Dynamic landscape and regulation of RNA editing in mammals
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 CA175058
NCI NIH HHS - United States
R01 GM040536
NIGMS NIH HHS - United States
U01 HG007610
NHGRI NIH HHS - United States
R01 MH101782
NIMH NIH HHS - United States
R01 MH101810
NIMH NIH HHS - United States
R01 DA033684
NIDA NIH HHS - United States
U01 HG007593
NHGRI NIH HHS - United States
MC_PC_U127584490
Medical Research Council - United Kingdom
P30 DK098722
NIDDK NIH HHS - United States
R01 MH090951
NIMH NIH HHS - United States
R01 MH101822
NIMH NIH HHS - United States
R01 MH090937
NIMH NIH HHS - United States
MC_U127584490
Medical Research Council - United Kingdom
R01 DK101064
NIDDK NIH HHS - United States
R01 GM124215
NIGMS NIH HHS - United States
R01 DA006227
NIDA NIH HHS - United States
U41 HG002371
NHGRI NIH HHS - United States
R01 MH101819
NIMH NIH HHS - United States
P30 CA010815
NCI NIH HHS - United States
R01 MH090936
NIMH NIH HHS - United States
P01 AG036695
NIA NIH HHS - United States
R01 AI012520
NIAID NIH HHS - United States
HHSN261200800001C
NCI NIH HHS - United States
T32 HG000044
NHGRI NIH HHS - United States
R01 GM102484
NIGMS NIH HHS - United States
R01 DK094641
NIDDK NIH HHS - United States
R01 HG007178
NHGRI NIH HHS - United States
R01 MH101820
NIMH NIH HHS - United States
R01 MH101825
NIMH NIH HHS - United States
R01 MH090948
NIMH NIH HHS - United States
R01 MH090941
NIMH NIH HHS - United States
U54 HG007990
NHGRI NIH HHS - United States
Wellcome Trust - United Kingdom
HHSN268201000029C
NHLBI NIH HHS - United States
HHSN261200800001E
NCI NIH HHS - United States
R01 MH101814
NIMH NIH HHS - United States
PubMed
29022589
PubMed Central
PMC5723435
DOI
10.1038/nature24041
PII: nature24041
Knihovny.cz E-zdroje
- MeSH
- adenosindeaminasa * genetika metabolismus MeSH
- časoprostorová analýza MeSH
- druhová specificita MeSH
- editace RNA genetika MeSH
- genotyp MeSH
- HEK293 buňky MeSH
- jaderné proteiny metabolismus MeSH
- lidé MeSH
- myši MeSH
- orgánová specificita genetika MeSH
- primáti genetika MeSH
- proteiny vázající RNA * genetika metabolismus MeSH
- proteolýza MeSH
- svaly metabolismus MeSH
- transkriptom genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- ADAR protein, human MeSH Prohlížeč
- ADAR1 protein, mouse MeSH Prohlížeč
- ADAR2 protein, mouse MeSH Prohlížeč
- ADARB1 protein, human MeSH Prohlížeč
- adenosindeaminasa * MeSH
- AIMP2 protein, human MeSH Prohlížeč
- jaderné proteiny MeSH
- proteiny vázající RNA * MeSH
Adenosine-to-inosine (A-to-I) RNA editing is a conserved post-transcriptional mechanism mediated by ADAR enzymes that diversifies the transcriptome by altering selected nucleotides in RNA molecules. Although many editing sites have recently been discovered, the extent to which most sites are edited and how the editing is regulated in different biological contexts are not fully understood. Here we report dynamic spatiotemporal patterns and new regulators of RNA editing, discovered through an extensive profiling of A-to-I RNA editing in 8,551 human samples (representing 53 body sites from 552 individuals) from the Genotype-Tissue Expression (GTEx) project and in hundreds of other primate and mouse samples. We show that editing levels in non-repetitive coding regions vary more between tissues than editing levels in repetitive regions. Globally, ADAR1 is the primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding sites, whereas the catalytically inactive ADAR3 predominantly acts as an inhibitor of editing. Cross-species analysis of RNA editing in several tissues revealed that species, rather than tissue type, is the primary determinant of editing levels, suggesting stronger cis-directed regulation of RNA editing for most sites, although the small set of conserved coding sites is under stronger trans-regulation. In addition, we curated an extensive set of ADAR1 and ADAR2 targets and showed that many editing sites display distinct tissue-specific regulation by the ADAR enzymes in vivo. Further analysis of the GTEx data revealed several potential regulators of editing, such as AIMP2, which reduces editing in muscles by enhancing the degradation of the ADAR proteins. Collectively, our work provides insights into the complex cis- and trans-regulation of A-to-I editing.
Central European Institute of Technology Masaryk University Kamenice Brno 625 00 Czech Republic
Department of Anesthesia Stanford University School of Medicine Stanford California 94305 USA
Department of Genetics Stanford University School of Medicine Stanford California 94305 USA
Department of Genetics Washington University School of Medicine St Louis Missouri 63108 USA
Department of Medicine St Vincent's Hospital University of Melbourne Fitzroy Victoria 3065 Australia
Genome Institute of Singapore Agency for Science Technology and Research Singapore 138672 Singapore
St Vincent's Institute of Medical Research Fitzroy Victoria 3065 Australia
Zobrazit více v PubMed
Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321–349. PubMed PMC
Bahn JH, et al. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res. 2012;22:142–150. PubMed PMC
Danecek P, et al. High levels of RNA-editing site conservation amongst 15 laboratory mouse strains. Genome Biol. 2012;13:R26. PubMed PMC
Li JB, et al. Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science. 2009;324:1210–1213. PubMed
Peng Z, et al. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol. 2012;30:253–260. PubMed
Ramaswami G, et al. Accurate identification of human Alu and non-Alu RNA editing sites. Nat Methods. 2012;9:579–581. PubMed PMC
Ramaswami G, et al. Identifying RNA editing sites using RNA sequencing data alone. Nat Methods. 2013;10:128–132. PubMed PMC
Behm M, Öhman M. RNA editing: a contributor to neuronal dynamics in the mammalian brain. Trends Genet. 2016;32:165–175. PubMed
Rosenthal JJC, Seeburg PH. A-to-I RNA editing: effects on proteins key to neural excitability. Neuron. 2012;74:432–439. PubMed PMC
Li JB, Church GM. Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nat Neurosci. 2013;16:1518–1522. PubMed PMC
Ramaswami G, Li JB. RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res. 2014;42:D109–D113. PubMed PMC
Ramaswami G, Li JB. Identification of human RNA editing sites: A historical perspective. Methods. 2016;107:42–47. PubMed PMC
Wahlstedt H, Daniel C, Ensterö M, Öhman M. Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Res. 2009;19:978–986. PubMed PMC
Stulić M, Jantsch MF. Spatio-temporal profiling of Filamin A RNA-editing reveals ADAR preferences and high editing levels outside neuronal tissues. RNA Biol. 2013;10:1611–1617. PubMed PMC
Zhang Q, Xiao X. Genome sequence-independent identification of RNA editing sites. Nat Methods. 2015;12:347–350. PubMed PMC
Picardi E, et al. Profiling RNA editing in human tissues: towards the inosinome Atlas. Sci Rep. 2015;5:14941. PubMed PMC
Hwang T, et al. Dynamic regulation of RNA editing in human brain development and disease. Nat Neurosci. 2016;19:1093–1099. PubMed
Stellos K, et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat Med. 2016;22:1140–1150. PubMed
Zhang R, et al. Quantifying RNA allelic ratios by microfluidic multiplex PCR and sequencing. Nat Methods. 2014;11:51–54. PubMed PMC
Oakes E, Anderson A, Cohen-Gadol A, Hundley HA. Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit b pre-mRNA inhibits RNA editing in glioblastoma. J Biol Chem. 2017;292:4326–4335. PubMed PMC
Liddicoat BJ, et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science. 2015;349:1115–1120. PubMed PMC
Daniel C, Silberberg G, Behm M, Öhman M. Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol. 2014;15:R28. PubMed PMC
Pinto Y, Cohen HY, Levanon EY. Mammalian conserved ADAR targets comprise only a small fragment of the human editosome. Genome Biol. 2014;15:R5. PubMed PMC
Sapiro AL, Deng P, Zhang R, Li JB. Cis regulatory effects on A-to-I RNA editing in related Drosophila species. Cell Reports. 2015;11:697–703. PubMed PMC
Ramaswami G, et al. Genetic mapping uncovers cis-regulatory landscape of RNA editing. Nat Commun. 2015;6:8194. PubMed PMC
Barbosa-Morais NL, et al. The evolutionary landscape of alternative splicing in vertebrate species. Science. 2012;338:1587–1593. PubMed
Merkin J, Russell C, Chen P, Burge CB. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science. 2012;338:1593–1599. PubMed PMC
Bhogal B, et al. Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein. Nat Neurosci. 2011;14:1517–1524. PubMed PMC
Marcucci R, et al. Pin1 and WWP2 regulate GluR2 Q/R site RNA editing by ADAR2 with opposing effects. EMBO J. 2011;30:4211–4222. PubMed PMC
Kim MJ, et al. Downregulation of FUSE-binding protein and c-myc by tRNA synthetase cofactor p38 is required for lung cell differentiation. Nat Genet. 2003;34:330–336. PubMed
Hsieh CL, et al. ADAR1 deaminase contributes to scheduled skeletal myogenesis progression via stage-specific functions. Cell Death Differ. 2014;21:707–719. PubMed PMC
Tariq A, et al. RNA-interacting proteins act as site-specific repressors of ADAR2-mediated RNA editing and fluctuate upon neuronal stimulation. Nucleic Acids Res. 2013;41:2581–2593. PubMed PMC
Garncarz W, Tariq A, Handl C, Pusch O, Jantsch MF. A high-throughput screen to identify enhancers of ADAR-mediated RNA-editing. RNA Biol. 2013;10:192–204. PubMed PMC
Pipes L, et al. The non-human primate reference transcriptome resource (NHPRTR) for comparative functional genomics. Nucleic Acids Res. 2013;41:D906–D914. PubMed PMC
Hartner JC, et al. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J Biol Chem. 2004;279:4894–4902. PubMed
Wang Q, Khillan J, Gadue P, Nishikura K. Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science. 2000;290:1765–1768. PubMed
Higuchi M, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature. 2000;406:78–81. PubMed
Tan MH, et al. RNA sequencing reveals a diverse and dynamic repertoire of the Xenopus tropicalis transcriptome over development. Genome Res. 2013;23:201–216. PubMed PMC
Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26:589–595. PubMed PMC
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
McKenna A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303. PubMed PMC
Keane TM, et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature. 2011;477:289–294. PubMed PMC
Yalcin B, et al. Sequence-based characterization of structural variation in the mouse genome. Nature. 2011;477:326–329. PubMed PMC
Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002;12:656–664. PubMed PMC
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. PubMed PMC
Trapnell C, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–515. PubMed PMC
Kim D, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. PubMed PMC
Stekhoven DJ, Bühlmann P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28:112–118. PubMed
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. PubMed PMC
Kadota K, Ye J, Nakai Y, Terada T, Shimizu K. ROKU: a novel method for identification of tissue-specific genes. BMC Bioinformatics. 2006;7:294. PubMed PMC
Lorenz R, et al. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011;6:26. PubMed PMC
Reyes A, et al. Drift and conservation of differential exon usage across tissues in primate species. Proc Natl Acad Sci USA. 2013;110:15377–15382. PubMed PMC
Sato K, Kato Y, Hamada M, Akutsu T, Asai K. IPknot: fast and accurate prediction of RNA secondary structures with pseudoknots using integer programming. Bioinformatics. 2011;27:i85–i93. PubMed PMC
Alexa A, Rahnenführer J, Lengauer T. Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics. 2006;22:1600–1607. PubMed
Adenosine Deaminase Acting on RNA (ADAR) Enzymes: A Journey from Weird to Wondrous
ADAR2 enzymes: efficient site-specific RNA editors with gene therapy aspirations
Interplays of different types of epitranscriptomic mRNA modifications
Bi-allelic ADARB1 Variants Associated with Microcephaly, Intellectual Disability, and Seizures