Kalmbach L., Hématy K., De Bellis D., Barberon M., Fujita S., Ursache R., Daraspe J., Geldner N.(2017). Transient cell-specific EXO70A1 activity in the CASP domain and Casparian strip localization. Nat. Plants 3: 17058. PubMed

Karnik R., Grefen C., Bayne R., Honsbein A., Köhler T., Kioumourtzoglou D., Williams M., Bryant N.J., Blatt M.R.(2013). Arabidopsis Sec1/Munc18 protein SEC11 is a competitive and dynamic modulator of SNARE binding and SYP121-dependent vesicle traffic. Plant Cell 25: 1368–1382. PubMed PMC

Karnik R., Waghmare S., Zhang B., Larson E., Lefoulon C., Gonzalez W., Blatt M.R.(2017). Commandeering channel voltage sensors for secretion, cell turgor, and volume control. Trends Plant Sci. 22: 81–95. PubMed PMC

Karnik R., Zhang B., Waghmare S., Aderhold C., Grefen C., Blatt M.R.(2015). Binding of SEC11 indicates its role in SNARE recycling after vesicle fusion and identifies two pathways for vesicular traffic to the plasma membrane. Plant Cell 27: 675–694. PubMed PMC

Kulich I., Pečenková T., Sekereš J., Smetana O., Fendrych M., Foissner I., Höftberger M., Zárský V.(2013). Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic 14: 1155–1165. PubMed

Kulich I., Vojtíková Z., Sabol P., Ortmannová J., Neděla V., Tihlaříková E., Žárský V.(2018). Exocyst subunit EXO70H4 has a specific role in callose synthase secretion and silica accumulation. Plant Physiol. 176: 2040–2051. PubMed PMC

Kwon C., et al. (2008). Co-option of a default secretory pathway for plant immune responses. Nature 451: 835–840. PubMed

Lipka V., Kwon C., Panstruga R.(2007). SNARE-ware: The role of SNARE-domain proteins in plant biology. Annu. Rev. Cell Dev. Biol. 23: 147–174. PubMed

Mei K., Guo W.(2019). Exocytosis: A new exocyst movie. Curr. Biol. 29: R30–R32. PubMed

Mei K., et al. (2018). Cryo-EM structure of the exocyst complex. Nat. Struct. Mol. Biol. 25: 139–146. PubMed PMC

Morgera F., Sallah M.R., Dubuke M.L., Gandhi P., Brewer D.N., Carr C.M., Munson M.(2012). Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1. Mol. Biol. Cell 23: 337–346. PubMed PMC

Pajonk S., Kwon C., Clemens N., Panstruga R., Schulze-Lefert P.(2008). Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. J. Biol. Chem. 283: 26974–26984. PubMed

Pecenková T., Hála M., Kulich I., Kocourková D., Drdová E., Fendrych M., Toupalová H., Zársky V.(2011). The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. J. Exp. Bot. 62: 2107–2116. PubMed PMC

Picco A., Irastorza-Azcarate I., Specht T., Böke D., Pazos I., Rivier-Cordey A.-S., Devos D.P., Kaksonen M., Gallego O.(2017). The in vivo architecture of the exocyst provides structural basis for exocytosis. Cell 168: 400–412. PubMed

Pratelli R., Sutter J.U., Blatt M.R.(2004). A new catch in the SNARE. Trends Plant Sci. 9: 187–195. PubMed

Ravikumar R., Steiner A., Assaad F.F.(2017). Multisubunit tethering complexes in higher plants. Curr. Opin. Plant Biol. 40: 97–105. PubMed

Rehman R.U., Stigliano E., Lycett G.W., Sticher L., Sbano F., Faraco M., Dalessandro G., Di Sansebastiano G.P.(2008). Tomato Rab11a characterization evidenced a difference between SYP121-dependent and SYP122-dependent exocytosis. Plant Cell Physiol. 49: 751–766. PubMed

Reichardt I., Slane D., El Kasmi F., Knöll C., Fuchs R., Mayer U., Lipka V., Jürgens G.(2011). Mechanisms of functional specificity among plasma-membrane syntaxins in Arabidopsis. Traffic 12: 1269–1280. PubMed

Rossi G., Lepore D., Kenner L., Czuchra A.B., Plooster M., Frost A., Munson M., Brennwald P.(2020). Exocyst structural changes associated with activation of tethering downstream of Rho/Cdc42 GTPases. J. Cell Biol. 219: 219. PubMed PMC

Sanderfoot A.A., Assaad F.F., Raikhel N.V.(2000). The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol. 124: 1558–1569. PubMed PMC

Schindelin J., et al. (2012). Fiji: An open-source platform for biological-image analysis. Nat. Methods 9: 676–682. PubMed PMC

Shen D., Yuan H., Hutagalung A., Verma A., Kümmel D., Wu X., Reinisch K., McNew J.A., Novick P.(2013). The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p. J. Cell Biol. 202: 509–526. PubMed PMC

Sivaram M.V.S., Saporita J.A., Furgason M.L.M., Boettcher A.J., Munson M.(2005). Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p. Biochemistry 44: 6302–6311. PubMed

Südhof T.C., Rothman J.E.(2009). Membrane fusion: Grappling with SNARE and SM proteins. Science 323: 474–477. PubMed PMC

Synek L., Schlager N., Eliás M., Quentin M., Hauser M.-T., Zárský V.(2006). AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 48: 54–72. PubMed PMC

Synek L., Sekereš J., Zárský V.(2014). The exocyst at the interface between cytoskeleton and membranes in eukaryotic cells. Front Plant Sci 4: 543. PubMed PMC

Synek L., Vukašinović N., Kulich I., Hála M., Aldorfová K., Fendrych M., Žárský V.(2017). EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiol. 174: 223–240. PubMed PMC

TerBush D.R., Maurice T., Roth D., Novick P.(1996). The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15: 6483–6494. PubMed PMC

Tyrrell M., Campanoni P., Sutter J.U., Pratelli R., Paneque M., Sokolovski S., Blatt M.R.(2007). Selective targeting of plasma membrane and tonoplast traffic by inhibitory (dominant-negative) SNARE fragments. Plant J. 51: 1099–1115. PubMed

Uemura T., Sato M.H., Takeyasu K.(2005). The longin domain regulates subcellular targeting of VAMP7 in Arabidopsis thaliana. FEBS Lett. 579: 2842–2846. PubMed

Vukašinović N., Oda Y., Pejchar P., Synek L., Pečenková T., Rawat A., Sekereš J., Potocký M., Žárský V.(2017). Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis. New Phytol. 213: 1052–1067. PubMed

Vukašinović N., Žárský V.(2016). Tethering complexes in the Arabidopsis endomembrane system. Front. Cell Dev. Biol. 4: 46. PubMed PMC

Waghmare S., Lefoulon C., Zhang B., Liliekyte E., Donald N., Blatt M.R.(2019). K+ channel-SEC11 binding exchange regulates SNARE assembly for secretory traffic. Plant Physiol. 181: 1096–1113. PubMed PMC

Waghmare S., Lileikyte E., Karnik R., Goodman J.K., Blatt M.R., Jones A.M.E.(2018). SNAREs SYP121 and SYP122 mediate the secretion of distinct cargo subsets. Plant Physiol. 178: 1679–1688. PubMed PMC

Walter A., Silk W.K., Schurr U.(2009). Environmental effects on spatial and temporal patterns of leaf and root growth. Annu. Rev. Plant Biol. 60: 279–304. PubMed

Wang W., Liu N., Gao C., Cai H., Romeis T., Tang D.(2020). The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytol. 227: 529–544. PubMed

Xia L., Mar Marquès-Bueno M., Bruce C.G., Karnik R.(2019). Unusual roles of secretory SNARE SYP132 in plasma membrane H+-ATPase traffic and vegetative plant growth. Plant Physiol. 180: 837–858. PubMed PMC

Xing S., Wallmeroth N., Berendzen K.W., Grefen C.(2016). Techniques for the analysis of protein-protein interactions in vivo. Plant Physiol. 171: 727–758. PubMed PMC

Yue P., Zhang Y., Mei K., Wang S., Lesigang J., Zhu Y., Dong G., Guo W.(2017). Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion. Nat. Commun. 8: 14236. PubMed PMC

Zárský V., Cvrcková F., Potocký M., Hála M.(2009). Exocytosis and cell polarity in plants - Exocyst and recycling domains. New Phytol. 183: 255–272. PubMed

Zárský V., Kulich I., Fendrych M., Pečenková T.(2013). Exocyst complexes multiple functions in plant cells secretory pathways. Curr. Opin. Plant Biol. 16: 726–733. PubMed

Zhang B., Karnik R., Alvim J., Donald N., Blatt M.R.(2019). Dual sites for SEC11 on the SNARE SYP121 implicate a binding exchange during secretory traffic. Plant Physiol. 180: 228–239. PubMed PMC

Zhang B., Karnik R., Donald N., Blatt M.R.(2018). A GPI signal peptide-anchored split-ubiquitin (GPS) system for detecting soluble bait protein interactions at the membrane. Plant Physiol. 178: 13–17. PubMed PMC

Zhang B., Karnik R., Waghmare S., Donald N., Blatt M.R.(2017). VAMP721 conformations unmask an extended motif for K+ channel binding and gating control. Plant Physiol. 173: 536–551. PubMed PMC

Zhang B., Karnik R., Wang Y., Wallmeroth N., Blatt M.R., Grefen C.(2015). The Arabidopsis R-SNARE VAMP721 interacts with KAT1 and KC1 K+ Channels to Moderate K+ current at the plasma membrane. Plant Cell 27: 1697–1717. PubMed PMC

Zhang L., Zhang H., Liu P., Hao H., Jin J.B., Lin J.(2011). Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS One 6: e26129. PubMed PMC

Zhang Z., Feechan A., Pedersen C., Newman M.A., Qiu J.L., Olesen K.L., Thordal-Christensen H.(2007). A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. Plant J. 49: 302–312. PubMed

Zhang Z., Lenk A., Andersson M.X., Gjetting T., Pedersen C., Nielsen M.E., Newman M.A., Hou B.H., Somerville S.C., Thordal-Christensen H.(2008). A lesion-mimic syntaxin double mutant in Arabidopsis reveals novel complexity of pathogen defense signaling. Mol. Plant 1: 510–527. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace