Comparative Structure-Based Virtual Screening Utilizing Optimized AlphaFold Model Identifies Selective HDAC11 Inhibitor
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
469954457, 471614207
Deutsche Forschungsgemeinschaft
PubMed
38279359
PubMed Central
PMC10816272
DOI
10.3390/ijms25021358
PII: ijms25021358
Knihovny.cz E-zdroje
- Klíčová slova
- AlphaFold, HDAC11, docking, in vitro assay, modelling, molecular dynamics simulation, pharmacophore, virtual screening,
- MeSH
- chemické modely * MeSH
- inhibitory histondeacetylas farmakologie chemie MeSH
- katalytická doména MeSH
- racionální návrh léčiv MeSH
- simulace molekulární dynamiky * MeSH
- simulace molekulového dockingu MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inhibitory histondeacetylas MeSH
HDAC11 is a class IV histone deacylase with no crystal structure reported so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes conventional homology modeling less reliable. AlphaFold is a machine learning approach that can predict the 3D structure of proteins with high accuracy even in absence of similar structures. However, the fact that AlphaFold models are predicted in the absence of small molecules and ions/cofactors complicates their utilization for drug design. Previously, we optimized an HDAC11 AlphaFold model by adding the catalytic zinc ion and minimization in the presence of reported HDAC11 inhibitors. In the current study, we implement a comparative structure-based virtual screening approach utilizing the previously optimized HDAC11 AlphaFold model to identify novel and selective HDAC11 inhibitors. The stepwise virtual screening approach was successful in identifying a hit that was subsequently tested using an in vitro enzymatic assay. The hit compound showed an IC50 value of 3.5 µM for HDAC11 and could selectively inhibit HDAC11 over other HDAC subtypes at 10 µM concentration. In addition, we carried out molecular dynamics simulations to further confirm the binding hypothesis obtained by the docking study. These results reinforce the previously presented AlphaFold optimization approach and confirm the applicability of AlphaFold models in the search for novel inhibitors for drug discovery.
Zobrazit více v PubMed
Lombardi P.M., Cole K.E., Dowling D.P., Christianson D.W. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr. Opin. Struct. Biol. 2011;21:735–743. doi: 10.1016/j.sbi.2011.08.004. PubMed DOI PMC
Marek M., Shaik T.B., Romier C. Epigenetic Drug Discovery. VCH-Wiley; Weinheim, Germany: 2019. Structural Biology of Epigenetic Targets: Exploiting Complexity; pp. 11–44. Methods and Principles in Medicinal Chemistry.
Liu S.-S., Wu F., Jin Y.-M., Chang W.-Q., Xu T.-M. HDAC11: A rising star in epigenetics. Biomed. Pharmacother. 2020;131:110607. doi: 10.1016/j.biopha.2020.110607. PubMed DOI
Gao L., Cueto M.A., Asselbergs F., Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. 2002;277:25748–25755. doi: 10.1074/jbc.M111871200. PubMed DOI
Boltz T.A., Khuri S., Wuchty S. Promoter conservation in HDACs points to functional implications. BMC Genom. 2019;20:613. doi: 10.1186/s12864-019-5973-x. PubMed DOI PMC
Yanginlar C., Logie C. HDAC11 is a regulator of diverse immune functions. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 2018;1861:54–59. doi: 10.1016/j.bbagrm.2017.12.002. PubMed DOI
Villagra A., Cheng F., Wang H.W., Suarez I., Glozak M., Maurin M., Nguyen D., Wright K.L., Atadja P.W., Bhalla K., et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat. Immunol. 2009;10:92–100. doi: 10.1038/ni.1673. PubMed DOI PMC
Glozak M.A., Seto E. Acetylation/deacetylation modulates the stability of DNA replication licensing factor Cdt1. J. Biol. Chem. 2009;284:11446–11453. doi: 10.1074/jbc.M809394200. PubMed DOI PMC
Cao J., Sun L., Aramsangtienchai P., Spiegelman N.A., Zhang X., Huang W., Seto E., Lin H. HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proc. Natl. Acad. Sci. USA. 2019;116:5487–5492. doi: 10.1073/pnas.1815365116. PubMed DOI PMC
Bagchi R.A., Ferguson B.S., Stratton M.S., Hu T., Cavasin M.A., Sun L., Lin Y.H., Liu D., Londono P., Song K., et al. HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI Insight. 2018;3:e120159. doi: 10.1172/jci.insight.120159. PubMed DOI PMC
Sun L., Marin de Evsikova C., Bian K., Achille A., Telles E., Pei H., Seto E. Programming and Regulation of Metabolic Homeostasis by HDAC11. eBioMedicine. 2018;33:157–168. doi: 10.1016/j.ebiom.2018.06.025. PubMed DOI PMC
Fei Q., Song F., Jiang X., Hong H., Xu X., Jin Z., Zhu X., Dai B., Yang J., Sui C., et al. LncRNA ST8SIA6-AS1 promotes hepatocellular carcinoma cell proliferation and resistance to apoptosis by targeting miR-4656/HDAC11 axis. Cancer Cell Int. 2020;20:232. doi: 10.1186/s12935-020-01325-5. PubMed DOI PMC
Freese K., Seitz T., Dietrich P., Lee S.M.L., Thasler W.E., Bosserhoff A., Hellerbrand C. Histone Deacetylase Expressions in Hepatocellular Carcinoma and Functional Effects of Histone Deacetylase Inhibitors on Liver Cancer Cells In Vitro. Cancers. 2019;11:1587. doi: 10.3390/cancers11101587. PubMed DOI PMC
Gong D., Zeng Z., Yi F., Wu J. Inhibition of histone deacetylase 11 promotes human liver cancer cell apoptosis. Am. J. Transl. Res. 2019;11:983–990. PubMed PMC
Huo W., Qi F., Wang K. Long non-coding RNA BCYRN1 promotes prostate cancer progression via elevation of HDAC11. Oncol. Rep. 2020;44:1233–1245. doi: 10.3892/or.2020.7680. PubMed DOI
Wang W., Ding B., Lou W., Lin S. Promoter Hypomethylation and miR-145-5p Downregulation-Mediated HDAC11 Overexpression Promotes Sorafenib Resistance and Metastasis of Hepatocellular Carcinoma Cells. Front. Cell Dev. Biol. 2020;8:724. doi: 10.3389/fcell.2020.00724. PubMed DOI PMC
Wang W., Fu L., Li S., Xu Z., Li X. Histone deacetylase 11 suppresses p53 expression in pituitary tumor cells. Cell Biol. Int. 2017;41:1290–1295. doi: 10.1002/cbin.10834. PubMed DOI
Mithraprabhu S., Kalff A., Chow A., Khong T., Spencer A. Dysregulated Class I histone deacetylases are indicators of poor prognosis in multiple myeloma. Epigenetics. 2014;9:1511–1520. doi: 10.4161/15592294.2014.983367. PubMed DOI PMC
Yue L., Sharma V., Horvat N.P., Akuffo A.A., Beatty M.S., Murdun C., Colin C., Billington J.M.R., Goodheart W.E., Sahakian E., et al. HDAC11 deficiency disrupts oncogene-induced hematopoiesis in myeloproliferative neoplasms. Blood. 2020;135:191–207. doi: 10.1182/blood.2019895326. PubMed DOI PMC
Thole T.M., Lodrini M., Fabian J., Wuenschel J., Pfeil S., Hielscher T., Kopp-Schneider A., Heinicke U., Fulda S., Witt O., et al. Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival. Cell Death Dis. 2017;8:e2635. doi: 10.1038/cddis.2017.49. PubMed DOI PMC
Kutil Z., Mikešová J., Zessin M., Meleshin M., Nováková Z., Alquicer G., Kozikowski A., Sippl W., Bařinka C., Schutkowski M. Continuous Activity Assay for HDAC11 Enabling Reevaluation of HDAC Inhibitors. ACS Omega. 2019;4:19895–19904. doi: 10.1021/acsomega.9b02808. PubMed DOI PMC
Kutil Z., Novakova Z., Meleshin M., Mikesova J., Schutkowski M., Barinka C. Histone Deacetylase 11 Is a Fatty-Acid Deacylase. ACS Chem. Biol. 2018;13:685–693. doi: 10.1021/acschembio.7b00942. PubMed DOI
Moreno-Yruela C., Galleano I., Madsen A.S., Olsen C.A. Histone Deacetylase 11 Is an ε-N-Myristoyllysine Hydrolase. Cell Chem. Biol. 2018;25:849–856.e8. doi: 10.1016/j.chembiol.2018.04.007. PubMed DOI
Martin M.W., Lee J.Y., Lancia D.R., Ng P.Y., Han B., Thomason J.R., Lynes M.S., Marshall C.G., Conti C., Collis A., et al. Discovery of novel N-hydroxy-2-arylisoindoline-4-carboxamides as potent and selective inhibitors of HDAC11. Bioorg. Med. Chem. Lett. 2018;28:2143–2147. doi: 10.1016/j.bmcl.2018.05.021. PubMed DOI
Dallavalle S., Musso L., Cincinelli R., Darwiche N., Gervasoni S., Vistoli G., Guglielmi M.B., La Porta I., Pizzulo M., Modica E., et al. Antitumor activity of novel POLA1-HDAC11 dual inhibitors. Eur. J. Med. Chem. 2022;228:113971. doi: 10.1016/j.ejmech.2021.113971. PubMed DOI
Bai P., Liu Y., Yang L., Ding W., Mondal P., Sang N., Liu G., Lu X., Ho T.T., Zhou Y., et al. Development and Pharmacochemical Characterization Discover a Novel Brain-Permeable HDAC11-Selective Inhibitor with Therapeutic Potential by Regulating Neuroinflammation in Mice. J. Med. Chem. 2023;66:16075–16090. doi: 10.1021/acs.jmedchem.3c01491. PubMed DOI
Bora-Singhal N., Mohankumar D., Saha B., Colin C.M., Lee J.Y., Martin M.W., Zheng X., Coppola D., Chellappan S. Novel HDAC11 inhibitors suppress lung adenocarcinoma stem cell self-renewal and overcome drug resistance by suppressing Sox2. Sci. Rep. 2020;10:4722. doi: 10.1038/s41598-020-61295-6. PubMed DOI PMC
Son S.I., Cao J., Zhu C.L., Miller S.P., Lin H. Activity-Guided Design of HDAC11-Specific Inhibitors. ACS Chem. Biol. 2019;14:1393–1397. doi: 10.1021/acschembio.9b00292. PubMed DOI PMC
Sun P., Wang J., Khan K.S., Yang W., Ng B.W., Ilment N., Zessin M., Bülbül E.F., Robaa D., Erdmann F., et al. Development of Alkylated Hydrazides as Highly Potent and Selective Class I Histone Deacetylase Inhibitors with T cell Modulatory Properties. J. Med. Chem. 2022;65:16313–16337. doi: 10.1021/acs.jmedchem.2c01132. PubMed DOI
Pulya S., Himaja A., Paul M., Adhikari N., Banerjee S., Routholla G., Biswas S., Jha T., Ghosh B. Selective HDAC3 Inhibitors with Potent In Vivo Antitumor Efficacy against Triple-Negative Breast Cancer. J. Med. Chem. 2023;66:12033–12058. doi: 10.1021/acs.jmedchem.3c00614. PubMed DOI
Ho T.T., Peng C., Seto E., Lin H. Trapoxin A Analogue as a Selective Nanomolar Inhibitor of HDAC11. ACS Chem. Biol. 2023;18:803–809. doi: 10.1021/acschembio.2c00840. PubMed DOI PMC
Baselious F., Robaa D., Sippl W. Utilization of AlphaFold models for drug discovery: Feasibility and challenges. Histone deacetylase 11 as a case study. Comput. Biol. Med. 2023;167:107700. doi: 10.1016/j.compbiomed.2023.107700. PubMed DOI
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
David A., Islam S., Tankhilevich E., Sternberg M.J.E. The AlphaFold Database of Protein Structures: A Biologist’s Guide. J. Mol. Biol. 2022;434:167336. doi: 10.1016/j.jmb.2021.167336. PubMed DOI PMC
Ren F., Ding X., Zheng M., Korzinkin M., Cai X., Zhu W., Mantsyzov A., Aliper A., Aladinskiy V., Cao Z., et al. AlphaFold accelerates artificial intelligence powered drug discovery: Efficient discovery of a novel CDK20 small molecule inhibitor. Chem. Sci. 2023;14:1443–1452. doi: 10.1039/D2SC05709C. PubMed DOI PMC
Zhu W., Liu X., Li Q., Gao F., Liu T., Chen X., Zhang M., Aliper A., Ren F., Ding X., et al. Discovery of novel and selective SIK2 inhibitors by the application of AlphaFold structures and generative models. Bioorg. Med. Chem. 2023;91:117414. doi: 10.1016/j.bmc.2023.117414. PubMed DOI
Holcomb M., Chang Y.T., Goodsell D.S., Forli S. Evaluation of AlphaFold2 structures as docking targets. Protein Sci. 2023;32:e4530. doi: 10.1002/pro.4530. PubMed DOI PMC
He X.-H., You C.-Z., Jiang H.-L., Jiang Y., Xu H.E., Cheng X. AlphaFold2 versus experimental structures: Evaluation on G protein-coupled receptors. Acta Pharmacol. Sin. 2023;44:1–7. doi: 10.1038/s41401-022-00938-y. PubMed DOI PMC
Lee S., Kim S., Lee G.R., Kwon S., Woo H., Seok C., Park H. Evaluating GPCR modeling and docking strategies in the era of deep learning-based protein structure prediction. Comput. Struct. Biotechnol. J. 2023;21:158–167. doi: 10.1016/j.csbj.2022.11.057. PubMed DOI PMC
Heo L., Feig M. Multi-state modeling of G-protein coupled receptors at experimental accuracy. Proteins. 2022;90:1873–1885. doi: 10.1002/prot.26382. PubMed DOI PMC
Karelina M., Noh J.J., Dror R.O. How accurately can one predict drug binding modes using AlphaFold models? eLife. 2023;12:RP89386. doi: 10.7554/eLife.89386.2. PubMed DOI PMC
Díaz-Rovira A.M., Martín H., Beuming T., Díaz L., Guallar V., Ray S.S. Are Deep Learning Structural Models Sufficiently Accurate for Virtual Screening? Application of Docking Algorithms to AlphaFold2 Predicted Structures. J. Chem. Inf. Model. 2023;63:1668–1674. doi: 10.1021/acs.jcim.2c01270. PubMed DOI
Scardino V., Di Filippo J.I., Cavasotto C.N. How good are AlphaFold models for docking-based virtual screening? iScience. 2023;26:105920. doi: 10.1016/j.isci.2022.105920. PubMed DOI PMC
Zhang Y., Vass M., Shi D., Abualrous E., Chambers J.M., Chopra N., Higgs C., Kasavajhala K., Li H., Nandekar P., et al. Benchmarking Refined and Unrefined AlphaFold2 Structures for Hit Discovery. J. Chem. Inf. Model. 2023;63:1656–1667. doi: 10.1021/acs.jcim.2c01219. PubMed DOI
Melesina J., Simoben C.V., Praetorius L., Bülbül E.F., Robaa D., Sippl W. Strategies To Design Selective Histone Deacetylase Inhibitors. ChemMedChem. 2021;16:1336–1359. doi: 10.1002/cmdc.202000934. PubMed DOI
Zhang L., Zhang J., Jiang Q., Zhang L., Song W. Zinc binding groups for histone deacetylase inhibitors. J. Enzym. Inhib. Med. Chem. 2018;33:714–721. doi: 10.1080/14756366.2017.1417274. PubMed DOI PMC
De Vreese R., D’Hooghe M. Synthesis and applications of benzohydroxamic acid-based histone deacetylase inhibitors. Eur. J. Med. Chem. 2017;135:174–195. doi: 10.1016/j.ejmech.2017.04.013. PubMed DOI
Hu Z., Wei F., Su Y., Wang Y., Shen Y., Fang Y., Ding J., Chen Y. Histone deacetylase inhibitors promote breast cancer metastasis by elevating NEDD9 expression. Signal Transduct. Target. Ther. 2023;8:11. doi: 10.1038/s41392-022-01221-6. PubMed DOI PMC
Irwin J.J., Tang K.G., Young J., Dandarchuluun C., Wong B.R., Khurelbaatar M., Moroz Y.S., Mayfield J., Sayle R.A. ZINC20—A Free Ultralarge-Scale Chemical Database for Ligand Discovery. J. Chem. Inf. Model. 2020;60:6065–6073. doi: 10.1021/acs.jcim.0c00675. PubMed DOI PMC
Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI
Kumari S., Chakraborty S., Ahmad M., Kumar V., Tailor P.B., Biswal B.K. Identification of probable inhibitors for the DNA polymerase of the Monkeypox virus through the virtual screening approach. Int. J. Biol. Macromol. 2023;229:515–528. doi: 10.1016/j.ijbiomac.2022.12.252. PubMed DOI PMC
Walters W.P., Stahl M.T., Murcko M.A. Virtual screening—An overview. Drug Discov. Today. 1998;3:160–178. doi: 10.1016/S1359-6446(97)01163-X. DOI
Walters W.P., Namchuk M. Designing screens: How to make your hits a hit. Nat. Rev. Drug Discov. 2003;2:259–266. doi: 10.1038/nrd1063. PubMed DOI
Dan A., Shiyama T., Yamazaki K., Kusunose N., Fujita K., Sato H., Matsui K., Kitano M. Discovery of hydroxamic acid analogs as dual inhibitors of phosphodiesterase-1 and -5. Bioorg. Med. Chem. Lett. 2005;15:4085–4090. doi: 10.1016/j.bmcl.2005.06.016. PubMed DOI
Heimburg T., Kolbinger F.R., Zeyen P., Ghazy E., Herp D., Schmidtkunz K., Melesina J., Shaik T.B., Erdmann F., Schmidt M., et al. Structure-Based Design and Biological Characterization of Selective Histone Deacetylase 8 (HDAC8) Inhibitors with Anti-Neuroblastoma Activity. J. Med. Chem. 2017;60:10188–10204. doi: 10.1021/acs.jmedchem.7b01447. PubMed DOI
Marek M., Ramos-Morales E., Picchi-Constante G.F.A., Bayer T., Norström C., Herp D., Sales-Junior P.A., Guerra-Slompo E.P., Hausmann K., Chakrabarti A., et al. Species-selective targeting of pathogens revealed by the atypical structure and active site of Trypanosoma cruzi histone deacetylase DAC2. Cell Rep. 2021;37:110129. doi: 10.1016/j.celrep.2021.110129. PubMed DOI
Barducci A., Bonomi M., Parrinello M. Metadynamics. WIREs Comput. Mol. Sci. 2011;1:826–843. doi: 10.1002/wcms.31. DOI
Fusani L., Palmer D.S., Somers D.O., Wall I.D. Exploring Ligand Stability in Protein Crystal Structures Using Binding Pose Metadynamics. J. Chem. Inf. Model. 2020;60:1528–1539. doi: 10.1021/acs.jcim.9b00843. PubMed DOI PMC
Clark A.J., Tiwary P., Borrelli K., Feng S., Miller E.B., Abel R., Friesner R.A., Berne B.J. Prediction of Protein–Ligand Binding Poses via a Combination of Induced Fit Docking and Metadynamics Simulations. J. Chem. Theory Comput. 2016;12:2990–2998. doi: 10.1021/acs.jctc.6b00201. PubMed DOI
Maestro Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.
Sastry G.M., Adzhigirey M., Day T., Annabhimoju R., Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013;27:221–234. doi: 10.1007/s10822-013-9644-8. PubMed DOI
Protein Preparation Wizard Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.
Jacobson M.P., Pincus D.L., Rapp C.S., Day T.J., Honig B., Shaw D.E., Friesner R.A. A hierarchical approach to all-atom protein loop prediction. Proteins. 2004;55:351–367. doi: 10.1002/prot.10613. PubMed DOI
Jacobson M.P., Friesner R.A., Xiang Z., Honig B. On the role of the crystal environment in determining protein side-chain conformations. J. Mol. Biol. 2002;320:597–608. doi: 10.1016/S0022-2836(02)00470-9. PubMed DOI
Prime Schrödinger Release 2019-1. Prime, Schrödinger, LLC; New York, NY, USA: 2019.
Greenwood J.R., Calkins D., Sullivan A.P., Shelley J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des. 2010;24:591–604. doi: 10.1007/s10822-010-9349-1. PubMed DOI
Shelley J.C., Cholleti A., Frye L.L., Greenwood J.R., Timlin M.R., Uchimaya M. Epik: A software program for pK(a) prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 2007;21:681–691. doi: 10.1007/s10822-007-9133-z. PubMed DOI
Epik Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.
Ghazy E., Heimburg T., Lancelot J., Zeyen P., Schmidtkunz K., Truhn A., Darwish S., Simoben C.V., Shaik T.B., Erdmann F., et al. Synthesis, structure-activity relationships, cocrystallization and cellular characterization of novel smHDAC8 inhibitors for the treatment of schistosomiasis. Eur. J. Med. Chem. 2021;225:113745. doi: 10.1016/j.ejmech.2021.113745. PubMed DOI
Ghazy E., Zeyen P., Herp D., Hügle M., Schmidtkunz K., Erdmann F., Robaa D., Schmidt M., Morales E.R., Romier C., et al. Design, synthesis, and biological evaluation of dual targeting inhibitors of histone deacetylase 6/8 and bromodomain BRPF1. Eur. J. Med. Chem. 2020;200:112338. doi: 10.1016/j.ejmech.2020.112338. PubMed DOI
Marek M., Shaik T.B., Heimburg T., Chakrabarti A., Lancelot J., Ramos-Morales E., Da Veiga C., Kalinin D., Melesina J., Robaa D., et al. Characterization of Histone Deacetylase 8 (HDAC8) Selective Inhibition Reveals Specific Active Site Structural and Functional Determinants. J. Med. Chem. 2018;61:10000–10016. doi: 10.1021/acs.jmedchem.8b01087. PubMed DOI
Vögerl K., Ong N., Senger J., Herp D., Schmidtkunz K., Marek M., Müller M., Bartel K., Shaik T.B., Porter N.J., et al. Synthesis and Biological Investigation of Phenothiazine-Based Benzhydroxamic Acids as Selective Histone Deacetylase 6 Inhibitors. J. Med. Chem. 2019;62:1138–1166. doi: 10.1021/acs.jmedchem.8b01090. PubMed DOI PMC
LigPrep Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.
Harder E., Damm W., Maple J., Wu C., Reboul M., Xiang J.Y., Wang L., Lupyan D., Dahlgren M.K., Knight J.L., et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016;12:281–296. doi: 10.1021/acs.jctc.5b00864. PubMed DOI
Shivakumar D., Williams J., Wu Y., Damm W., Shelley J., Sherman W. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J. Chem. Theory Comput. 2010;6:1509–1519. doi: 10.1021/ct900587b. PubMed DOI
Jorgensen W.L., Maxwell D.S., Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996;118:11225–11236. doi: 10.1021/ja9621760. DOI
Jorgensen W.L., Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988;110:1657–1666. doi: 10.1021/ja00214a001. PubMed DOI
QikProp Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.
Salam N.K., Nuti R., Sherman W. Novel method for generating structure-based pharmacophores using energetic analysis. J. Chem. Inf. Model. 2009;49:2356–2368. doi: 10.1021/ci900212v. PubMed DOI
Loving K., Salam N.K., Sherman W. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. J. Comput. Aided Mol. Des. 2009;23:541–554. doi: 10.1007/s10822-009-9268-1. PubMed DOI
Dixon S.L., Smondyrev A.M., Knoll E.H., Rao S.N., Shaw D.E., Friesner R.A. PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J. Comput. Aided Mol. Des. 2006;20:647–671. doi: 10.1007/s10822-006-9087-6. PubMed DOI
Dixon S.L., Smondyrev A.M., Rao S.N. PHASE: A Novel Approach to Pharmacophore Modeling and 3D Database Searching. Chem. Biol. Drug Des. 2006;67:370–372. doi: 10.1111/j.1747-0285.2006.00384.x. PubMed DOI
Phase Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.
Friesner R.A., Murphy R.B., Repasky M.P., Frye L.L., Greenwood J.R., Halgren T.A., Sanschagrin P.C., Mainz D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006;49:6177–6196. doi: 10.1021/jm051256o. PubMed DOI
Friesner R.A., Banks J.L., Murphy R.B., Halgren T.A., Klicic J.J., Mainz D.T., Repasky M.P., Knoll E.H., Shelley M., Perry J.K., et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430. PubMed DOI
Halgren T.A., Murphy R.B., Friesner R.A., Beard H.S., Frye L.L., Pollard W.T., Banks J.L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004;47:1750–1759. doi: 10.1021/jm030644s. PubMed DOI
Glide Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.
Duan J., Dixon S.L., Lowrie J.F., Sherman W. Analysis and comparison of 2D fingerprints: Insights into database screening performance using eight fingerprint methods. J. Mol. Graph. Model. 2010;29:157–170. doi: 10.1016/j.jmgm.2010.05.008. PubMed DOI
Sastry M., Lowrie J.F., Dixon S.L., Sherman W. Large-Scale Systematic Analysis of 2D Fingerprint Methods and Parameters to Improve Virtual Screening Enrichments. J. Chem. Inf. Model. 2010;50:771–784. doi: 10.1021/ci100062n. PubMed DOI
Canvas Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.
Bowers K.J., Chow D.E., Xu H., Dror R.O., Eastwood M.P., Gregersen B.A., Klepeis J.L., Kolossvary I., Moraes M.A., Sacerdoti F.D., et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters; Proceedings of the SC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing; Tampa, FL, USA. 11–17 November 2006; p. 43.
Desmond Schrödinger Release 2019-1. Schrödinger LLC; New York, NY, USA: 2019.
Zessin M., Kutil Z., Meleshin M., Nováková Z., Ghazy E., Kalbas D., Marek M., Romier C., Sippl W., Bařinka C., et al. One-Atom Substitution Enables Direct and Continuous Monitoring of Histone Deacylase Activity. Biochemistry. 2019;58:4777–4789. doi: 10.1021/acs.biochem.9b00786. PubMed DOI