Synergy among Exocyst and SNARE Interactions Identifies a Functional Hierarchy in Secretion during Vegetative Growth
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/D001528/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/N01832X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/N006909/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/P011586/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/H009817/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/L019025/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/F001630/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
32699172
PubMed Central
PMC7474273
DOI
10.1105/tpc.20.00280
PII: tpc.20.00280
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis cytologie genetika růst a vývoj metabolismus MeSH
- buněčná membrána metabolismus MeSH
- exocytóza fyziologie MeSH
- geneticky modifikované rostliny MeSH
- mutace MeSH
- proteiny huseníčku genetika metabolismus MeSH
- proteiny Qa-SNARE genetika metabolismus MeSH
- proteiny R-SNARE genetika metabolismus MeSH
- proteiny SNARE genetika metabolismus MeSH
- rezonanční přenos fluorescenční energie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- EXO70A1 protein, Arabidopsis MeSH Prohlížeč
- PEN1 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
- proteiny Qa-SNARE MeSH
- proteiny R-SNARE MeSH
- proteiny SNARE MeSH
- VAMP721 protein, Arabidopsis MeSH Prohlížeč
Vesicle exocytosis underpins signaling and development in plants and is vital for cell expansion. Vesicle tethering and fusion are thought to occur sequentially, with tethering mediated by the exocyst and fusion driven by assembly of soluble NSF attachment protein receptor (SNARE) proteins from the vesicle membrane (R-SNAREs or vesicle-associated membrane proteins [VAMPs]) and the target membrane (Q-SNAREs). Interactions between exocyst and SNARE protein complexes are known, but their functional consequences remain largely unexplored. We now identify a hierarchy of interactions leading to secretion in Arabidopsis (Arabidopsis thaliana). Mating-based split-ubiquitin screens and in vivo Förster resonance energy transfer analyses showed that exocyst EXO70 subunits bind preferentially to cognate plasma membrane SNAREs, notably SYP121 and VAMP721. The exo70A1 mutant affected SNARE distribution and suppressed vesicle traffic similarly to the dominant-negative truncated protein SYP121ΔC, which blocks secretion at the plasma membrane. These phenotypes are consistent with the epistasis of exo70A1 in the exo70A1 syp121 double mutant, which shows decreased growth similar to exo70A1 single mutants. However, the exo70A1 vamp721 mutant showed a strong, synergy, suppressing growth and cell expansion beyond the phenotypic sum of the two single mutants. These data are best explained by a hierarchy of SNARE recruitment to the exocyst at the plasma membrane, dominated by the R-SNARE and plausibly with the VAMP721 longin domain as a nexus for binding.
Zobrazit více v PubMed
Bassham D.C., Blatt M.R.(2008). SNAREs: Cogs and coordinators in signaling and development. Plant Physiol. 147: 1504–1515. PubMed PMC
Blatt M.R., Thiel G.(2003). SNARE components and mechanisms of exocytosis in plants In The Golgi Apparatus and the Plant Secretory Pathway, Robinson D.G., ed (Oxford: Blackwell Publishing - CRC Press; ), pp. 208–237.
Cai H., Reinisch K., Ferro-Novick S.(2007). Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev. Cell 12: 671–682. PubMed
Collins N.C., Thordal-Christensen H., Lipka V., Bau S., Kombrink E., Qiu J.L., Hückelhoven R., Stein M., Freialdenhoven A., Somerville S.C., Schulze-Lefert P.(2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425: 973–977. PubMed
Cvrčková F., Grunt M., Bezvoda R., Hála M., Kulich I., Rawat A., Zárský V.(2012). Evolution of the land plant exocyst complexes. Front. Plant Sci. 3: 159. PubMed PMC
Eisenach C., Chen Z.H., Grefen C., Blatt M.R.(2012). The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth. Plant J. 69: 241–251. PubMed
Fasshauer D., Sutton R.B., Brunger A.T., Jahn R.(1998). Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl. Acad. Sci. USA 95: 15781–15786. PubMed PMC
Feige J.N., Sage D., Wahli W., Desvergne B., Gelman L.(2005). PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc. Res. Tech. 68: 51–58. PubMed
Fendrych M., Synek L., Pecenková T., Drdová E.J., Sekeres J., de Rycke R., Nowack M.K., Zársky V.(2013). Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana. Mol. Biol. Cell 24: 510–520. PubMed PMC
Fendrych M., Synek L., Pecenková T., Toupalová H., Cole R., Drdová E., Nebesárová J., Sedinová M., Hála M., Fowler J.E., Zársky V.(2010). The Arabidopsis exocyst complex is involved in cytokinesis and cell plate maturation. Plant Cell 22: 3053–3065. PubMed PMC
Geelen D., Leyman B., Batoko H., Di Sansebastiano G.P., Moore I., Blatt M.R.(2002). The abscisic acid-related SNARE homolog NtSyr1 contributes to secretion and growth: Evidence from competition with its cytosolic domain. Plant Cell 14: 387–406. PubMed PMC
Grefen C., Blatt M.R.(2012). A 2in1 cloning system enables ratiometric bimolecular fluorescence complementation (rBiFC). Biotechniques 53: 311–314. PubMed
Grefen C., Karnik R., Larson E., Lefoulon C., Wang Y., Waghmare S., Zhang B., Hills A., Blatt M.R.(2015). A vesicle-trafficking protein commandeers Kv channel voltage sensors for voltage-dependent secretion. Nat. Plants 1: 15108–15119. PubMed
Hashimoto-Sugimoto M., Higaki T., Yaeno T., Nagami A., Irie M., Fujimi M., Miyamoto M., Akita K., Negi J., Shirasu K., Hasezawa S., Iba K.(2013). A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses. Nat. Commun. 4: 2215. PubMed PMC
Hecker A., Wallmeroth N., Peter S., Blatt M.R., Harter K., Grefen C.(2015). Binary 2in1 vectors improve in planta (co-) localisation and dynamic protein interaction studies. Plant Physiol. 168: 776–787. PubMed PMC
Honsbein A., Sokolovski S., Grefen C., Campanoni P., Pratelli R., Paneque M., Chen Z.H., Johansson I., Blatt M.R.(2009). A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis. Plant Cell 21: 2859–2877. PubMed PMC
Jahn R., Scheller R.H.(2006). SNAREs--Engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7: 631–643. PubMed
Kalmbach L., Hématy K., De Bellis D., Barberon M., Fujita S., Ursache R., Daraspe J., Geldner N.(2017). Transient cell-specific EXO70A1 activity in the CASP domain and Casparian strip localization. Nat. Plants 3: 17058. PubMed
Karnik R., Grefen C., Bayne R., Honsbein A., Köhler T., Kioumourtzoglou D., Williams M., Bryant N.J., Blatt M.R.(2013). Arabidopsis Sec1/Munc18 protein SEC11 is a competitive and dynamic modulator of SNARE binding and SYP121-dependent vesicle traffic. Plant Cell 25: 1368–1382. PubMed PMC
Karnik R., Waghmare S., Zhang B., Larson E., Lefoulon C., Gonzalez W., Blatt M.R.(2017). Commandeering channel voltage sensors for secretion, cell turgor, and volume control. Trends Plant Sci. 22: 81–95. PubMed PMC
Karnik R., Zhang B., Waghmare S., Aderhold C., Grefen C., Blatt M.R.(2015). Binding of SEC11 indicates its role in SNARE recycling after vesicle fusion and identifies two pathways for vesicular traffic to the plasma membrane. Plant Cell 27: 675–694. PubMed PMC
Kulich I., Pečenková T., Sekereš J., Smetana O., Fendrych M., Foissner I., Höftberger M., Zárský V.(2013). Arabidopsis exocyst subcomplex containing subunit EXO70B1 is involved in autophagy-related transport to the vacuole. Traffic 14: 1155–1165. PubMed
Kulich I., Vojtíková Z., Sabol P., Ortmannová J., Neděla V., Tihlaříková E., Žárský V.(2018). Exocyst subunit EXO70H4 has a specific role in callose synthase secretion and silica accumulation. Plant Physiol. 176: 2040–2051. PubMed PMC
Kwon C., et al. (2008). Co-option of a default secretory pathway for plant immune responses. Nature 451: 835–840. PubMed
Lipka V., Kwon C., Panstruga R.(2007). SNARE-ware: The role of SNARE-domain proteins in plant biology. Annu. Rev. Cell Dev. Biol. 23: 147–174. PubMed
Mei K., Guo W.(2019). Exocytosis: A new exocyst movie. Curr. Biol. 29: R30–R32. PubMed
Mei K., et al. (2018). Cryo-EM structure of the exocyst complex. Nat. Struct. Mol. Biol. 25: 139–146. PubMed PMC
Morgera F., Sallah M.R., Dubuke M.L., Gandhi P., Brewer D.N., Carr C.M., Munson M.(2012). Regulation of exocytosis by the exocyst subunit Sec6 and the SM protein Sec1. Mol. Biol. Cell 23: 337–346. PubMed PMC
Pajonk S., Kwon C., Clemens N., Panstruga R., Schulze-Lefert P.(2008). Activity determinants and functional specialization of Arabidopsis PEN1 syntaxin in innate immunity. J. Biol. Chem. 283: 26974–26984. PubMed
Pecenková T., Hála M., Kulich I., Kocourková D., Drdová E., Fendrych M., Toupalová H., Zársky V.(2011). The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. J. Exp. Bot. 62: 2107–2116. PubMed PMC
Picco A., Irastorza-Azcarate I., Specht T., Böke D., Pazos I., Rivier-Cordey A.-S., Devos D.P., Kaksonen M., Gallego O.(2017). The in vivo architecture of the exocyst provides structural basis for exocytosis. Cell 168: 400–412. PubMed
Pratelli R., Sutter J.U., Blatt M.R.(2004). A new catch in the SNARE. Trends Plant Sci. 9: 187–195. PubMed
Ravikumar R., Steiner A., Assaad F.F.(2017). Multisubunit tethering complexes in higher plants. Curr. Opin. Plant Biol. 40: 97–105. PubMed
Rehman R.U., Stigliano E., Lycett G.W., Sticher L., Sbano F., Faraco M., Dalessandro G., Di Sansebastiano G.P.(2008). Tomato Rab11a characterization evidenced a difference between SYP121-dependent and SYP122-dependent exocytosis. Plant Cell Physiol. 49: 751–766. PubMed
Reichardt I., Slane D., El Kasmi F., Knöll C., Fuchs R., Mayer U., Lipka V., Jürgens G.(2011). Mechanisms of functional specificity among plasma-membrane syntaxins in Arabidopsis. Traffic 12: 1269–1280. PubMed
Rossi G., Lepore D., Kenner L., Czuchra A.B., Plooster M., Frost A., Munson M., Brennwald P.(2020). Exocyst structural changes associated with activation of tethering downstream of Rho/Cdc42 GTPases. J. Cell Biol. 219: 219. PubMed PMC
Sanderfoot A.A., Assaad F.F., Raikhel N.V.(2000). The Arabidopsis genome. An abundance of soluble N-ethylmaleimide-sensitive factor adaptor protein receptors. Plant Physiol. 124: 1558–1569. PubMed PMC
Schindelin J., et al. (2012). Fiji: An open-source platform for biological-image analysis. Nat. Methods 9: 676–682. PubMed PMC
Shen D., Yuan H., Hutagalung A., Verma A., Kümmel D., Wu X., Reinisch K., McNew J.A., Novick P.(2013). The synaptobrevin homologue Snc2p recruits the exocyst to secretory vesicles by binding to Sec6p. J. Cell Biol. 202: 509–526. PubMed PMC
Sivaram M.V.S., Saporita J.A., Furgason M.L.M., Boettcher A.J., Munson M.(2005). Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p. Biochemistry 44: 6302–6311. PubMed
Südhof T.C., Rothman J.E.(2009). Membrane fusion: Grappling with SNARE and SM proteins. Science 323: 474–477. PubMed PMC
Synek L., Schlager N., Eliás M., Quentin M., Hauser M.-T., Zárský V.(2006). AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J. 48: 54–72. PubMed PMC
Synek L., Sekereš J., Zárský V.(2014). The exocyst at the interface between cytoskeleton and membranes in eukaryotic cells. Front Plant Sci 4: 543. PubMed PMC
Synek L., Vukašinović N., Kulich I., Hála M., Aldorfová K., Fendrych M., Žárský V.(2017). EXO70C2 is a key regulatory factor for optimal tip growth of pollen. Plant Physiol. 174: 223–240. PubMed PMC
TerBush D.R., Maurice T., Roth D., Novick P.(1996). The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. EMBO J. 15: 6483–6494. PubMed PMC
Tyrrell M., Campanoni P., Sutter J.U., Pratelli R., Paneque M., Sokolovski S., Blatt M.R.(2007). Selective targeting of plasma membrane and tonoplast traffic by inhibitory (dominant-negative) SNARE fragments. Plant J. 51: 1099–1115. PubMed
Uemura T., Sato M.H., Takeyasu K.(2005). The longin domain regulates subcellular targeting of VAMP7 in Arabidopsis thaliana. FEBS Lett. 579: 2842–2846. PubMed
Vukašinović N., Oda Y., Pejchar P., Synek L., Pečenková T., Rawat A., Sekereš J., Potocký M., Žárský V.(2017). Microtubule-dependent targeting of the exocyst complex is necessary for xylem development in Arabidopsis. New Phytol. 213: 1052–1067. PubMed
Vukašinović N., Žárský V.(2016). Tethering complexes in the Arabidopsis endomembrane system. Front. Cell Dev. Biol. 4: 46. PubMed PMC
Waghmare S., Lefoulon C., Zhang B., Liliekyte E., Donald N., Blatt M.R.(2019). K+ channel-SEC11 binding exchange regulates SNARE assembly for secretory traffic. Plant Physiol. 181: 1096–1113. PubMed PMC
Waghmare S., Lileikyte E., Karnik R., Goodman J.K., Blatt M.R., Jones A.M.E.(2018). SNAREs SYP121 and SYP122 mediate the secretion of distinct cargo subsets. Plant Physiol. 178: 1679–1688. PubMed PMC
Walter A., Silk W.K., Schurr U.(2009). Environmental effects on spatial and temporal patterns of leaf and root growth. Annu. Rev. Plant Biol. 60: 279–304. PubMed
Wang W., Liu N., Gao C., Cai H., Romeis T., Tang D.(2020). The Arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytol. 227: 529–544. PubMed
Xia L., Mar Marquès-Bueno M., Bruce C.G., Karnik R.(2019). Unusual roles of secretory SNARE SYP132 in plasma membrane H+-ATPase traffic and vegetative plant growth. Plant Physiol. 180: 837–858. PubMed PMC
Xing S., Wallmeroth N., Berendzen K.W., Grefen C.(2016). Techniques for the analysis of protein-protein interactions in vivo. Plant Physiol. 171: 727–758. PubMed PMC
Yue P., Zhang Y., Mei K., Wang S., Lesigang J., Zhu Y., Dong G., Guo W.(2017). Sec3 promotes the initial binary t-SNARE complex assembly and membrane fusion. Nat. Commun. 8: 14236. PubMed PMC
Zárský V., Cvrcková F., Potocký M., Hála M.(2009). Exocytosis and cell polarity in plants - Exocyst and recycling domains. New Phytol. 183: 255–272. PubMed
Zárský V., Kulich I., Fendrych M., Pečenková T.(2013). Exocyst complexes multiple functions in plant cells secretory pathways. Curr. Opin. Plant Biol. 16: 726–733. PubMed
Zhang B., Karnik R., Alvim J., Donald N., Blatt M.R.(2019). Dual sites for SEC11 on the SNARE SYP121 implicate a binding exchange during secretory traffic. Plant Physiol. 180: 228–239. PubMed PMC
Zhang B., Karnik R., Donald N., Blatt M.R.(2018). A GPI signal peptide-anchored split-ubiquitin (GPS) system for detecting soluble bait protein interactions at the membrane. Plant Physiol. 178: 13–17. PubMed PMC
Zhang B., Karnik R., Waghmare S., Donald N., Blatt M.R.(2017). VAMP721 conformations unmask an extended motif for K+ channel binding and gating control. Plant Physiol. 173: 536–551. PubMed PMC
Zhang B., Karnik R., Wang Y., Wallmeroth N., Blatt M.R., Grefen C.(2015). The Arabidopsis R-SNARE VAMP721 interacts with KAT1 and KC1 K+ Channels to Moderate K+ current at the plasma membrane. Plant Cell 27: 1697–1717. PubMed PMC
Zhang L., Zhang H., Liu P., Hao H., Jin J.B., Lin J.(2011). Arabidopsis R-SNARE proteins VAMP721 and VAMP722 are required for cell plate formation. PLoS One 6: e26129. PubMed PMC
Zhang Z., Feechan A., Pedersen C., Newman M.A., Qiu J.L., Olesen K.L., Thordal-Christensen H.(2007). A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. Plant J. 49: 302–312. PubMed
Zhang Z., Lenk A., Andersson M.X., Gjetting T., Pedersen C., Nielsen M.E., Newman M.A., Hou B.H., Somerville S.C., Thordal-Christensen H.(2008). A lesion-mimic syntaxin double mutant in Arabidopsis reveals novel complexity of pathogen defense signaling. Mol. Plant 1: 510–527. PubMed