AC Pulsed Field Ablation Is Feasible and Safe in Atrial and Ventricular Settings: A Proof-of-Concept Chronic Animal Study

. 2020 ; 8 () : 552357. [epub] 20201203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33344428

INTRODUCTION: Pulsed field ablation (PFA) exploits the delivery of short high-voltage shocks to induce cells death via irreversible electroporation. The therapy offers a potential paradigm shift for catheter ablation of cardiac arrhythmia. We designed an AC-burst generator and therapeutic strategy, based on the existing knowledge between efficacy and safety among different pulses. We performed a proof-of-concept chronic animal trial to test the feasibility and safety of our method and technology. METHODS: We employed 6 female swine - weight 53.75 ± 4.77 kg - in this study. With fluoroscopic and electroanatomical mapping assistance, we performed ECG-gated AC-PFA in the following settings: in the left atrium with a decapolar loop catheter with electrodes connected in bipolar fashion; across the interventricular septum applying energy between the distal electrodes of two tip catheters. After procedure and 4-week follow-up, the animals were euthanized, and the hearts were inspected for tissue changes and characterized. We perform finite element method simulation of our AC-PFA scenarios to corroborate our method and better interpret our findings. RESULTS: We applied square, 50% duty cycle, AC bursts of 100 μs duration, 100 kHz internal frequency, 900 V for 60 pulses in the atrium and 1500 V for 120 pulses in the septum. The inter-burst interval was determined by the native heart rhythm - 69 ± 9 bpm. Acute changes in the atrial and ventricular electrograms were immediately visible at the sites of AC-PFA - signals were elongated and reduced in amplitude (p < 0.0001) and tissue impedance dropped (p = 0.011). No adverse event (e.g., esophageal temperature rises or gas bubble streams) was observed - while twitching was avoided by addition of electrosurgical return electrodes. The implemented numerical simulations confirmed the non-thermal nature of our AC-PFA and provided specific information on the estimated treated area and need of pulse trains. The postmortem chest inspection showed no peripheral damage, but epicardial and endocardial discolorations at sites of ablation. T1-weighted scans revealed specific tissue changes in atria and ventricles, confirmed to be fibrotic scars via trichrome staining. We found isolated, transmural and continuous scars. A surviving cardiomyocyte core was visible in basal ventricular lesions. CONCLUSION: We proved that our method and technology of AC-PFA is feasible and safe for atrial and ventricular myocardial ablation, supporting their systematic investigation into effectiveness evaluation for the treatment of cardiac arrhythmia. Further optimization, with energy titration or longer follow-up, is required for a robust atrial and ventricular AC-PFA.

Zobrazit více v PubMed

Arena C. B., Sano M. B., Rossmeisl J. H., Caldwell J. L., Garcia P. A., Rylander M. N., et al. (2011). High-frequency irreversible electroporation (H-Fire) for non-thermal ablation without muscle contraction. Biomed. Eng. 10: 102. 10.1186/1475-925X-10-102 PubMed DOI PMC

Bertacchini C., Margotti P. M., Bergamini E., Lodi A., Ronchetti M., Cadossi R. (2007). Design of an irreversible electroporation system for clinical use. Technol. Cancer Res. Treat. 6 313–320. 10.1177/153303460700600408 PubMed DOI

Buckberg G. D. (2006). The ventricular septum: the lion of right ventricular function, and its impact on right ventricular restoration. Eur. J. Cardiothorac. Surg. 29 S272–S278. 10.1016/j.ejcts.2006.02.011 PubMed DOI

Caluori G., Wojtaszczyk A., Yasin O., Pesl M., Wolf J., Belaskova S., et al. (2019). Comparing the incidence of ventricular arrhythmias during epicardial ablation in swine versus canine models. Pac. Clin. Electrophysiol. 42 862–867. 10.1111/pace.13698 PubMed DOI

Colunga S., Padrón R., García-Iglesias D., Rubín J. M., Pérez D., Del Valle R., et al. (2019). The QT interval dynamic in a human experimental model of controlled heart rate and QRS widening. J. Clin. Med. 8:jcm8091417. 10.3390/jcm8091417 PubMed DOI PMC

Èoroviæ S., Županiè A., Kranjc S., Al Sakere B., Leroy-Willig A., Mir L. M., et al. (2010). The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling. Med. Biol. Eng. Comput. 48 637–648. 10.1007/s11517-010-0614-611 PubMed DOI PMC

Davalos R. V., Mir L. M., Rubinsky B. (2005). Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:223 10.1007/s10439-005-8981-8988 PubMed DOI

Deodhar A., Dickfeld T., Single G. W., Hamilton W. C., Thornton R. H., Sofocleous C. T., et al. (2011). Irreversible electroporation near the heart: ventricular arrhythmias can be prevented with ECG synchronization. Am. J. Roentgenol. 196 W330–W335. 10.2214/AJR.10.4490 PubMed DOI PMC

DeSimone C. V., Ebrille E., Syed F. F., Mikell S. B., Suddendorf S. H., Wahnschaffe D., et al. (2014). Novel balloon catheter device with pacing, ablating, electroporation, and drug-eluting capabilities for atrial fibrillation treatment–preliminary efficacy and safety studies in a canine model. Transl. Res. 164 508–514. 10.1016/j.trsl.2014.07.002 PubMed DOI PMC

Dewhirst M. W., Viglianti B. L., Lora-Michiels M., Hoopes P. J., Hanson M. (2003). Thermal dose requirement for tissue effect: experimental and clinical findings. Proc. SPIE Int. Soc. Opt. Eng. 4954:37 10.1117/12.476637 PubMed DOI PMC

Fedorov V. V., Kostecki G., Hemphill M., Efimov I. R. (2008). Atria are more susceptible to electroporation than ventricles: implications for atrial stunning, shock-induced arrhythmia and defibrillation failure. Heart Rhythm. 5 593–604. 10.1016/j.hrthm.2008.01.026 PubMed DOI PMC

Garcia P. A., Davalos R. V., Miklavcic D. (2014). A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PLoS One 9:e103083. 10.1371/journal.pone.0103083 PubMed DOI PMC

Golberg A., Rubinsky B. (2010). A statistical model for multidimensional irreversible electroporation cell death in tissue. Biomed. Eng. 9:13. 10.1186/1475-925X-9-13 PubMed DOI PMC

Guandalini G. S., Liang J. J., Marchlinski F. E. (2019). Ventricular tachycardia ablation: past, present, and future perspectives. JACC Clin. Electrophysiol. 5 1363–1383. 10.1016/j.jacep.2019.09.015 PubMed DOI

Haines D. E. (1993). The biophysics of radiofrequency catheter ablation in the heart: the importance of temperature monitoring. Pac. Clin. Electrophysiol. 16 586–591. 10.1111/j.1540-8159.1993.tb01630.x PubMed DOI

Jež J., Caluori G., Jadczyk T., Lehar F., Pešl M., Kulík T., et al. (2019). Remotely navigated ablations in ventricle myocardium result in acute lesion size comparable to force-sensing manual navigation. Circ. Arrhythm. Electrophysiol. 12:e007644. 10.1161/CIRCEP.119.007644 PubMed DOI

Kaminska I., Kotulska M., Stecka A., Saczko J., Drag-Zalesinska M., Wysocka T., et al. (2012). Electroporation-induced changes in normal immature rat myoblasts (H9C2). Gen. Physiol. Biophys. 31 19–25. 10.4149/gpb_2012_003 PubMed DOI

Kolandaivelu A., Zviman M. M., Castro V., Lardo A. C., Berger R. D., Halperin H. R. (2010). Noninvasive assessment of tissue heating during cardiac radiofrequency ablation using MRI thermography. Circ. Arrhythm. Electrophysiol. 3 521–529. 10.1161/CIRCEP.110.942433 PubMed DOI PMC

Koruth J. S., Kuroki K., Kawamura I., Brose R., Viswanathan R., Buck E. D., et al. (2020). Pulsed field ablation versus radiofrequency ablation. Circ. Arrhythm. Electrophysiol. 13:e008303. 10.1161/CIRCEP.119.008303 PubMed DOI PMC

Meijburg H. W. J., Visser C. A., Westerhof P. W., Kasteleyn I., van der Tweel I., Robles de Medina E. O. (1992). Normal pulmonary venous flow characteristics as assessed by transesophageal pulsed doppler echocardiography. J. Am. Soc. Echocardiogr. 5 588–597. 10.1016/S0894-7317(14)80324-80326 PubMed DOI

Meir A., Rubinsky B. (2014). Alternating electric field capacitively coupled micro-electroporation. RSC Adv. 4 54603–54613. 10.1039/C4RA09054C DOI

Mercadal B., Arena C. B., Davalos R. V., Ivorra A. (2017). Avoiding nerve stimulation in irreversible electroporation: a numerical modeling study. Phys. Med. Biol. 62 8060–8079. 10.1088/1361-6560/aa8c53 PubMed DOI PMC

Miklavčič D. (2018). Cardiac ablation by electroporation. J. Am. Coll. Cardiol. EP 4 1481–1482. 10.1016/j.jacep.2018.09.014 PubMed DOI

Neven K., van Driel V., van Wessel H., van Es R., du Pré B., Doevendans P. A., et al. (2014). Safety and feasibility of closed chest epicardial catheter ablation using electroporation. Circ. Arrhythm. Electrophysiol. 7 913–919. 10.1161/CIRCEP.114.001607 PubMed DOI

Neven K., van Es R., van Driel V., van Wessel H., Fidder H., Vink A., et al. (2017). Acute and long-term effects of full-power electroporation ablation directly on the porcine esophagus. Circ. Arrhythm. Electrophysiol. 10:e004672. 10.1161/CIRCEP.116.004672 PubMed DOI

Nikolski V. P., Efimov I. R. (2005). Electroporation of the heart. Europace 7 S146–S154. 10.1016/j.eupc.2005.04.011 PubMed DOI

Polajžer T., Dermol-Èerne J., Reberšek M., O’Connor R., Miklavèiè D. (2020). Cancellation effect is present in high-frequency reversible and irreversible electroporation. Bioelectrochemistry 132:107442. 10.1016/j.bioelechem.2019.107442 PubMed DOI

Ramirez F. D., Reddy V. Y., Viswanathan R., Hocini M., Jaïs P. (2020). Emerging technologies for pulmonary vein isolation. Circ. Res. 127 170–183. 10.1161/CIRCRESAHA.120.316402 PubMed DOI

Reddy V. Y., Koruth J., Jais P., Petru J., Timko F., Skalsky I., et al. (2018). Ablation of atrial fibrillation with pulsed electric fields: an ultra-rapid, tissue-selective modality for cardiac ablation. JACC Clin. Electrophysiol. 4 987–995. 10.1016/j.jacep.2018.04.005 PubMed DOI

Reddy V. Y., Neuzil P., Koruth J. S., Petru J., Funosako M., Cochet H., et al. (2019). Pulsed field ablation for pulmonary vein isolation in atrial fibrillation. J. Am. Coll. Cardiol. 74 315–326. 10.1016/j.jacc.2019.04.021 PubMed DOI

Rueden C. T., Schindelin J., Hiner M. C., DeZonia B. E., Walter A. E., Arena E. T., et al. (2017). ImageJ2: imageJ for the next generation of scientific image data. BMC Bioinform. 18:529. 10.1186/s12859-017-1934-z PubMed DOI PMC

Semenov I., Grigoryev S., Neuber J. U., Zemlin C. W., Pakhomova O. N., Casciola M., et al. (2018). Excitation and injury of adult ventricular cardiomyocytes by nano- to millisecond electric shocks. Sci. Rep. 8:8233 10.1038/s41598-018-26521-26522 PubMed DOI PMC

Soucek F., Caluori G., Lehar F., Jez J., Pesl M., Wolf J., et al. (2020). Bipolar ablation with contact force-sensing of swine ventricles shows improved acute lesion features compared to sequential unipolar ablation. J. Cardiovasc. Electrophysiol. 31 1128–1136. 10.1111/jce.14407 PubMed DOI

Stewart M. T., Haines D. E., Verma A., Kirchhof N., Barka N., Grassl E., et al. (2019). Intracardiac pulsed field ablation: proof of feasibility in a chronic porcine model. Heart Rhythm. 16 754–764. 10.1016/j.hrthm.2018.10.030 PubMed DOI

Sugrue A., Maor E., Ivorra A., Vaidya V., Witt C., Kapa S., et al. (2018). Irreversible electroporation for the treatment of cardiac arrhythmias. Expert Rev. Cardiovasc. Therapy 16 349–360. 10.1080/14779072.2018.1459185 PubMed DOI

Sugrue A., Vaidya V., Witt C., DeSimone C. V., Yasin O., Maor E., et al. (2019). Irreversible electroporation for catheter-based cardiac ablation: a systematic review of the preclinical experience. J. Intervent. Cardiac. Electrophysiol. 55 251–265. 10.1007/s10840-019-00574-573 PubMed DOI

van Driel V. J. H. M., Neven K., van Wessel H., Vink A., Doevendans P. A. F. M., Wittkampf F. H. M. (2015). Low vulnerability of the right phrenic nerve to electroporation ablation. Heart Rhythm. 12 1838–1844. 10.1016/j.hrthm.2015.05.012 PubMed DOI

van Driel V. J. H. M., Neven K. G. E. J., van Wessel H., du Pré B. C., Vink A., Doevendans P. A. F. M., et al. (2014). Pulmonary vein stenosis after catheter ablation: electroporation versus radiofrequency. Circ. Arrhythm. Electrophysiol. 7 734–738. 10.1161/CIRCEP.113.001111 PubMed DOI

van Es R., Groen M. H. A., Stehouwer M., Doevendans P. A., Wittkampf F. H. M., Neven K. (2019a). In vitro analysis of the origin and characteristics of gaseous microemboli during catheter electroporation ablation. J. Cardiovasc. Electrophysiol. 30 2071–2079. 10.1111/jce.14091 PubMed DOI

van Es R., Konings M. K., Du Pré B. C., Neven K., van Wessel H., van Driel V. J. H. M., et al. (2019b). High-frequency irreversible electroporation for cardiac ablation using an asymmetrical waveform. Biomed. Eng. 18:75 10.1186/s12938-019-0693-697 PubMed DOI PMC

Witt C. M., Sugrue A., Padmanabhan D., Vaidya V., Gruba S., Rohl J., et al. (2018). Intrapulmonary vein ablation without Stenosis: a novel balloon-based direct current electroporation approach. J. Am. Heart Assoc. 7:e009575. 10.1161/JAHA.118.009575 PubMed DOI PMC

Wittkampf F. H. M., van Es R., Neven K. (2018). Electroporation and its relevance for cardiac catheter ablation. JACC Clin. Electrophysiol. 4 977–986. 10.1016/j.jacep.2018.06.005 PubMed DOI

Wojtaszczyk A., Caluori G., Pešl M., Melajova K., Stárek Z. (2018). Irreversible electroporation ablation for atrial fibrillation. J. Cardiovasc. Electrophysiol. 29 643–651. 10.1111/jce.13454 PubMed DOI

Yushkevich P. A., Piven J., Hazlett H. C., Smith R. G., Ho S., Gee J. C., et al. (2006). User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31 1116–1128. 10.1016/j.neuroimage.2006.01.015 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...