Bi-allelic ADARB1 Variants Associated with Microcephaly, Intellectual Disability, and Seizures
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
UM1 HG008900
NHGRI NIH HHS - United States
PubMed
32220291
PubMed Central
PMC7118584
DOI
10.1016/j.ajhg.2020.02.015
PII: S0002-9297(20)30057-4
Knihovny.cz E-zdroje
- Klíčová slova
- ADAR2, RNA editing, epilepsy, intellectual disability, microcephaly, migrating focal seizures,
- MeSH
- adenosindeaminasa genetika MeSH
- alely MeSH
- alternativní sestřih genetika MeSH
- dítě MeSH
- genetická predispozice k nemoci genetika MeSH
- genetická variace genetika MeSH
- HEK293 buňky MeSH
- lidé MeSH
- mentální retardace genetika MeSH
- mikrocefalie genetika MeSH
- předškolní dítě MeSH
- proteiny vázající RNA genetika MeSH
- sestřih RNA genetika MeSH
- záchvaty genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ADARB1 protein, human MeSH Prohlížeč
- adenosindeaminasa MeSH
- proteiny vázající RNA MeSH
The RNA editing enzyme ADAR2 is essential for the recoding of brain transcripts. Impaired ADAR2 editing leads to early-onset epilepsy and premature death in a mouse model. Here, we report bi-allelic variants in ADARB1, the gene encoding ADAR2, in four unrelated individuals with microcephaly, intellectual disability, and epilepsy. In one individual, a homozygous variant in one of the double-stranded RNA-binding domains (dsRBDs) was identified. In the others, variants were situated in or around the deaminase domain. To evaluate the effects of these variants on ADAR2 enzymatic activity, we performed in vitro assays with recombinant proteins in HEK293T cells and ex vivo assays with fibroblasts derived from one of the individuals. We demonstrate that these ADAR2 variants lead to reduced editing activity on a known ADAR2 substrate. We also demonstrate that one variant leads to changes in splicing of ADARB1 transcript isoforms. These findings reinforce the importance of RNA editing in brain development and introduce ADARB1 as a genetic etiology in individuals with intellectual disability, microcephaly, and epilepsy.
Broad Center for Mendelian Genomics Broad Institute of MIT and Harvard Cambridge MA 02142 USA
Department of Pediatrics Columbia University Medical Center New York NY 10032 USA
GeneDx Gaithersburg MD 20877 USA
Pediatric Genetics Unit Schneider Children's Medical Center of Israel Petah Tikva 49100 Israel
Zobrazit více v PubMed
Sinigaglia K., Wiatrek D., Khan A., Michalik D., Sambrani N., Sedmík J., Vukić D., O’Connell M.A., Keegan L.P. ADAR RNA editing in innate immune response phasing, in circadian clocks and in sleep. Biochim. Biophys. Acta. Gene Regul. Mech. 2019;1862:356–369. PubMed
Licht K., Hartl M., Amman F., Anrather D., Janisiw M.P., Jantsch M.F. Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Res. 2019;47:3–14. PubMed PMC
Jaikaran D.C., Collins C.H., MacMillan A.M. Adenosine to inosine editing by ADAR2 requires formation of a ternary complex on the GluR-B R/G site. J. Biol. Chem. 2002;277:37624–37629. PubMed
Poulsen H., Jorgensen R., Heding A., Nielsen F.C., Bonven B., Egebjerg J. Dimerization of ADAR2 is mediated by the double-stranded RNA binding domain. RNA. 2006;12:1350–1360. PubMed PMC
Chilibeck K.A., Wu T., Liang C., Schellenberg M.J., Gesner E.M., Lynch J.M., MacMillan A.M. FRET analysis of in vivo dimerization by RNA-editing enzymes. J. Biol. Chem. 2006;281:16530–16535. PubMed
Valente L., Nishikura K. RNA binding-independent dimerization of adenosine deaminases acting on RNA and dominant negative effects of nonfunctional subunits on dimer functions. J. Biol. Chem. 2007;282:16054–16061. PubMed PMC
Gallo A., Keegan L.P., Ring G.M., O’Connell M.A. An ADAR that edits transcripts encoding ion channel subunits functions as a dimer. EMBO J. 2003;22:3421–3430. PubMed PMC
Rice G.I., Kasher P.R., Forte G.M., Mannion N.M., Greenwood S.M., Szynkiewicz M., Dickerson J.E., Bhaskar S.S., Zampini M., Briggs T.A. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat. Genet. 2012;44:1243–1248. PubMed PMC
Livingston J.H., Lin J.P., Dale R.C., Gill D., Brogan P., Munnich A., Kurian M.A., Gonzalez-Martinez V., De Goede C.G., Falconer A. A type I interferon signature identifies bilateral striatal necrosis due to mutations in ADAR1. J. Med. Genet. 2014;51:76–82. PubMed
Miyamura Y., Suzuki T., Kono M., Inagaki K., Ito S., Suzuki N., Tomita Y. Mutations of the RNA-specific adenosine deaminase gene (DSRAD) are involved in dyschromatosis symmetrica hereditaria. Am. J. Hum. Genet. 2003;73:693–699. PubMed PMC
Kondo T., Suzuki T., Ito S., Kono M., Negoro T., Tomita Y. Dyschromatosis symmetrica hereditaria associated with neurological disorders. J. Dermatol. 2008;35:662–666. PubMed
Tojo K., Sekijima Y., Suzuki T., Suzuki N., Tomita Y., Yoshida K., Hashimoto T., Ikeda S. Dystonia, mental deterioration, and dyschromatosis symmetrica hereditaria in a family with ADAR1 mutation. Mov. Disord. 2006;21:1510–1513. PubMed
Aizawa H., Sawada J., Hideyama T., Yamashita T., Katayama T., Hasebe N., Kimura T., Yahara O., Kwak S. TDP-43 pathology in sporadic ALS occurs in motor neurons lacking the RNA editing enzyme ADAR2. Acta Neuropathol. 2010;120:75–84. PubMed
Kawahara Y., Ito K., Ito M., Tsuji S., Kwak S. Novel splice variants of human ADAR2 mRNA: skipping of the exon encoding the dsRNA-binding domains, and multiple C-terminal splice sites. Gene. 2005;363:193–201. PubMed
Gerber A., O’Connell M.A., Keller W. Two forms of human double-stranded RNA-specific editase 1 (hRED1) generated by the insertion of an Alu cassette. RNA. 1997;3:453–463. PubMed PMC
Lai F., Chen C.X., Carter K.C., Nishikura K. Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases. Mol. Cell. Biol. 1997;17:2413–2424. PubMed PMC
Filippini A., Bonini D., Giacopuzzi E., La Via L., Gangemi F., Colombi M., Barbon A. Differential Enzymatic Activity of Rat ADAR2 Splicing Variants Is Due to Altered Capability to Interact with RNA in the Deaminase Domain. Genes (Basel) 2018;9:E79. PubMed PMC
Tan M.H., Li Q., Shanmugam R., Piskol R., Kohler J., Young A.N. Dynamic landscape and regulation of RNA editing in mammals. Nature. 2017;550:249–254. PubMed PMC
Sommer B., Köhler M., Sprengel R., Seeburg P.H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell. 1991;67:11–19. PubMed
Greger I.H., Khatri L., Kong X., Ziff E.B. AMPA receptor tetramerization is mediated by Q/R editing. Neuron. 2003;40:763–774. PubMed
Greger I.H., Khatri L., Ziff E.B. RNA editing at arg607 controls AMPA receptor exit from the endoplasmic reticulum. Neuron. 2002;34:759–772. PubMed
Salpietro V., Dixon C.L., Guo H., Bello O.D., Vandrovcova J., Efthymiou S., Maroofian R., Heimer G., Burglen L., Valence S., SYNAPS Study Group AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat. Commun. 2019;10:3094. PubMed PMC
Slavov D., Gardiner K. Phylogenetic comparison of the pre-mRNA adenosine deaminase ADAR2 genes and transcripts: conservation and diversity in editing site sequence and alternative splicing patterns. Gene. 2002;299:83–94. PubMed
Philippakis A.A., Azzariti D.R., Beltran S., Brookes A.J., Brownstein C.A., Brudno M., Brunner H.G., Buske O.J., Carey K., Doll C. The Matchmaker Exchange: a platform for rare disease gene discovery. Hum. Mutat. 2015;36:915–921. PubMed PMC
Sobreira N., Schiettecatte F., Valle D., Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum. Mutat. 2015;36:928–930. PubMed PMC
Retterer K., Juusola J., Cho M.T., Vitazka P., Millan F., Gibellini F., Vertino-Bell A., Smaoui N., Neidich J., Monaghan K.G. Clinical application of whole-exome sequencing across clinical indications. Genet. Med. 2016;18:696–704. PubMed
Zhu N., Gonzaga-Jauregui C., Welch C.L., Ma L., Qi H., King A.K., Krishnan U., Rosenzweig E.B., Ivy D.D., Austin E.D. Exome Sequencing in Children With Pulmonary Arterial Hypertension Demonstrates Differences Compared With Adults. Circ Genom Precis Med. 2018;11:e001887. PubMed PMC
Heale B.S., Keegan L.P., McGurk L., Michlewski G., Brindle J., Stanton C.M., Caceres J.F., O’Connell M.A. Editing independent effects of ADARs on the miRNA/siRNA pathways. EMBO J. 2009;28:3145–3156. PubMed PMC
Kishore S., Khanna A., Stamm S. Rapid generation of splicing reporters with pSpliceExpress. Gene. 2008;427:104–110. PubMed PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. PubMed
Stefl R., Oberstrass F.C., Hood J.L., Jourdan M., Zimmermann M., Skrisovska L., Maris C., Peng L., Hofr C., Emeson R.B., Allain F.H. The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove. Cell. 2010;143:225–237. PubMed PMC
Matthews M.M., Thomas J.M., Zheng Y., Tran K., Phelps K.J., Scott A.I., Havel J., Fisher A.J., Beal P.A. Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat. Struct. Mol. Biol. 2016;23:426–433. PubMed PMC
Aurora R., Srinivasan R., Rose G.D. Rules for alpha-helix termination by glycine. Science. 1994;264:1126–1130. PubMed
Masliah G., Barraud P., Allain F.H. RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence. Cell. Mol. Life Sci. 2013;70:1875–1895. PubMed PMC
Mannion N.M., Greenwood S.M., Young R., Cox S., Brindle J., Read D., Nellåker C., Vesely C., Ponting C.P., McLaughlin P.J. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 2014;9:1482–1494. PubMed PMC
Daniel C., Widmark A., Rigardt D., Öhman M. Editing inducer elements increases A-to-I editing efficiency in the mammalian transcriptome. Genome Biol. 2017;18:195. PubMed PMC
McMillan N.A., Carpick B.W., Hollis B., Toone W.M., Zamanian-Daryoush M., Williams B.R. Mutational analysis of the double-stranded RNA (dsRNA) binding domain of the dsRNA-activated protein kinase, PKR. J. Biol. Chem. 1995;270:2601–2606. PubMed
Ramos A., Grünert S., Adams J., Micklem D.R., Proctor M.R., Freund S., Bycroft M., St Johnston D., Varani G. RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J. 2000;19:997–1009. PubMed PMC
Sansam C.L., Wells K.S., Emeson R.B. Modulation of RNA editing by functional nucleolar sequestration of ADAR2. Proc. Natl. Acad. Sci. USA. 2003;100:14018–14023. PubMed PMC
Desterro J.M.P., Keegan L.P., Lafarga M., Berciano M.T., O’Connell M., Carmo-Fonseca M. Dynamic association of RNA-editing enzymes with the nucleolus. J. Cell Sci. 2003;116:1805–1818. PubMed
Raponi M., Kralovicova J., Copson E., Divina P., Eccles D., Johnson P., Baralle D., Vorechovsky I. Prediction of single-nucleotide substitutions that result in exon skipping: identification of a splicing silencer in BRCA1 exon 6. Hum. Mutat. 2011;32:436–444. PubMed
Cartegni L., Wang J., Zhu Z., Zhang M.Q., Krainer A.R. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31:3568–3571. PubMed PMC
Smith P.J., Zhang C., Wang J., Chew S.L., Zhang M.Q., Krainer A.R. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum. Mol. Genet. 2006;15:2490–2508. PubMed
McTague A., Howell K.B., Cross J.H., Kurian M.A., Scheffer I.E. The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol. 2016;15:304–316. PubMed
Ambrosino P., Soldovieri M.V., Bast T., Turnpenny P.D., Uhrig S., Biskup S., Döcker M., Fleck T., Mosca I., Manocchio L. De novo gain-of-function variants in KCNT2 as a novel cause of developmental and epileptic encephalopathy. Ann. Neurol. 2018;83:1198–1204. PubMed
Duan H., Peng J., Kessi M., Yin F. De Novo KCNQ2 Mutation in One Case of Epilepsy of Infancy With Migrating Focal Seizures That Evolved to Infantile Spasms. Child Neurol. Open. 2018;5:X18767738. PubMed PMC
Freibauer A., Jones K. KCNQ2 mutation in an infant with encephalopathy of infancy with migrating focal seizures. Epileptic Disord. 2018;20:541–544. PubMed
Freilich E.R., Jones J.M., Gaillard W.D., Conry J.A., Tsuchida T.N., Reyes C., Dib-Hajj S., Waxman S.G., Meisler M.H., Pearl P.L. Novel SCN1A mutation in a proband with malignant migrating partial seizures of infancy. Arch. Neurol. 2011;68:665–671. PubMed PMC
Gorman K.M., Forman E., Conroy J., Allen N.M., Shahwan A., Lynch S.A., Ennis S., King M.D. Novel SMC1A variant and epilepsy of infancy with migrating focal seizures: Expansion of the phenotype. Epilepsia. 2017;58:1301–1302. PubMed
Howell K.B., McMahon J.M., Carvill G.L., Tambunan D., Mackay M.T., Rodriguez-Casero V., Webster R., Clark D., Freeman J.L., Calvert S. SCN2A encephalopathy: A major cause of epilepsy of infancy with migrating focal seizures. Neurology. 2015;85:958–966. PubMed PMC
Komulainen-Ebrahim J., Schreiber J.M., Kangas S.M., Pylkäs K., Suo-Palosaari M., Rahikkala E., Liinamaa J., Immonen E.V., Hassinen I., Myllynen P. Novel variants and phenotypes widen the phenotypic spectrum of GABRG2-related disorders. Seizure. 2019;69:99–104. PubMed
Poduri A., Heinzen E.L., Chitsazzadeh V., Lasorsa F.M., Elhosary P.C., LaCoursiere C.M., Martin E., Yuskaitis C.J., Hill R.S., Atabay K.D. SLC25A22 is a novel gene for migrating partial seizures in infancy. Ann. Neurol. 2013;74:873–882. PubMed PMC
Rizzo F., Ambrosino P., Guacci A., Chetta M., Marchese G., Rocco T., Soldovieri M.V., Manocchio L., Mosca I., Casara G. Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. Mol. Cell. Neurosci. 2016;72:54–63. PubMed
Štěrbová K., Vlčková M., Klement P., Neupauerová J., Staněk D., Zůnová H., Seeman P., Laššuthová P. Neonatal Onset of Epilepsy of Infancy with Migrating Focal Seizures Associated with a Novel GABRB3 Variant in Monozygotic Twins. Neuropediatrics. 2018;49:204–208. PubMed
Stödberg T., McTague A., Ruiz A.J., Hirata H., Zhen J., Long P., Farabella I., Meyer E., Kawahara A., Vassallo G. Mutations in SLC12A5 in epilepsy of infancy with migrating focal seizures. Nat. Commun. 2015;6:8038. PubMed PMC
Su D.J., Lu J.F., Lin L.J., Liang J.S., Hung K.L. SCN2A mutation in an infant presenting with migrating focal seizures and infantile spasm responsive to a ketogenic diet. Brain Dev. 2018;40:724–727. PubMed
Higuchi M., Maas S., Single F.N., Hartner J., Rozov A., Burnashev N., Feldmeyer D., Sprengel R., Seeburg P.H. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature. 2000;406:78–81. PubMed
Jia Z., Agopyan N., Miu P., Xiong Z., Henderson J., Gerlai R., Taverna F.A., Velumian A., MacDonald J., Carlen P. Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron. 1996;17:945–956. PubMed
Brusa R., Zimmermann F., Koh D.-S., Feldmeyer D., Gass P., Seeburg P.H., Sprengel R. Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science. 1995;270:1677–1680. PubMed
Garncarz W., Tariq A., Handl C., Pusch O., Jantsch M.F. A high-throughput screen to identify enhancers of ADAR-mediated RNA-editing. RNA Biol. 2013;10:192–204. PubMed PMC
Tariq A., Garncarz W., Handl C., Balik A., Pusch O., Jantsch M.F. RNA-interacting proteins act as site-specific repressors of ADAR2-mediated RNA editing and fluctuate upon neuronal stimulation. Nucleic Acids Res. 2013;41:2581–2593. PubMed PMC
Bratt E., Ohman M. Coordination of editing and splicing of glutamate receptor pre-mRNA. RNA. 2003;9:309–318. PubMed PMC
Quinones-Valdez G., Tran S.S., Jun H.I., Bahn J.H., Yang E.W., Zhan L., Brümmer A., Wei X., Van Nostrand E.L., Pratt G.A. Regulation of RNA editing by RNA-binding proteins in human cells. Commun Biol. 2019;2:19. PubMed PMC
Bhogal B., Jepson J.E., Savva Y.A., Pepper A.S., Reenan R.A., Jongens T.A. Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein. Nat. Neurosci. 2011;14:1517–1524. PubMed PMC
Filippini A., Bonini D., Lacoux C., Pacini L., Zingariello M., Sancillo L., Bosisio D., Salvi V., Mingardi J., La Via L. Absence of the Fragile X Mental Retardation Protein results in defects of RNA editing of neuronal mRNAs in mouse. RNA Biol. 2017;14:1580–1591. PubMed PMC
Marcucci R., Brindle J., Paro S., Casadio A., Hempel S., Morrice N., Bisso A., Keegan L.P., Del Sal G., O’Connell M.A. Pin1 and WWP2 regulate GluR2 Q/R site RNA editing by ADAR2 with opposing effects. EMBO J. 2011;30:4211–4222. PubMed PMC
Qi L., Song Y., Chan T.H.M., Yang H., Lin C.H., Tay D.J.T., Hong H., Tang S.J., Tan K.T., Huang X.X. An RNA editing/dsRNA binding-independent gene regulatory mechanism of ADARs and its clinical implication in cancer. Nucleic Acids Res. 2017;45:10436–10451. PubMed PMC
Shamay-Ramot A., Khermesh K., Porath H.T., Barak M., Pinto Y., Wachtel C., Zilberberg A., Lerer-Goldshtein T., Efroni S., Levanon E.Y., Appelbaum L. Fmrp Interacts with Adar and Regulates RNA Editing, Synaptic Density and Locomotor Activity in Zebrafish. PLoS Genet. 2015;11:e1005702. PubMed PMC
Shelton P.M., Duran A., Nakanishi Y., Reina-Campos M., Kasashima H., Llado V., Ma L., Campos A., García-Olmo D., García-Arranz M. The Secretion of miR-200s by a PKCζ/ADAR2 Signaling Axis Promotes Liver Metastasis in Colorectal Cancer. Cell Rep. 2018;23:1178–1191. PubMed PMC
Macbeth M.R., Schubert H.L., Vandemark A.P., Lingam A.T., Hill C.P., Bass B.L. Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science. 2005;309:1534–1539. PubMed PMC
Sorek R., Lev-Maor G., Reznik M., Dagan T., Belinky F., Graur D., Ast G. Minimal conditions for exonization of intronic sequences: 5′ splice site formation in alu exons. Mol. Cell. 2004;14:221–231. PubMed
Dichmann D.S., Walentek P., Harland R.M. The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform. Cell Rep. 2015;10:527–536. PubMed PMC
Storbeck M., Hupperich K., Gaspar J.A., Meganathan K., Martínez Carrera L., Wirth R., Sachinidis A., Wirth B. Neuronal-specific deficiency of the splicing factor Tra2b causes apoptosis in neurogenic areas of the developing mouse brain. PLoS ONE. 2014;9:e89020. PubMed PMC
Newell N.E. Cascade detection for the extraction of localized sequence features; specificity results for HIV-1 protease and structure-function results for the Schellman loop. Bioinformatics. 2011;27:3415–3422. PubMed
Adenosine Deaminase Acting on RNA (ADAR) Enzymes: A Journey from Weird to Wondrous
ADAR2 enzymes: efficient site-specific RNA editors with gene therapy aspirations