The giant diploid faba genome unlocks variation in a global protein crop

. 2023 Mar ; 615 (7953) : 652-659. [epub] 20230308

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36890232

Grantová podpora
BB/P023509/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Odkazy

PubMed 36890232
PubMed Central PMC10033403
DOI 10.1038/s41586-023-05791-5
PII: 10.1038/s41586-023-05791-5
Knihovny.cz E-zdroje

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.

Agriculture Victoria AgriBio Centre for AgriBioscience Bundoora Victoria Australia

Agroécologie INRAE Institut Agro University Bourgogne University Bourgogne Franche Comté Dijon France

Bingen Technical University of Applied Sciences Bingen Germany

Biology Centre Czech Academy of Sciences Institute of Plant Molecular Biology České Budějovice Czech Republic

Center for Quantitative Genetics and Genomics Aarhus University Aarhus C Denmark

Center of Integrated Breeding Research Georg August University Göttingen Germany

Department of Agricultural Sciences University of Helsinki Helsinki Finland

Department of Analytical Chemistry Faculty of Science Palacky University Olomouc Czech Republic

Department of Botany Faculty of Science Palacky University Olomouc Czech Republic

Department of Molecular Biology and Genetics Aarhus University Aarhus C Denmark

Department of Plant Breeding Justus Liebig University Giessen Giessen Germany

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

IBG 4 Bioinformatics Forschungszentrum Jülich Jülich Germany

Institute for Biological Data Science CEPLAS Heinrich Heine University Düsseldorf Düsseldorf Germany

Institute of Biotechnology University of Helsinki Helsinki Finland

Institute of Experimental Botany of the Czech Academy of Sciences Centre of the Region Haná for Biotechnological and Agricultural Research Olomouc Czech Republic

Instituto Andaluz de Investigación y Formación Agraria Pesquera Alimentaria y de la Producción Ecológica Área de Mejora y Biotecnología Centro Alameda del Obispo Córdoba Spain

KeyGene Wageningen The Netherlands

Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Seeland Germany

Natural Resources Institute Finland Helsinki Finland

Nordic Seed Odder Denmark

Plant Genome and Systems Biology Helmholtz Center Munich German Research Center for Environmental Health Neuherberg Germany

School of Agriculture Policy and Development University of Reading Reading UK

Sejet Planteforædling Horsens Denmark

Viikki Plant Science Centre University of Helsinki Helsinki Finland Córdoba Spain

Komentář v

PubMed

Zobrazit více v PubMed

Hyland JJ, Henchion M, McCarthy M, McCarthy SN. The role of meat in strategies to achieve a sustainable diet lower in greenhouse gas emissions: a review. Meat Sci. 2017;132:189–195. doi: 10.1016/j.meatsci.2017.04.014. PubMed DOI

Zander P, et al. Grain legume decline and potential recovery in European agriculture: a review. Agron. Sustain. Dev. 2016;36:26. doi: 10.1007/s13593-016-0365-y. DOI

Tanno K-i, Willcox G. The origins of cultivation of Cicer arietinum L. and Vicia faba L.: early finds from Tell el-Kerkh, north-west Syria, late 10th millennium b.p. Veget. Hist. Archaeobot. 2006;15:197–204. doi: 10.1007/s00334-005-0027-5. DOI

Caracuta V, et al. 14,000-year-old seeds indicate the Levantine origin of the lost progenitor of faba bean. Sci. Rep. 2016;6:37399. doi: 10.1038/srep37399. PubMed DOI PMC

Warsame AO, O’Sullivan DM, Tosi P. Seed storage proteins of faba bean (Vicia faba L): current status and prospects for genetic improvement. J. Agric. Food Chem. 2018;66:12617–12626. doi: 10.1021/acs.jafc.8b04992. PubMed DOI

Khattab A, Maxted N, Bisby FA. Close relatives of the fababean from Syria: a new species of Vicia and notes on V. hyaeniscyamus (Leguminosae) Kew Bull. 1988;43:535–540. doi: 10.2307/4118984. DOI

Muratova, V. Bulletin of Applied Botany of Genetics and Plant Breeding Supplement 50, 1–298 (1931).

Hanelt P, Schäfer H, Schultze-Motel J. Die Stellung von Vicia faba L. in der Gattung Vicia L. und Betrachtungen zu dieser Kulturart. Kulturpflanze. 1972;20:263–275. doi: 10.1007/BF02095463. DOI

Cubero JI, Suso MJ. Primitive and modern forms of Vicia faba. Kulturpflanze. 1981;29:137–145. doi: 10.1007/BF02014744. DOI

Vranken L, Avermaete T, Petalios D, Mathijs E. Curbing global meat consumption: emerging evidence of a second nutrition transition. Environ. Sci. Policy. 2014;39:95–106. doi: 10.1016/j.envsci.2014.02.009. DOI

Cernay C, Pelzer E, Makowski D. A global experimental dataset for assessing grain legume production. Sci. Data. 2016;3:160084. doi: 10.1038/sdata.2016.84. PubMed DOI PMC

Herridge DF, Peoples MB, Boddey RM. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil. 2008;311:1–18. doi: 10.1007/s11104-008-9668-3. DOI

Bailes EJ, Pattrick JG, Glover BJ. An analysis of the energetic reward offered by field bean (Vicia faba) flowers: nectar, pollen, and operative force. Ecol. Evol. 2018;8:3161–3171. doi: 10.1002/ece3.3851. PubMed DOI PMC

Adhikari KN, et al. Conventional and molecular breeding tools for accelerating genetic gain in faba bean (Vicia faba L.) Front. Plant Sci. 2021;12:744259. doi: 10.3389/fpls.2021.744259. PubMed DOI PMC

Webb A, et al. A SNP-based consensus genetic map for synteny-based trait targeting in faba bean (Vicia faba L.) Plant Biotechnol. J. 2016;14:177–185. doi: 10.1111/pbi.12371. PubMed DOI PMC

Björnsdotter E, et al. VC1 catalyses a key step in the biosynthesis of vicine in faba bean. Nat. Plants. 2021;7:923–931. doi: 10.1038/s41477-021-00950-w. PubMed DOI PMC

Macas J, Neumann P. Ogre elements—a distinct group of plant Ty3/gypsy-like retrotransposons. Gene. 2007;390:108–116. doi: 10.1016/j.gene.2006.08.007. PubMed DOI

Macas J, et al. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe fabeae. PLoS ONE. 2015;10:e0143424. doi: 10.1371/journal.pone.0143424. PubMed DOI PMC

Chang W, Jääskeläinen M, Li S-P, Schulman AH. BARE retrotransposons are translated and replicated via distinct RNA pools. PLoS ONE. 2013;8:e72270. doi: 10.1371/journal.pone.0072270. PubMed DOI PMC

Fuchs J, Strehl S, Brandes A, Schweizer D, Schubert I. Molecular-cytogenetic characterization of the Vicia faba genome—heterochromatin differentiation, replication patterns and sequence localization. Chromosome Res. 1998;6:219–230. doi: 10.1023/A:1009215802737. PubMed DOI

Rhie A, Walenz BP, Koren S, Phillippy AM. Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. Genome Biol. 2020;21:245. doi: 10.1186/s13059-020-02134-9. PubMed DOI PMC

Mascher M, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–433. doi: 10.1038/nature22043. PubMed DOI

de Bruijn, F. J. in The Model Legume Medicago truncatula (ed. de Bruijn, F. J.) Ch. 8 (Wiley, 2019).

Courty PE, Smith P, Koegel S, Redecker D, Wipf D. Inorganic nitrogen uptake and transport in beneficial plant root–microbe interactions. Crit. Rev. Plant Sci. 2015;34:4–16. doi: 10.1080/07352689.2014.897897. DOI

Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty P-E. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol. 2019;223:1127–1142. doi: 10.1111/nph.15775. PubMed DOI

De La Torre AR, et al. Insights into conifer giga-genomes. Plant Physiol. 2014;166:1724–1732. doi: 10.1104/pp.114.248708. PubMed DOI PMC

Niu S, et al. The Chinese pine genome and methylome unveil key features of conifer evolution. Cell. 2022;185:204–217.e14. doi: 10.1016/j.cell.2021.12.006. PubMed DOI

Schmutz J, et al. Genome sequence of the palaeopolyploid soybean. Nature. 2010;463:178–183. doi: 10.1038/nature08670. PubMed DOI

Cannon SB, et al. Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes. Mol. Biol. Evol. 2014;32:193–210. doi: 10.1093/molbev/msu296. PubMed DOI PMC

Xi, H., Nguyen, V., Ward, C., Lui, Z. & Searle, I. R. Chromosome-level assembly of the common vetch (Vicia sativa) reference genome. Gigabyte10.46471/gigabyte.38 (2022). PubMed PMC

Ávila Robledillo L, et al. Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci. Rep. 2018;8:5838. doi: 10.1038/s41598-018-24196-3. PubMed DOI PMC

Cossu RM, et al. LTR retrotransposons show low levels of unequal recombination and high rates of intraelement gene conversion in large plant genomes. Genome Biol. Evol. 2017;9:3449–3462. doi: 10.1093/gbe/evx260. PubMed DOI PMC

Bewick AJ, Schmitz RJ. Gene body DNA methylation in plants. Curr. Opin. Plant Biol. 2017;36:103–110. doi: 10.1016/j.pbi.2016.12.007. PubMed DOI PMC

Brenet F, et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS ONE. 2011;6:e14524. doi: 10.1371/journal.pone.0014524. PubMed DOI PMC

Wang L, et al. DNA methylome analysis provides evidence that the expansion of the tea genome is linked to TE bursts. Plant Biotechnol. J. 2019;17:826–835. doi: 10.1111/pbi.13018. PubMed DOI PMC

Erdmann RM, Picard CL. RNA-directed DNA methylation. PLoS Genet. 2020;16:e1009034. doi: 10.1371/journal.pgen.1009034. PubMed DOI PMC

Barchi L, et al. Single primer enrichment technology (SPET) for high-throughput genotyping in tomato and eggplant germplasm. Front. Plant Sci. 2019;10:1005. doi: 10.3389/fpls.2019.01005. PubMed DOI PMC

Khazaei H, O’Sullivan DM, Sillanpää MJ, Stoddard FL. Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.) Theor. Appl. Genet. 2014;127:2371–2385. doi: 10.1007/s00122-014-2383-y. PubMed DOI

Adamski NM, Anastasiou E, Eriksson S, O’Neill CM, Lenhard M. Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. Proc. Natl Acad. Sci. USA. 2009;106:20115–20120. doi: 10.1073/pnas.0907024106. PubMed DOI PMC

Khazaei H, et al. Flanking SNP markers for vicine–convicine concentration in faba bean (Vicia faba L.) Mol. Breeding. 2015;35:38. doi: 10.1007/s11032-015-0214-8. DOI

Balarynová J, et al. The loss of polyphenol oxidase function is associated with hilum pigmentation and has been selected during pea domestication. New Phytol. 2022;235:1807–1821. doi: 10.1111/nph.18256. PubMed DOI

Gopher, A., Lev-Yadun, S. & Abbo, S. Breaking Ground: Plant Domestication in the Neolithic Levant: the “Core-area One-event” Model (Emery and Claire Yass Publications in Archaeology, The Institute of Archaeology, Tel Aviv University, 2021).

Scarborough J. Beans, Pythagoras, taboos, and ancient dietetics. Classic. World. 1982;75:355–358. doi: 10.2307/4349404. DOI

Hanafy M, Pickardt T, Kiesecker H, Jacobsen H-J. Agrobacterium-mediated transformation of faba bean (Vicia faba L.) using embryo axes. Euphytica. 2005;142:227–236. doi: 10.1007/s10681-005-1690-4. DOI

Cheng H, Concepcion GT, Feng X, Zhang H, Li H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods. 2021;18:170–175. doi: 10.1038/s41592-020-01056-5. PubMed DOI PMC

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC

Carrillo-Perdomo E, et al. Development of new genetic resources for faba bean (Vicia faba L.) breeding through the discovery of gene-based SNP markers and the construction of a high-density consensus map. Sci. Rep. 2020;10:6790. doi: 10.1038/s41598-020-63664-7. PubMed DOI PMC

Monat C, et al. TRITEX: chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 2019;20:284. doi: 10.1186/s13059-019-1899-5. PubMed DOI PMC

Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46. doi: 10.1186/gb-2014-15-3-r46. PubMed DOI PMC

Laetsch D, Blaxter M. BlobTools: interrogation of genome assemblies [version 1; peer review: 2 approved with reservations] F1000Res. 2017;6:1287. doi: 10.12688/f1000research.12232.1. DOI

Sun H, Ding J, Piednoël M, Schneeberger K. findGSE: estimating genome size variation within human and Arabidopsis using k-mer frequencies. Bioinformatics. 2017;34:550–557. doi: 10.1093/bioinformatics/btx637. PubMed DOI

Vurture GW, et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics. 2017;33:2202–2204. doi: 10.1093/bioinformatics/btx153. PubMed DOI PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI

Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2007;2:2233–2244. doi: 10.1038/nprot.2007.310. PubMed DOI

Doležel J, Sgorbati S, Lucretti S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 1992;85:625–631. doi: 10.1111/j.1399-3054.1992.tb04764.x. DOI

Dolezel J. Nuclear DNA content and genome size of trout and human. Cytometry A. 2003;51:127–128. PubMed

Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–770. doi: 10.1093/bioinformatics/btr011. PubMed DOI PMC

Sedlazeck FJ, et al. Accurate detection of complex structural variations using single-molecule sequencing. Nat. Methods. 2018;15:461–468. doi: 10.1038/s41592-018-0001-7. PubMed DOI PMC

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Mapleson D, Garcia Accinelli G, Kettleborough G, Wright J, Clavijo BJ. KAT: a k-mer analysis toolkit to quality control NGS datasets and genome assemblies. Bioinformatics. 2017;33:574–576. doi: 10.1093/bioinformatics/btw663. PubMed DOI PMC

Roach MJ, Schmidt SA, Borneman AR. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinformatics. 2018;19:460. doi: 10.1186/s12859-018-2485-7. PubMed DOI PMC

Alonge, M. et al. Automated assembly scaffolding using RagTag elevates a new tomato system for high-throughput genome editing. Genome Biol.23, 258 (2022). PubMed PMC

Lin H-N, Hsu W-L. GSAlign: an efficient sequence alignment tool for intra-species genomes. BMC Genomics. 2020;21:182. doi: 10.1186/s12864-020-6569-1. PubMed DOI PMC

König S, Romoth LW, Gerischer L, Stanke M. Simultaneous gene finding in multiple genomes. Bioinformatics. 2016;32:3388–3395. doi: 10.1093/bioinformatics/btw494. PubMed DOI PMC

Bayer PE, et al. Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol. J. 2017;15:1602–1610. doi: 10.1111/pbi.12742. PubMed DOI PMC

Shumate A, Salzberg SL. Liftoff: accurate mapping of gene annotations. Bioinformatics. 2021;37:1639–1643. doi: 10.1093/bioinformatics/btaa1016. PubMed DOI PMC

Flynn JM, et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA. 2020;117:9451–9457. doi: 10.1073/pnas.1921046117. PubMed DOI PMC

Ou S, Jiang N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 2017;176:1410–1422. doi: 10.1104/pp.17.01310. PubMed DOI PMC

Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinformatics. 2008;9:18. doi: 10.1186/1471-2105-9-18. PubMed DOI PMC

Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics. 2010;26:680–682. doi: 10.1093/bioinformatics/btq003. PubMed DOI PMC

Llorens C, et al. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 2010;39:D70–D74. doi: 10.1093/nar/gkq1061. PubMed DOI PMC

Neumann P, Novák P, Hoštáková N, Macas J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob. DNA. 2019;10:1. doi: 10.1186/s13100-018-0144-1. PubMed DOI PMC

Ávila Robledillo L, et al. Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae. Mol. Biol. Evol. 2020;37:2341–2356. doi: 10.1093/molbev/msaa090. PubMed DOI PMC

Vondrak T, et al. Characterization of repeat arrays in ultra‐long nanopore reads reveals frequent origin of satellite DNA from retrotransposon‐derived tandem repeats. Plant J. 2020;101:484–500. doi: 10.1111/tpj.14546. PubMed DOI PMC

Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. BRAKER2: automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a protein database. NAR Genom. Bioinform. 2021;3:lqaa108. doi: 10.1093/nargab/lqaa108. PubMed DOI PMC

Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Dobin A, Gingeras TR. Mapping RNA‐seq reads with STAR. Curr. Protoc. Bioinformatics. 2015;51:11.14.1–11.14.19. doi: 10.1002/0471250953.bi1114s51. PubMed DOI PMC

Kriventseva EV, et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 2019;47:D807–D811. doi: 10.1093/nar/gky1053. PubMed DOI PMC

Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 2005;21:1859–1875. doi: 10.1093/bioinformatics/bti310. PubMed DOI

Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI

Lyu JI, et al. Unraveling the complexity of faba bean (Vicia faba L.) transcriptome to reveal cold-stress-responsive genes using long-read isoform sequencing technology. Sci. Rep. 2021;11:21094. doi: 10.1038/s41598-021-00506-0. PubMed DOI PMC

Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC

Li P, et al. RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics. 2016;17:852. doi: 10.1186/s12864-016-3197-x. PubMed DOI PMC

Kang Y-J, et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45:W12–W16. doi: 10.1093/nar/gkx428. PubMed DOI PMC

Baggerly KA, Deng L, Morris JS, Aldaz CM. Differential expression in SAGE: accounting for normal between-library variation. Bioinformatics. 2003;19:1477–1483. doi: 10.1093/bioinformatics/btg173. PubMed DOI

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 1995;57:289–300.

Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–2189. doi: 10.1101/gr.1224503. PubMed DOI PMC

Guindon S, Delsuc F, Dufayard J-F, Gascuel O. Estimating maximum likelihood phylogenies with PhyML. Methods Mol. Biol. 2009;537:113–137. doi: 10.1007/978-1-59745-251-9_6. PubMed DOI

Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 1997;13:555–556. PubMed

Wang Y, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49. doi: 10.1093/nar/gkr1293. PubMed DOI PMC

Hasegawa M, Kishino H, Yano T-A. Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985;22:160–174. doi: 10.1007/BF02101694. PubMed DOI

Zhang Z, et al. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics. 2006;4:259–263. doi: 10.1016/S1672-0229(07)60007-2. PubMed DOI PMC

Ullrich KK. CRBHits: from conditional reciprocal best hits to codon alignments and Ka/Ks in R. J. Open Source Softw. 2020;5:2424. doi: 10.21105/joss.02424. DOI

Qiao X, et al. Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biol. 2019;20:38. doi: 10.1186/s13059-019-1650-2. PubMed DOI PMC

Haas BJ, Delcher AL, Wortman JR, Salzberg SL. DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics. 2004;20:3643–3646. doi: 10.1093/bioinformatics/bth397. PubMed DOI

Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238. doi: 10.1186/s13059-019-1832-y. PubMed DOI PMC

Alexander DH, Lange K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics. 2011;12:246. doi: 10.1186/1471-2105-12-246. PubMed DOI PMC

Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012;44:821–824. doi: 10.1038/ng.2310. PubMed DOI PMC

Huang M, Liu X, Zhou Y, Summers RM, Zhang Z. BLINK: a package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience. 2018;8:2. PubMed PMC

Liu X, Huang M, Fan B, Buckler ES, Zhang Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 2016;12:e1005767. doi: 10.1371/journal.pgen.1005767. PubMed DOI PMC

Kang HM, et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 2010;42:348–354. doi: 10.1038/ng.548. PubMed DOI PMC

VanRaden PM. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008;91:4414–4423. doi: 10.3168/jds.2007-0980. PubMed DOI

Endelman JB. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome. 2011;4:250–255. doi: 10.3835/plantgenome2011.08.0024. DOI

Cingolani P, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 2012;6:80–92. doi: 10.4161/fly.19695. PubMed DOI PMC

Gel B, et al. regioneR: an R/Bioconductor package for the association analysis of genomic regions based on permutation tests. Bioinformatics. 2015;32:289–291. doi: 10.1093/bioinformatics/btv562. PubMed DOI PMC

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016;34:525–527. doi: 10.1038/nbt.3519. PubMed DOI

Dong S-S, et al. LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Brief. Bioinform. 2020;22:bbaa227. doi: 10.1093/bib/bbaa227. PubMed DOI

Zablatzká L, Balarynová J, Klčová B, Kopecký P, Smýkal P. Anatomy and histochemistry of seed coat development of wild (Pisum sativum subsp. elatius (M. Bieb.) Asch. et Graebn. and domesticated pea (Pisum sativum subsp. sativum L.) Int. J. Mol. Sci. 2021;22:4602. doi: 10.3390/ijms22094602. PubMed DOI PMC

Krejčí P, et al. Combination of electronically driven micromanipulation with laser desorption ionization mass spectrometry—the unique tool for analysis of seed coat layers and revealing the mystery of seed dormancy. Talanta. 2022;242:123303. doi: 10.1016/j.talanta.2022.123303. PubMed DOI

Warsame AO, Michael N, O’Sullivan DM, Tosi P. Seed development and protein accumulation patterns in faba bean (Vicia faba, L.) J. Agric. Food Chem. 2022;70:9295–9304. doi: 10.1021/acs.jafc.2c02061. PubMed DOI PMC

Seibt KM, Schmidt T, Heitkam T. FlexiDot: highly customizable, ambiguity-aware dotplots for visual sequence analyses. Bioinformatics. 2018;34:3575–3577. doi: 10.1093/bioinformatics/bty395. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...