Adenosine Deaminase Acting on RNA (ADAR) Enzymes: A Journey from Weird to Wondrous
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37906879
PubMed Central
PMC10666284
DOI
10.1021/acs.accounts.3c00433
Knihovny.cz E-zdroje
- MeSH
- adenosindeaminasa * genetika metabolismus MeSH
- dvouvláknová RNA * genetika MeSH
- inosin genetika metabolismus MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- myši MeSH
- přirozená imunita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ADAR1 protein, mouse MeSH Prohlížeč
- adenosindeaminasa * MeSH
- dvouvláknová RNA * MeSH
- inosin MeSH
- messenger RNA MeSH
The adenosine deaminase acting on RNA (ADAR) enzymes that catalyze the conversion of adenosine to inosine in double-stranded (ds)RNA are evolutionarily conserved and are essential for many biological functions including nervous system function, hematopoiesis, and innate immunity. Initially it was assumed that the wide-ranging biological roles of ADARs are due to inosine in mRNA being read as guanosine by the translational machinery, allowing incomplete RNA editing in a target codon to generate two different proteins from the same primary transcript. In humans, there are approximately seventy-six positions that undergo site-specific editing in tissues at greater than 20% efficiency that result in recoding. Many of these transcripts are expressed in the central nervous system (CNS) and edited by ADAR2. Exploiting mouse genetic models revealed that transgenic mice lacking the gene encoding Adar2 die within 3 weeks of birth. Therefore, the role of ADAR2 in generating protein diversity in the nervous system is clear, but why is ADAR RNA editing activity essential in other biological processes, particularly editing mainly involving ADAR1? ADAR1 edits human transcripts having embedded Alu element inverted repeats (AluIRs), but the link from this activity to innate immunity activation was elusive. Mice lacking the gene encoding Adar1 are embryonically lethal, and a major breakthrough was the discovery that the role of Adar1 in innate immunity is due to its ability to edit such repetitive element inverted repeats which have the ability to form dsRNA in transcripts. The presence of inosine prevents activation of the dsRNA sensor melanoma differentiation-associated protein 5 (Mda5). Thus, inosine helps the cell discriminate self from non-self RNA, acting like a barcode on mRNA. As innate immunity is key to many different biological processes, the basis for this widespread biological role of the ADAR1 enzyme became evident.Our group has been studying ADARs from the outset of research on these enzymes. In this Account, we give a historical perspective, moving from the initial purification of ADAR1 and ADAR2 and cloning of their encoding genes up to the current research focus in the field and what questions still remain to be addressed. We discuss the characterizations of the proteins, their localizations, posttranslational modifications, and dimerization, and how all of these affect their biological activities. Another aspect we explore is the use of mouse and Drosophila genetic models to study ADAR functions and how these were crucial in determining the biological functions of the ADAR proteins. Finally, we describe the severe consequences of rare mutations found in the human genes encoding ADAR1 and ADAR2.
Zobrazit více v PubMed
Gallo A.; Keegan L. P.; Ring G. M.; O’Connell M. A. An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. EMBO J. 2003, 22, 3421–3430. 10.1093/emboj/cdg327. PubMed DOI PMC
Heale B. S.; Keegan L. P.; McGurk L.; Michlewski G.; Brindle J.; Stanton C. M.; Caceres J. F.; O’Connell M. A. Editing independent effects of ADARs on the miRNA/siRNA pathways. EMBO J. 2009, 28, 3145–3156. 10.1038/emboj.2009.244. PubMed DOI PMC
Mannion N. M.; Greenwood S. M.; Young R.; Cox S.; Brindle J.; Read D.; Nellåker C.; Vesely C.; Ponting C. P.; McLaughlin P. J.; Jantsch M. F.; Dorin J.; Adams I. R.; Scadden A. D. J.; Öhman M.; Keegan L. P.; O’Connell M. A. The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA. Cell Reports 2014, 9, 1482–1494. 10.1016/j.celrep.2014.10.041. PubMed DOI PMC
Deng P.; Khan A.; Jacobson D.; Sambrani N.; McGurk L.; Li X.; Jayasree A.; Hejatko J.; Shohat-Ophir G.; O’Connell M. A.; Li J. B.; Keegan L. P. Adar RNA editing-dependent and -independent effects are required for brain and innate immune functions in Drosophila. Nat. Commun. 2020, 11, 1580.10.1038/s41467-020-15435-1. PubMed DOI PMC
Boccaletto P.; Stefaniak F.; Ray A.; Cappannini A.; Mukherjee S.; Purta E.; Kurkowska M.; Shirvanizadeh N.; Destefanis E.; Groza P.; Avsar G.; Romitelli A.; Pir P.; Dassi E.; Conticello S. G.; Aguilo F.; Bujnicki J. M. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 2022, 50, D231–D235. 10.1093/nar/gkab1083. PubMed DOI PMC
Bazak L.; Haviv A.; Barak M.; Jacob-Hirsch J.; Deng P.; Zhang R.; Isaacs F. J.; Rechavi G.; Li J. B.; Eisenberg E.; Levanon E. Y. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2014, 24, 365–376. 10.1101/gr.164749.113. PubMed DOI PMC
Gerber A. P.; Keller W. An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science 1999, 286, 1146–1149. 10.1126/science.286.5442.1146. PubMed DOI
Quin J.; Sedmik J.; Vukic D.; Khan A.; Keegan L. P.; O’Connell M. A. ADAR RNA Modifications, the Epitranscriptome and Innate Immunity. Trends Biochem. Sci. 2021, 46, 758–771. 10.1016/j.tibs.2021.02.002. PubMed DOI
Scadden A. D. Inosine-containing dsRNA binds a stress-granule-like complex and downregulates gene expression in trans. Mol. Cell 2007, 28, 491–500. 10.1016/j.molcel.2007.09.005. PubMed DOI PMC
Motorin Y.; Helm M. Methods for RNA Modification Mapping Using Deep Sequencing: Established and New Emerging Technologies. Genes (Basel) 2019, 10, 35.10.3390/genes10010035. PubMed DOI PMC
Licht K.; Hartl M.; Amman F.; Anrather D.; Janisiw M. P.; Jantsch M. F. Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Res. 2019, 47, 3–14. 10.1093/nar/gky1163. PubMed DOI PMC
Tan M. H.; Li Q.; Shanmugam R.; Piskol R.; Kohler J.; Young A. N.; Liu K. I.; Zhang R.; Ramaswami G.; Ariyoshi K.; Gupte A.; Keegan L. P.; George C. X.; Ramu A.; Huang N.; Pollina E. A.; Leeman D. S.; Rustighi A.; Goh Y. P. S.; Chawla A.; Del Sal G.; Peltz G.; Brunet A.; Conrad D. F.; Samuel C. E.; O’Connell M. A.; Walkley C. R.; Nishikura K.; Li J. B. Dynamic landscape and regulation of RNA editing in mammals. Nature 2017, 550, 249–254. 10.1038/nature24041. PubMed DOI PMC
Schaffer A. A.; Levanon E. Y. ALU A-to-I RNA Editing: Millions of Sites and Many Open Questions. Methods Mol. Biol. 2021, 2181, 149–162. 10.1007/978-1-0716-0787-9_9. PubMed DOI
Bass B. L.; Weintraub H. A developmental regulated activity that unwinds RNA duplexes. Cell 1987, 48, 607–613. 10.1016/0092-8674(87)90239-X. PubMed DOI
Rebagliati M. R.; Melton D. A. Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell 1987, 48, 599–605. 10.1016/0092-8674(87)90238-8. PubMed DOI
Bass B. L.; Weintraub H. An unwinding activity that covalently modifies its double-strand RNA substrate. Cell 1988, 55, 1089–1098. 10.1016/0092-8674(88)90253-X. PubMed DOI
Bass B. L.; Weintraub H.; Cattaneo R.; Billeter M. A. Biased hypermutation of viral RNA genomes could be due to unwinding/modification of double-stranded RNA. Cell 1989, 56, 331.10.1016/0092-8674(89)90234-1. PubMed DOI
Hough R. F.; Bass B. L. Purification of the Xenopus laevis dsRNA adenosine deaminase. J. Biol. Chem. 1994, 269, 9933–9939. 10.1016/S0021-9258(17)36972-7. PubMed DOI
Kim U.; Garner T. L.; Sanford T.; Speicher D.; Murray J. M.; Nishikura K. Purification and characterization of double-stranded RNA adenosine deaminase from bovine nuclear extracts. J. Biol. Chem. 1994, 269, 13480–13489. 10.1016/S0021-9258(17)36857-6. PubMed DOI
O’Connell M. A.; Keller W. Purification and properties of double-stranded RNA-specific adenosine deaminase from calf thymus. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 10596–10600. 10.1073/pnas.91.22.10596. PubMed DOI PMC
O’Connell M. A.; Krause S.; Higuchi M.; Hsuan J. J.; Totty N. F.; Jenny A.; Keller W. Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol. Cell. Biol. 1995, 15, 1389–1397. 10.1128/MCB.15.3.1389. PubMed DOI PMC
Patterson J. B.; Samuel C. E. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol. Cell. Biol. 1995, 15, 5376–5388. 10.1128/MCB.15.10.5376. PubMed DOI PMC
Sommer B.; Köhler M.; Sprengel R.; Seeburg P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 1991, 67, 11–19. 10.1016/0092-8674(91)90568-J. PubMed DOI
Maas S.; Melcher T.; Herb A.; Seeburg P. H.; Keller W.; Krause S.; Higuchi M.; O’Connell M. A. Structural requirements for RNA editing in glutamate receptor pre-mRNAs by recombinant double-stranded RNA adenosine deaminase. J. Biol. Chem. 1996, 271, 12221–12226. 10.1074/jbc.271.21.12221. PubMed DOI
O’Connell M. A.; Gerber A.; Keller W. Purification of human double-stranded RNA-specific editase 1 (hRED1) involved in editing of brain glutamate receptor B pre-mRNA. J. Biol. Chem. 1997, 272, 473–478. 10.1074/jbc.272.1.473. PubMed DOI
Gerber A.; O’Connell M. A.; Keller W. Two forms of human double-stranded RNA-specific editase 1 (hRED1) generated by the insertion of an Alu cassette. RNA 1997, 3, 453–463. PubMed PMC
Melcher T.; Maas S.; Herb A.; Sprengel R.; Seeburg P. H.; Higuchi M. A mammalian RNA editing enzyme. Nature 1996, 379, 460–464. 10.1038/379460a0. PubMed DOI
Klaue Y.; Källman A. M.; Bonin M.; Nellen W.; Öhman M. Biochemical analysis and scanning force microscopy reveal productive and nonproductive ADAR2 binding to RNA substrates. RNA 2003, 9, 839–846. 10.1261/rna.2167603. PubMed DOI PMC
Macbeth M. R.; Lingam A. T.; Bass B. L. Evidence for auto-inhibition by the N terminus of hADAR2 and activation by dsRNA binding. Rna 2004, 10, 1563–1571. 10.1261/rna.7920904. PubMed DOI PMC
Cho D. S.; Yang W.; Lee J. T.; Shiekhattar R.; Murray J. M.; Nishikura K. Requirement of dimerization for RNA editing activity of adenosine deaminases acting on RNA. J. Biol. Chem. 2003, 278, 17093–17102. 10.1074/jbc.M213127200. PubMed DOI
Thuy-Boun A. S.; Thomas J. M.; Grajo H. L.; Palumbo C. M.; Park S.; Nguyen L. T.; Fisher A. J.; Beal P. A. Asymmetric dimerization of adenosine deaminase acting on RNA facilitates substrate recognition. Nucleic Acids Res. 2020, 48, 7958–7972. 10.1093/nar/gkaa532. PubMed DOI PMC
Desterro J. M.; Keegan L. P.; Lafarga M.; Berciano M. T.; O’Connell M.; Carmo-Fonseca M. Dynamic association of RNA-editing enzymes with the nucleolus. J. Cell Sci. 2003, 116, 1805–1818. 10.1242/jcs.00371. PubMed DOI
Sansam C. L.; Wells K. S.; Emeson R. B. Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 14018–14023. 10.1073/pnas.2336131100. PubMed DOI PMC
Caudron-Herger M.; Pankert T.; Seiler J.; Nemeth A.; Voit R.; Grummt I.; Rippe K. Alu element-containing RNAs maintain nucleolar structure and function. EMBO J. 2015, 34, 2758–2774. 10.15252/embj.201591458. PubMed DOI PMC
Desterro J. M. P.; Keegan L. P.; Jaffray E.; Hay R. T.; O’Connell M. A.; Carmo-Fonseca M. SUMO-1 modification alters ADAR1 editing activity. Mol. Biol. Cell 2005, 16, 5115–5126. 10.1091/mbc.e05-06-0536. PubMed DOI PMC
Fan Y.; Li X.; Zhang L.; Zong Z.; Wang F.; Huang J.; Zeng L.; Zhang C.; Yan H.; Zhang L.; Zhou F. SUMOylation in Viral Replication and Antiviral Defense. Adv. Sci. (Weinh) 2022, 9, e210412610.1002/advs.202104126. PubMed DOI PMC
Marcucci R.; Brindle J.; Paro S.; Casadio A.; Hempel S.; Morrice N.; Bisso A.; Keegan L. P.; Del Sal G.; O’Connell M. A. Pin1 and WWP2 regulate GluR2 Q/R site RNA editing by ADAR2 with opposing effects. EMBO J. 2011, 30, 4211–4222. 10.1038/emboj.2011.303. PubMed DOI PMC
Behm M.; Wahlstedt H.; Widmark A.; Eriksson M.; Ohman M. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J. Cell Sci. 2017, 130, 745–753. 10.1242/jcs.200055. PubMed DOI
Wong S. K.; Sato S.; Lazinski D. W. Elevated activity of the large form of ADAR1 in vivo: very efficient RNA editing occurs in the cytoplasm. Rna 2003, 9, 586–598. 10.1261/rna.5160403. PubMed DOI PMC
Melcher T.; Maas S.; Herb A.; Sprengel R.; Higuchi M.; Seeburg P. H. RED2, a brain specific member of the RNA-specific adenosine deaminase family. J. Biol. Chem. 1996, 271, 31795–31798. 10.1074/jbc.271.50.31795. PubMed DOI
Snyder E.; Chukrallah L.; Seltzer K.; Goodwin L.; Braun R. E. ADAD1 and ADAD2, testis-specific adenosine deaminase domain-containing proteins, are required for male fertility. Sci. Rep 2020, 10, 11536.10.1038/s41598-020-67834-5. PubMed DOI PMC
Kawahara Y.; Zinshteyn B.; Sethupathy P.; Iizasa H.; Hatzigeorgiou A. G.; Nishikura K. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 2007, 315, 1137–1140. 10.1126/science.1138050. PubMed DOI PMC
Hartner J. C.; Schmittwolf C.; Kispert A.; Müller A. M.; Higuchi M.; Seeburg P. H. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J. Biol. Chem. 2004, 279, 4894–4902. 10.1074/jbc.M311347200. PubMed DOI
Wang Q.; Miyakoda M.; Yang W.; Khillan J.; Stachura D. L.; Weiss M. J.; Nishikura K. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J. Biol. Chem. 2004, 279, 4952–4961. 10.1074/jbc.M310162200. PubMed DOI
Higuchi M.; Maas S.; Single F. N.; Hartner J.; Rozov A.; Burnashev N.; Feldmeyer D.; Sprengel R.; Seeburg P. H. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 2000, 406, 78–81. 10.1038/35017558. PubMed DOI
Liddicoat B. J.; Piskol R.; Chalk A. M.; Ramaswami G.; Higuchi M.; Hartner J. C.; Li J. B.; Seeburg P. H.; Walkley C. R. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 2015, 349, 1115–1120. 10.1126/science.aac7049. PubMed DOI PMC
Vitali P.; Scadden A. D. Double-stranded RNAs containing multiple IU pairs are sufficient to suppress interferon induction and apoptosis. Nat. Struct Mol. Biol. 2010, 17, 1043–1050. 10.1038/nsmb.1864. PubMed DOI PMC
Athanasiadis A.; Rich A.; Maas S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2004, 2, e39110.1371/journal.pbio.0020391. PubMed DOI PMC
Palladino M. J.; Keegan L. P.; O’Connell M. A.; Reenan R. A. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 2000, 102, 437–449. 10.1016/S0092-8674(00)00049-0. PubMed DOI
Keegan L. P.; McGurk L.; Palavicini J. P.; Brindle J.; Paro S.; Li X.; Rosenthal J. J.; O’Connell M. A. Functional conservation in human and Drosophila of Metazoan ADAR2 involved in RNA editing: loss of ADAR1 in insects. Nucleic acids research 2011, 39, 7249–7262. 10.1093/nar/gkr423. PubMed DOI PMC
Khan A.; Paro S.; McGurk L.; Sambrani N.; Hogg M. C.; Brindle J.; Pennetta G.; Keegan L. P.; O’Connell M. A. Membrane and synaptic defects leading to neurodegeneration in Adar mutant Drosophila are rescued by increased autophagy. BMC Biol. 2020, 18, 15.10.1186/s12915-020-0747-0. PubMed DOI PMC
Maldonado C.; Alicea D.; Gonzalez M.; Bykhovskaia M.; Marie B. Adar is essential for optimal presynaptic function. Molecular and Cellular Neuroscience 2013, 52, 173–180. 10.1016/j.mcn.2012.10.009. PubMed DOI PMC
Robinson J.; Paluch J.; Dickman D.; Joiner W. ADAR-mediated RNA editing suppresses sleep by acting as a brake on glutamatergic synaptic plasticity. Nat. Commun. 2016, 7, 10512.10.1038/ncomms10512. PubMed DOI PMC
Graveley B. R.; Brooks A. N.; Carlson J. W.; Duff M. O.; Landolin J. M.; Yang L.; Artieri C. G.; van Baren M. J.; Boley N.; Booth B. W.; Brown J. B.; Cherbas L.; Davis C. A.; Dobin A.; Li R.; Lin W.; Malone J. H.; Mattiuzzo N. R.; Miller D.; Sturgill D.; Tuch B. B.; Zaleski C.; Zhang D.; Blanchette M.; Dudoit S.; Eads B.; Green R. E.; Hammonds A.; Jiang L.; Kapranov P.; Langton L.; Perrimon N.; Sandler J. E.; Wan K. H.; Willingham A.; Zhang Y.; Zou Y.; Andrews J.; Bickel P. J.; Brenner S. E.; Brent M. R.; Cherbas P.; Gingeras T. R.; Hoskins R. A.; Kaufman T. C.; Oliver B.; Celniker S. E. The developmental transcriptome of Drosophila melanogaster. Nature 2011, 471, 473–479. 10.1038/nature09715. PubMed DOI PMC
Palladino M. J.; Keegan L. P.; O’Connell M. A.; Reenan R. A. dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. RNA 2000, 6, 1004–1018. 10.1017/S1355838200000248. PubMed DOI PMC
Marcucci R.; Romano M.; Feiguin F.; O’Connell M. A.; Baralle F. E. Dissecting the splicing mechanism of the Drosophila editing enzyme; dADAR. Nucleic Acids Res. 2009, 37, 1663–1671. 10.1093/nar/gkn1080. PubMed DOI PMC
Keegan L. P.; Brindle J.; Gallo A.; Leroy A.; Reenan R. A.; O’Connell M. A. Tuning of RNA editing by ADAR is required in Drosophila. EMBO J. 2005, 24, 2183–2193. 10.1038/sj.emboj.7600691. PubMed DOI PMC
Bratt E.; Ohman M. Coordination of editing and splicing of glutamate receptor pre-mRNA. Rna 2003, 9, 309–318. 10.1261/rna.2750803. PubMed DOI PMC
Li X.; Overton I. M.; Baines R. A.; Keegan L. P.; O’Connell M. A. The ADAR RNA editing enzyme controls neuronal excitability in Drosophila melanogaster. Nucleic Acids Res. 2014, 42, 1139–1151. 10.1093/nar/gkt909. PubMed DOI PMC
Rice G. I.; Bond J.; Asipu A.; Brunette R. L.; Manfield I. W.; Carr I. M.; Fuller J. C.; Jackson R. M.; Lamb T.; Briggs T. A.; Ali M.; Gornall H.; Couthard L. R.; Aeby A.; Attard-Montalto S. P.; Bertini E.; Bodemer C.; Brockmann K.; Brueton L. A.; Corry P. C.; Desguerre I.; Fazzi E.; Cazorla A. G.; Gener B.; Hamel B. C.; Heiberg A.; Hunter M.; van der Knaap M. S.; Kumar R.; Lagae L.; Landrieu P. G.; Lourenco C. M.; Marom D.; McDermott M. F.; van der Merwe W.; Orcesi S.; Prendiville J. S.; Rasmussen M.; Shalev S. A.; Soler D. M.; Shinawi M.; Spiegel R.; Tan T. Y.; Vanderver A.; Wakeling E. L.; Wassmer E.; Whittaker E.; Lebon P.; Stetson D. B.; Bonthron D. T.; Crow Y. J. Mutations involved in Aicardi-Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 2009, 41, 829–832. 10.1038/ng.373. PubMed DOI PMC
Pestal K.; Funk C. C.; Snyder J. M.; Price N. D.; Treuting P. M.; Stetson D. B. Isoforms of RNA-Editing Enzyme ADAR1 Independently Control Nucleic Acid Sensor MDA5-Driven Autoimmunity and Multi-organ Development. Immunity 2015, 43, 933–944. 10.1016/j.immuni.2015.11.001. PubMed DOI PMC
Kono M.; Akiyama M. Dyschromatosis symmetrica hereditaria and reticulate acropigmentation of Kitamura: An update. J. Dermatol Sci. 2019, 93, 75–81. 10.1016/j.jdermsci.2019.01.004. PubMed DOI
Maroofian R.; Sedmik J.; Mazaheri N.; Scala M.; Zaki M. S.; Keegan L. P.; Azizimalamiri R.; Issa M.; Shariati G.; Sedaghat A.; Beetz C.; Bauer P.; Galehdari H.; O’Connell M. A.; Houlden H. Biallelic variants in ADARB1, encoding a dsRNA-specific adenosine deaminase, cause a severe developmental and epileptic encephalopathy. J. Med. Genet 2021, 58, 495–504. 10.1136/jmedgenet-2020-107048. PubMed DOI PMC
Tan T. Y.; Sedmik J.; Fitzgerald M. P.; Halevy R. S.; Keegan L. P.; Helbig I.; Basel-Salmon L.; Cohen L.; Straussberg R.; Chung W. K.; Helal M.; Maroofian R.; Houlden H.; Juusola J.; Sadedin S.; Pais L.; Howell K. B.; White S. M.; Christodoulou J.; O’Connell M. A. Bi-allelic ADARB1 Variants Associated with Microcephaly, Intellectual Disability, and Seizures. Am. J. Hum. Genet. 2020, 106, 467–483. 10.1016/j.ajhg.2020.02.015. PubMed DOI PMC
Gerber A. P.; Keller W. RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem. Sci. 2001, 26, 376–384. 10.1016/S0968-0004(01)01827-8. PubMed DOI
Jain M.; Mann T. D.; Stulic M.; Rao S. P.; Kirsch A.; Pullirsch D.; Strobl X.; Rath C.; Reissig L.; Moreth K.; Klein-Rodewald T.; Bekeredjian R.; Gailus-Durner V.; Fuchs H.; Hrabe de Angelis M.; Pablik E.; Cimatti L.; Martin D.; Zinnanti J.; Graier W. F.; Sibilia M.; Frank S.; Levanon E. Y.; Jantsch M. F. RNA editing of Filamin A pre-mRNA regulates vascular contraction and diastolic blood pressure. EMBO J. 2018, 37, e94813.10.15252/embj.201694813. PubMed DOI PMC
Le Bras A. A resource for selecting animal models of heart disease. Lab Animal 2019, 48, 332–332. 10.1038/s41684-019-0425-4. DOI
Liu H.; Golji J.; Brodeur L. K.; Chung F. S.; Chen J. T.; deBeaumont R. S.; Bullock C. P.; Jones M. D.; Kerr G.; Li L.; Rakiec D. P.; Schlabach M. R.; Sovath S.; Growney J. D.; Pagliarini R. A.; Ruddy D. A.; MacIsaac K. D.; Korn J. M.; McDonald E. R. 3rd. Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nat. Med. 2019, 25, 95–102. 10.1038/s41591-018-0302-5. PubMed DOI
Ishizuka J. J.; Manguso R. T.; Cheruiyot C. K.; Bi K.; Panda A.; Iracheta-Vellve A.; Miller B. C.; Du P. P.; Yates K. B.; Dubrot J.; Buchumenski I.; Comstock D. E.; Brown F. D.; Ayer A.; Kohnle I. C.; Pope H. W.; Zimmer M. D.; Sen D. R.; Lane-Reticker S. K.; Robitschek E. J.; Griffin G. K.; Collins N. B.; Long A. H.; Doench J. G.; Kozono D.; Levanon E. Y.; Haining W. N. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 2019, 565, 43–48. 10.1038/s41586-018-0768-9. PubMed DOI PMC
Livingston J. H.; Lin J. P.; Dale R. C.; Gill D.; Brogan P.; Munnich A.; Kurian M. A.; Gonzalez-Martinez V.; De Goede C. G.; Falconer A.; Forte G.; Jenkinson E. M.; Kasher P. R.; Szynkiewicz M.; Rice G. I.; Crow Y. J. A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1. J. Med. Genet 2014, 51, 76–82. 10.1136/jmedgenet-2013-102038. PubMed DOI
Miyamura Y.; Suzuki T.; Kono M.; Inagaki K.; Ito S.; Suzuki N.; Tomita Y. Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am. J. Hum. Genet. 2003, 73, 693–699. 10.1086/378209. PubMed DOI PMC