Comparative Structure-Based Virtual Screening Utilizing Optimized AlphaFold Model Identifies Selective HDAC11 Inhibitor

. 2024 Jan 22 ; 25 (2) : . [epub] 20240122

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38279359

Grantová podpora
469954457, 471614207 Deutsche Forschungsgemeinschaft

HDAC11 is a class IV histone deacylase with no crystal structure reported so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes conventional homology modeling less reliable. AlphaFold is a machine learning approach that can predict the 3D structure of proteins with high accuracy even in absence of similar structures. However, the fact that AlphaFold models are predicted in the absence of small molecules and ions/cofactors complicates their utilization for drug design. Previously, we optimized an HDAC11 AlphaFold model by adding the catalytic zinc ion and minimization in the presence of reported HDAC11 inhibitors. In the current study, we implement a comparative structure-based virtual screening approach utilizing the previously optimized HDAC11 AlphaFold model to identify novel and selective HDAC11 inhibitors. The stepwise virtual screening approach was successful in identifying a hit that was subsequently tested using an in vitro enzymatic assay. The hit compound showed an IC50 value of 3.5 µM for HDAC11 and could selectively inhibit HDAC11 over other HDAC subtypes at 10 µM concentration. In addition, we carried out molecular dynamics simulations to further confirm the binding hypothesis obtained by the docking study. These results reinforce the previously presented AlphaFold optimization approach and confirm the applicability of AlphaFold models in the search for novel inhibitors for drug discovery.

Zobrazit více v PubMed

Lombardi P.M., Cole K.E., Dowling D.P., Christianson D.W. Structure, mechanism, and inhibition of histone deacetylases and related metalloenzymes. Curr. Opin. Struct. Biol. 2011;21:735–743. doi: 10.1016/j.sbi.2011.08.004. PubMed DOI PMC

Marek M., Shaik T.B., Romier C. Epigenetic Drug Discovery. VCH-Wiley; Weinheim, Germany: 2019. Structural Biology of Epigenetic Targets: Exploiting Complexity; pp. 11–44. Methods and Principles in Medicinal Chemistry.

Liu S.-S., Wu F., Jin Y.-M., Chang W.-Q., Xu T.-M. HDAC11: A rising star in epigenetics. Biomed. Pharmacother. 2020;131:110607. doi: 10.1016/j.biopha.2020.110607. PubMed DOI

Gao L., Cueto M.A., Asselbergs F., Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J. Biol. Chem. 2002;277:25748–25755. doi: 10.1074/jbc.M111871200. PubMed DOI

Boltz T.A., Khuri S., Wuchty S. Promoter conservation in HDACs points to functional implications. BMC Genom. 2019;20:613. doi: 10.1186/s12864-019-5973-x. PubMed DOI PMC

Yanginlar C., Logie C. HDAC11 is a regulator of diverse immune functions. Biochim. Biophys. Acta (BBA)-Gene Regul. Mech. 2018;1861:54–59. doi: 10.1016/j.bbagrm.2017.12.002. PubMed DOI

Villagra A., Cheng F., Wang H.W., Suarez I., Glozak M., Maurin M., Nguyen D., Wright K.L., Atadja P.W., Bhalla K., et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat. Immunol. 2009;10:92–100. doi: 10.1038/ni.1673. PubMed DOI PMC

Glozak M.A., Seto E. Acetylation/deacetylation modulates the stability of DNA replication licensing factor Cdt1. J. Biol. Chem. 2009;284:11446–11453. doi: 10.1074/jbc.M809394200. PubMed DOI PMC

Cao J., Sun L., Aramsangtienchai P., Spiegelman N.A., Zhang X., Huang W., Seto E., Lin H. HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proc. Natl. Acad. Sci. USA. 2019;116:5487–5492. doi: 10.1073/pnas.1815365116. PubMed DOI PMC

Bagchi R.A., Ferguson B.S., Stratton M.S., Hu T., Cavasin M.A., Sun L., Lin Y.H., Liu D., Londono P., Song K., et al. HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI Insight. 2018;3:e120159. doi: 10.1172/jci.insight.120159. PubMed DOI PMC

Sun L., Marin de Evsikova C., Bian K., Achille A., Telles E., Pei H., Seto E. Programming and Regulation of Metabolic Homeostasis by HDAC11. eBioMedicine. 2018;33:157–168. doi: 10.1016/j.ebiom.2018.06.025. PubMed DOI PMC

Fei Q., Song F., Jiang X., Hong H., Xu X., Jin Z., Zhu X., Dai B., Yang J., Sui C., et al. LncRNA ST8SIA6-AS1 promotes hepatocellular carcinoma cell proliferation and resistance to apoptosis by targeting miR-4656/HDAC11 axis. Cancer Cell Int. 2020;20:232. doi: 10.1186/s12935-020-01325-5. PubMed DOI PMC

Freese K., Seitz T., Dietrich P., Lee S.M.L., Thasler W.E., Bosserhoff A., Hellerbrand C. Histone Deacetylase Expressions in Hepatocellular Carcinoma and Functional Effects of Histone Deacetylase Inhibitors on Liver Cancer Cells In Vitro. Cancers. 2019;11:1587. doi: 10.3390/cancers11101587. PubMed DOI PMC

Gong D., Zeng Z., Yi F., Wu J. Inhibition of histone deacetylase 11 promotes human liver cancer cell apoptosis. Am. J. Transl. Res. 2019;11:983–990. PubMed PMC

Huo W., Qi F., Wang K. Long non-coding RNA BCYRN1 promotes prostate cancer progression via elevation of HDAC11. Oncol. Rep. 2020;44:1233–1245. doi: 10.3892/or.2020.7680. PubMed DOI

Wang W., Ding B., Lou W., Lin S. Promoter Hypomethylation and miR-145-5p Downregulation-Mediated HDAC11 Overexpression Promotes Sorafenib Resistance and Metastasis of Hepatocellular Carcinoma Cells. Front. Cell Dev. Biol. 2020;8:724. doi: 10.3389/fcell.2020.00724. PubMed DOI PMC

Wang W., Fu L., Li S., Xu Z., Li X. Histone deacetylase 11 suppresses p53 expression in pituitary tumor cells. Cell Biol. Int. 2017;41:1290–1295. doi: 10.1002/cbin.10834. PubMed DOI

Mithraprabhu S., Kalff A., Chow A., Khong T., Spencer A. Dysregulated Class I histone deacetylases are indicators of poor prognosis in multiple myeloma. Epigenetics. 2014;9:1511–1520. doi: 10.4161/15592294.2014.983367. PubMed DOI PMC

Yue L., Sharma V., Horvat N.P., Akuffo A.A., Beatty M.S., Murdun C., Colin C., Billington J.M.R., Goodheart W.E., Sahakian E., et al. HDAC11 deficiency disrupts oncogene-induced hematopoiesis in myeloproliferative neoplasms. Blood. 2020;135:191–207. doi: 10.1182/blood.2019895326. PubMed DOI PMC

Thole T.M., Lodrini M., Fabian J., Wuenschel J., Pfeil S., Hielscher T., Kopp-Schneider A., Heinicke U., Fulda S., Witt O., et al. Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival. Cell Death Dis. 2017;8:e2635. doi: 10.1038/cddis.2017.49. PubMed DOI PMC

Kutil Z., Mikešová J., Zessin M., Meleshin M., Nováková Z., Alquicer G., Kozikowski A., Sippl W., Bařinka C., Schutkowski M. Continuous Activity Assay for HDAC11 Enabling Reevaluation of HDAC Inhibitors. ACS Omega. 2019;4:19895–19904. doi: 10.1021/acsomega.9b02808. PubMed DOI PMC

Kutil Z., Novakova Z., Meleshin M., Mikesova J., Schutkowski M., Barinka C. Histone Deacetylase 11 Is a Fatty-Acid Deacylase. ACS Chem. Biol. 2018;13:685–693. doi: 10.1021/acschembio.7b00942. PubMed DOI

Moreno-Yruela C., Galleano I., Madsen A.S., Olsen C.A. Histone Deacetylase 11 Is an ε-N-Myristoyllysine Hydrolase. Cell Chem. Biol. 2018;25:849–856.e8. doi: 10.1016/j.chembiol.2018.04.007. PubMed DOI

Martin M.W., Lee J.Y., Lancia D.R., Ng P.Y., Han B., Thomason J.R., Lynes M.S., Marshall C.G., Conti C., Collis A., et al. Discovery of novel N-hydroxy-2-arylisoindoline-4-carboxamides as potent and selective inhibitors of HDAC11. Bioorg. Med. Chem. Lett. 2018;28:2143–2147. doi: 10.1016/j.bmcl.2018.05.021. PubMed DOI

Dallavalle S., Musso L., Cincinelli R., Darwiche N., Gervasoni S., Vistoli G., Guglielmi M.B., La Porta I., Pizzulo M., Modica E., et al. Antitumor activity of novel POLA1-HDAC11 dual inhibitors. Eur. J. Med. Chem. 2022;228:113971. doi: 10.1016/j.ejmech.2021.113971. PubMed DOI

Bai P., Liu Y., Yang L., Ding W., Mondal P., Sang N., Liu G., Lu X., Ho T.T., Zhou Y., et al. Development and Pharmacochemical Characterization Discover a Novel Brain-Permeable HDAC11-Selective Inhibitor with Therapeutic Potential by Regulating Neuroinflammation in Mice. J. Med. Chem. 2023;66:16075–16090. doi: 10.1021/acs.jmedchem.3c01491. PubMed DOI

Bora-Singhal N., Mohankumar D., Saha B., Colin C.M., Lee J.Y., Martin M.W., Zheng X., Coppola D., Chellappan S. Novel HDAC11 inhibitors suppress lung adenocarcinoma stem cell self-renewal and overcome drug resistance by suppressing Sox2. Sci. Rep. 2020;10:4722. doi: 10.1038/s41598-020-61295-6. PubMed DOI PMC

Son S.I., Cao J., Zhu C.L., Miller S.P., Lin H. Activity-Guided Design of HDAC11-Specific Inhibitors. ACS Chem. Biol. 2019;14:1393–1397. doi: 10.1021/acschembio.9b00292. PubMed DOI PMC

Sun P., Wang J., Khan K.S., Yang W., Ng B.W., Ilment N., Zessin M., Bülbül E.F., Robaa D., Erdmann F., et al. Development of Alkylated Hydrazides as Highly Potent and Selective Class I Histone Deacetylase Inhibitors with T cell Modulatory Properties. J. Med. Chem. 2022;65:16313–16337. doi: 10.1021/acs.jmedchem.2c01132. PubMed DOI

Pulya S., Himaja A., Paul M., Adhikari N., Banerjee S., Routholla G., Biswas S., Jha T., Ghosh B. Selective HDAC3 Inhibitors with Potent In Vivo Antitumor Efficacy against Triple-Negative Breast Cancer. J. Med. Chem. 2023;66:12033–12058. doi: 10.1021/acs.jmedchem.3c00614. PubMed DOI

Ho T.T., Peng C., Seto E., Lin H. Trapoxin A Analogue as a Selective Nanomolar Inhibitor of HDAC11. ACS Chem. Biol. 2023;18:803–809. doi: 10.1021/acschembio.2c00840. PubMed DOI PMC

Baselious F., Robaa D., Sippl W. Utilization of AlphaFold models for drug discovery: Feasibility and challenges. Histone deacetylase 11 as a case study. Comput. Biol. Med. 2023;167:107700. doi: 10.1016/j.compbiomed.2023.107700. PubMed DOI

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC

David A., Islam S., Tankhilevich E., Sternberg M.J.E. The AlphaFold Database of Protein Structures: A Biologist’s Guide. J. Mol. Biol. 2022;434:167336. doi: 10.1016/j.jmb.2021.167336. PubMed DOI PMC

Ren F., Ding X., Zheng M., Korzinkin M., Cai X., Zhu W., Mantsyzov A., Aliper A., Aladinskiy V., Cao Z., et al. AlphaFold accelerates artificial intelligence powered drug discovery: Efficient discovery of a novel CDK20 small molecule inhibitor. Chem. Sci. 2023;14:1443–1452. doi: 10.1039/D2SC05709C. PubMed DOI PMC

Zhu W., Liu X., Li Q., Gao F., Liu T., Chen X., Zhang M., Aliper A., Ren F., Ding X., et al. Discovery of novel and selective SIK2 inhibitors by the application of AlphaFold structures and generative models. Bioorg. Med. Chem. 2023;91:117414. doi: 10.1016/j.bmc.2023.117414. PubMed DOI

Holcomb M., Chang Y.T., Goodsell D.S., Forli S. Evaluation of AlphaFold2 structures as docking targets. Protein Sci. 2023;32:e4530. doi: 10.1002/pro.4530. PubMed DOI PMC

He X.-H., You C.-Z., Jiang H.-L., Jiang Y., Xu H.E., Cheng X. AlphaFold2 versus experimental structures: Evaluation on G protein-coupled receptors. Acta Pharmacol. Sin. 2023;44:1–7. doi: 10.1038/s41401-022-00938-y. PubMed DOI PMC

Lee S., Kim S., Lee G.R., Kwon S., Woo H., Seok C., Park H. Evaluating GPCR modeling and docking strategies in the era of deep learning-based protein structure prediction. Comput. Struct. Biotechnol. J. 2023;21:158–167. doi: 10.1016/j.csbj.2022.11.057. PubMed DOI PMC

Heo L., Feig M. Multi-state modeling of G-protein coupled receptors at experimental accuracy. Proteins. 2022;90:1873–1885. doi: 10.1002/prot.26382. PubMed DOI PMC

Karelina M., Noh J.J., Dror R.O. How accurately can one predict drug binding modes using AlphaFold models? eLife. 2023;12:RP89386. doi: 10.7554/eLife.89386.2. PubMed DOI PMC

Díaz-Rovira A.M., Martín H., Beuming T., Díaz L., Guallar V., Ray S.S. Are Deep Learning Structural Models Sufficiently Accurate for Virtual Screening? Application of Docking Algorithms to AlphaFold2 Predicted Structures. J. Chem. Inf. Model. 2023;63:1668–1674. doi: 10.1021/acs.jcim.2c01270. PubMed DOI

Scardino V., Di Filippo J.I., Cavasotto C.N. How good are AlphaFold models for docking-based virtual screening? iScience. 2023;26:105920. doi: 10.1016/j.isci.2022.105920. PubMed DOI PMC

Zhang Y., Vass M., Shi D., Abualrous E., Chambers J.M., Chopra N., Higgs C., Kasavajhala K., Li H., Nandekar P., et al. Benchmarking Refined and Unrefined AlphaFold2 Structures for Hit Discovery. J. Chem. Inf. Model. 2023;63:1656–1667. doi: 10.1021/acs.jcim.2c01219. PubMed DOI

Melesina J., Simoben C.V., Praetorius L., Bülbül E.F., Robaa D., Sippl W. Strategies To Design Selective Histone Deacetylase Inhibitors. ChemMedChem. 2021;16:1336–1359. doi: 10.1002/cmdc.202000934. PubMed DOI

Zhang L., Zhang J., Jiang Q., Zhang L., Song W. Zinc binding groups for histone deacetylase inhibitors. J. Enzym. Inhib. Med. Chem. 2018;33:714–721. doi: 10.1080/14756366.2017.1417274. PubMed DOI PMC

De Vreese R., D’Hooghe M. Synthesis and applications of benzohydroxamic acid-based histone deacetylase inhibitors. Eur. J. Med. Chem. 2017;135:174–195. doi: 10.1016/j.ejmech.2017.04.013. PubMed DOI

Hu Z., Wei F., Su Y., Wang Y., Shen Y., Fang Y., Ding J., Chen Y. Histone deacetylase inhibitors promote breast cancer metastasis by elevating NEDD9 expression. Signal Transduct. Target. Ther. 2023;8:11. doi: 10.1038/s41392-022-01221-6. PubMed DOI PMC

Irwin J.J., Tang K.G., Young J., Dandarchuluun C., Wong B.R., Khurelbaatar M., Moroz Y.S., Mayfield J., Sayle R.A. ZINC20—A Free Ultralarge-Scale Chemical Database for Ligand Discovery. J. Chem. Inf. Model. 2020;60:6065–6073. doi: 10.1021/acs.jcim.0c00675. PubMed DOI PMC

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001;46:3–26. doi: 10.1016/S0169-409X(00)00129-0. PubMed DOI

Kumari S., Chakraborty S., Ahmad M., Kumar V., Tailor P.B., Biswal B.K. Identification of probable inhibitors for the DNA polymerase of the Monkeypox virus through the virtual screening approach. Int. J. Biol. Macromol. 2023;229:515–528. doi: 10.1016/j.ijbiomac.2022.12.252. PubMed DOI PMC

Walters W.P., Stahl M.T., Murcko M.A. Virtual screening—An overview. Drug Discov. Today. 1998;3:160–178. doi: 10.1016/S1359-6446(97)01163-X. DOI

Walters W.P., Namchuk M. Designing screens: How to make your hits a hit. Nat. Rev. Drug Discov. 2003;2:259–266. doi: 10.1038/nrd1063. PubMed DOI

Dan A., Shiyama T., Yamazaki K., Kusunose N., Fujita K., Sato H., Matsui K., Kitano M. Discovery of hydroxamic acid analogs as dual inhibitors of phosphodiesterase-1 and -5. Bioorg. Med. Chem. Lett. 2005;15:4085–4090. doi: 10.1016/j.bmcl.2005.06.016. PubMed DOI

Heimburg T., Kolbinger F.R., Zeyen P., Ghazy E., Herp D., Schmidtkunz K., Melesina J., Shaik T.B., Erdmann F., Schmidt M., et al. Structure-Based Design and Biological Characterization of Selective Histone Deacetylase 8 (HDAC8) Inhibitors with Anti-Neuroblastoma Activity. J. Med. Chem. 2017;60:10188–10204. doi: 10.1021/acs.jmedchem.7b01447. PubMed DOI

Marek M., Ramos-Morales E., Picchi-Constante G.F.A., Bayer T., Norström C., Herp D., Sales-Junior P.A., Guerra-Slompo E.P., Hausmann K., Chakrabarti A., et al. Species-selective targeting of pathogens revealed by the atypical structure and active site of Trypanosoma cruzi histone deacetylase DAC2. Cell Rep. 2021;37:110129. doi: 10.1016/j.celrep.2021.110129. PubMed DOI

Barducci A., Bonomi M., Parrinello M. Metadynamics. WIREs Comput. Mol. Sci. 2011;1:826–843. doi: 10.1002/wcms.31. DOI

Fusani L., Palmer D.S., Somers D.O., Wall I.D. Exploring Ligand Stability in Protein Crystal Structures Using Binding Pose Metadynamics. J. Chem. Inf. Model. 2020;60:1528–1539. doi: 10.1021/acs.jcim.9b00843. PubMed DOI PMC

Clark A.J., Tiwary P., Borrelli K., Feng S., Miller E.B., Abel R., Friesner R.A., Berne B.J. Prediction of Protein–Ligand Binding Poses via a Combination of Induced Fit Docking and Metadynamics Simulations. J. Chem. Theory Comput. 2016;12:2990–2998. doi: 10.1021/acs.jctc.6b00201. PubMed DOI

Maestro Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.

Sastry G.M., Adzhigirey M., Day T., Annabhimoju R., Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013;27:221–234. doi: 10.1007/s10822-013-9644-8. PubMed DOI

Protein Preparation Wizard Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.

Jacobson M.P., Pincus D.L., Rapp C.S., Day T.J., Honig B., Shaw D.E., Friesner R.A. A hierarchical approach to all-atom protein loop prediction. Proteins. 2004;55:351–367. doi: 10.1002/prot.10613. PubMed DOI

Jacobson M.P., Friesner R.A., Xiang Z., Honig B. On the role of the crystal environment in determining protein side-chain conformations. J. Mol. Biol. 2002;320:597–608. doi: 10.1016/S0022-2836(02)00470-9. PubMed DOI

Prime Schrödinger Release 2019-1. Prime, Schrödinger, LLC; New York, NY, USA: 2019.

Greenwood J.R., Calkins D., Sullivan A.P., Shelley J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des. 2010;24:591–604. doi: 10.1007/s10822-010-9349-1. PubMed DOI

Shelley J.C., Cholleti A., Frye L.L., Greenwood J.R., Timlin M.R., Uchimaya M. Epik: A software program for pK(a) prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des. 2007;21:681–691. doi: 10.1007/s10822-007-9133-z. PubMed DOI

Epik Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.

Ghazy E., Heimburg T., Lancelot J., Zeyen P., Schmidtkunz K., Truhn A., Darwish S., Simoben C.V., Shaik T.B., Erdmann F., et al. Synthesis, structure-activity relationships, cocrystallization and cellular characterization of novel smHDAC8 inhibitors for the treatment of schistosomiasis. Eur. J. Med. Chem. 2021;225:113745. doi: 10.1016/j.ejmech.2021.113745. PubMed DOI

Ghazy E., Zeyen P., Herp D., Hügle M., Schmidtkunz K., Erdmann F., Robaa D., Schmidt M., Morales E.R., Romier C., et al. Design, synthesis, and biological evaluation of dual targeting inhibitors of histone deacetylase 6/8 and bromodomain BRPF1. Eur. J. Med. Chem. 2020;200:112338. doi: 10.1016/j.ejmech.2020.112338. PubMed DOI

Marek M., Shaik T.B., Heimburg T., Chakrabarti A., Lancelot J., Ramos-Morales E., Da Veiga C., Kalinin D., Melesina J., Robaa D., et al. Characterization of Histone Deacetylase 8 (HDAC8) Selective Inhibition Reveals Specific Active Site Structural and Functional Determinants. J. Med. Chem. 2018;61:10000–10016. doi: 10.1021/acs.jmedchem.8b01087. PubMed DOI

Vögerl K., Ong N., Senger J., Herp D., Schmidtkunz K., Marek M., Müller M., Bartel K., Shaik T.B., Porter N.J., et al. Synthesis and Biological Investigation of Phenothiazine-Based Benzhydroxamic Acids as Selective Histone Deacetylase 6 Inhibitors. J. Med. Chem. 2019;62:1138–1166. doi: 10.1021/acs.jmedchem.8b01090. PubMed DOI PMC

LigPrep Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.

Harder E., Damm W., Maple J., Wu C., Reboul M., Xiang J.Y., Wang L., Lupyan D., Dahlgren M.K., Knight J.L., et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016;12:281–296. doi: 10.1021/acs.jctc.5b00864. PubMed DOI

Shivakumar D., Williams J., Wu Y., Damm W., Shelley J., Sherman W. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J. Chem. Theory Comput. 2010;6:1509–1519. doi: 10.1021/ct900587b. PubMed DOI

Jorgensen W.L., Maxwell D.S., Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996;118:11225–11236. doi: 10.1021/ja9621760. DOI

Jorgensen W.L., Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988;110:1657–1666. doi: 10.1021/ja00214a001. PubMed DOI

QikProp Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.

Salam N.K., Nuti R., Sherman W. Novel method for generating structure-based pharmacophores using energetic analysis. J. Chem. Inf. Model. 2009;49:2356–2368. doi: 10.1021/ci900212v. PubMed DOI

Loving K., Salam N.K., Sherman W. Energetic analysis of fragment docking and application to structure-based pharmacophore hypothesis generation. J. Comput. Aided Mol. Des. 2009;23:541–554. doi: 10.1007/s10822-009-9268-1. PubMed DOI

Dixon S.L., Smondyrev A.M., Knoll E.H., Rao S.N., Shaw D.E., Friesner R.A. PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J. Comput. Aided Mol. Des. 2006;20:647–671. doi: 10.1007/s10822-006-9087-6. PubMed DOI

Dixon S.L., Smondyrev A.M., Rao S.N. PHASE: A Novel Approach to Pharmacophore Modeling and 3D Database Searching. Chem. Biol. Drug Des. 2006;67:370–372. doi: 10.1111/j.1747-0285.2006.00384.x. PubMed DOI

Phase Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.

Friesner R.A., Murphy R.B., Repasky M.P., Frye L.L., Greenwood J.R., Halgren T.A., Sanschagrin P.C., Mainz D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006;49:6177–6196. doi: 10.1021/jm051256o. PubMed DOI

Friesner R.A., Banks J.L., Murphy R.B., Halgren T.A., Klicic J.J., Mainz D.T., Repasky M.P., Knoll E.H., Shelley M., Perry J.K., et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430. PubMed DOI

Halgren T.A., Murphy R.B., Friesner R.A., Beard H.S., Frye L.L., Pollard W.T., Banks J.L. Glide:  A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004;47:1750–1759. doi: 10.1021/jm030644s. PubMed DOI

Glide Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.

Duan J., Dixon S.L., Lowrie J.F., Sherman W. Analysis and comparison of 2D fingerprints: Insights into database screening performance using eight fingerprint methods. J. Mol. Graph. Model. 2010;29:157–170. doi: 10.1016/j.jmgm.2010.05.008. PubMed DOI

Sastry M., Lowrie J.F., Dixon S.L., Sherman W. Large-Scale Systematic Analysis of 2D Fingerprint Methods and Parameters to Improve Virtual Screening Enrichments. J. Chem. Inf. Model. 2010;50:771–784. doi: 10.1021/ci100062n. PubMed DOI

Canvas Schrödinger Release 2019-1. Schrödinger, LLC; New York, NY, USA: 2019.

Bowers K.J., Chow D.E., Xu H., Dror R.O., Eastwood M.P., Gregersen B.A., Klepeis J.L., Kolossvary I., Moraes M.A., Sacerdoti F.D., et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters; Proceedings of the SC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing; Tampa, FL, USA. 11–17 November 2006; p. 43.

Desmond Schrödinger Release 2019-1. Schrödinger LLC; New York, NY, USA: 2019.

Zessin M., Kutil Z., Meleshin M., Nováková Z., Ghazy E., Kalbas D., Marek M., Romier C., Sippl W., Bařinka C., et al. One-Atom Substitution Enables Direct and Continuous Monitoring of Histone Deacylase Activity. Biochemistry. 2019;58:4777–4789. doi: 10.1021/acs.biochem.9b00786. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...