Day-to-day pattern of work and leisure time physical behaviours: are low socioeconomic status adults couch potatoes or work warriors?
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
20175100213
The Danish Working Environment Research Fund
1162166
the National Health and Medical Research Council (NHMRC)
102084
National Heart Foundation of Australia
PubMed
34233666
PubMed Central
PMC8265073
DOI
10.1186/s12889-021-11409-0
PII: 10.1186/s12889-021-11409-0
Knihovny.cz E-zdroje
- Klíčová slova
- Accelerometer data, Compositional data analysis, Physical activity, Sedentary time, Socioeconomic inequality, Time-use,
- MeSH
- akcelerometrie MeSH
- dospělí MeSH
- lidé MeSH
- průřezové studie MeSH
- Solanum tuberosum * MeSH
- společenská třída MeSH
- volnočasové aktivity MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Most studies on day-to-day patterns of physical behaviours (i.e. physical activities and sedentary behaviour) are based on adults with high socioeconomic status (SES) and without differentiating between work and leisure time. Thus, we aimed to characterise the day-to-day leisure time physical behaviours patterns among low SES adults and investigate the influence of work physical behaviours. METHODS: This cross-sectional study included 963 adults from low SES occupations (e.g. manufacturing, cleaning and transportation). The participants wore accelerometers for 1-7 days to measure physical behaviours during work and leisure time, expressed as time-use compositions consisting of time spent sedentary, standing or being active (walking, running, stair climbing, or cycling). Compositional multivariate multilevel models were used to regress daily leisure time-use composition against work time-use compositions. Interaction between weekday and (1) type of day, (i.e., work/non-work) and (2) the work time-use composition were tested. Compositional isotemporal substitution was used to interpret the estimates from the models. RESULTS: Each weekday, workers consistently spent most leisure time being sedentary and most work time standing. Leisure time physical behaviours were associated with type of day (p < 0.005, more sedentary on workdays vs. non-workdays), weekday (p < 0.005, more sedentary on Friday, Saturday and Sunday), standing work (p < 0.005, more sedentary and less standing and active leisure time on Sunday), and active work (p < 0.005, less sedentary and more standing and active leisure time on Sunday). Sedentary leisure time increased by 18 min, while standing and active leisure time decreased by 11 and 7 min, respectively, when 30 min were reallocated to standing at work on Sunday. Conversely, sedentary leisure time decreased by 25 min, and standing and active leisure time increased by 15 and 10 min, respectively, when 30 min were reallocated to active time at work on Sunday. CONCLUSIONS: While low SES adults' leisure time was mostly sedentary, their work time was predominantly standing. Work physical behaviours differently influenced day-to-day leisure time behaviours. Thus, public health initiatives aiming to change leisure time behaviours among low SES adults should consider the influence of work physical behaviours.
Department of Sports Science and Clinical Biomechanics University of Southern Denmark Odense Denmark
National Research Centre for the Working Environment Copenhagen Denmark
Occupational Health and Safety Municipality of Copenhagen Copenhagen Denmark
Section of Social Medicine Department of Public Health University of Copenhagen Copenhagen Denmark
Zobrazit více v PubMed
Sofi F, Capalbo A, Marcucci R, Gori AM, Fedi S, Macchi C, Casini A, Surrenti C, Abbate R, Gensini GF. Leisure time but not occupational physical activity significantly affects cardiovascular risk factors in an adult population. Eur J Clin Investig. 2007;37(12):947–953. doi: 10.1111/j.1365-2362.2007.01884.x. PubMed DOI
Richard A, Martin B, Wanner M, Eichholzer M, Rohrmann S. Effects of leisure-time and occupational physical activity on total mortality risk in NHANES III according to sex, ethnicity, central obesity, and age. J Phys Act Health. 2015;12(2):184–192. doi: 10.1123/jpah.2013-0198. PubMed DOI
Smith AD, Crippa A, Woodcock J, Brage S. Physical activity and incident type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of prospective cohort studies. Diabetologia. 2016;59(12):2527–2545. doi: 10.1007/s00125-016-4079-0. PubMed DOI PMC
Stamatakis E, Rogers K, Ding D, Berrigan D, Chau J, Hamer M, Bauman A. All-cause mortality effects of replacing sedentary time with physical activity and sleeping using an isotemporal substitution model: a prospective study of 201,129 mid-aged and older adults. Int J Behav Nutr Phys Act. 2015;12(1):121. doi: 10.1186/s12966-015-0280-7. PubMed DOI PMC
American Center for Disease Control . 2008 Physical activity guidelines for Americans. 2008.
World Health Organization . More active people for a healthier world: global action plan on physical activity 2018-2030. 2018.
Scholes S, Bann D. Education-related disparities in reported physical activity during leisure-time, active transportation, and work among US adults: repeated cross-sectional analysis from the National Health and nutrition examination surveys, 2007 to 2016. BMC Public Health. 2018;18(1):926. doi: 10.1186/s12889-018-5857-z. PubMed DOI PMC
Szilcz M, Mosquera PA, Sebastián MS, Gustafsson PE. Time trends in absolute and relative socioeconomic inequalities in leisure time physical inactivity in northern Sweden. Scand J Public Health. 2018;46(1):112–123. doi: 10.1177/1403494817713123. PubMed DOI
Van Cauwenberg J, Loyen A, Lakerveld J, Cardon G, De Craemer M, Gheysen F, et al. Differential influences of population densification and economic growth on Europeans’ physical activity and sitting time. Cities. 2018;82:141–149. doi: 10.1016/j.cities.2018.07.006. DOI
Evenson KR, Wen F, Metzger JS, Herring AH. Physical activity and sedentary behavior patterns using accelerometry from a national sample of United States adults. Int J Behav Nutr Phys Act. 2015;12(1):20. doi: 10.1186/s12966-015-0183-7. PubMed DOI PMC
Shuval K, Li Q, Gabriel KP, Tchernis R. Income, physical activity, sedentary behavior, and the “weekend warrior” among U.S. adults. Prev Med. 2017;103:91–97. doi: 10.1016/j.ypmed.2017.07.033. PubMed DOI
Metzger JS, Catellier DJ, Evenson KR, Treuth MS, Rosamond WD, Siega-Riz AM. Patterns of objectively measured physical activity in the United States. Med Sci Sports Exerc. 2008;40(4):630–638. doi: 10.1249/MSS.0b013e3181620ebc. PubMed DOI
Gubelmann C, Vollenweider P, Marques-Vidal P. Of weekend warriors and couch potatoes: socio-economic determinants of physical activity in Swiss middle-aged adults. Prev Med. 2017;105:350–355. doi: 10.1016/j.ypmed.2017.10.016. PubMed DOI
Pulakka A, Stenholm S, Bosma H, Schaper NC, Savelberg HHCM, Stehouwer CDA, van der Kallen CJH, Dagnelie PC, Sep SJS, Koster A. Association between employment status and objectively measured physical activity and sedentary behavior-the Maastricht study. J Occup Environ Med. 2018;60(4):309–315. doi: 10.1097/JOM.0000000000001254. PubMed DOI
Beenackers MA, Kamphuis CB, Giskes K, Brug J, Kunst AE, Burdorf A, et al. Socioeconomic inequalities in occupational, leisure-time, and transport related physical activity among European adults: a systematic review. Int J Behav Nutr Phys Act. 2012;9(1):116. doi: 10.1186/1479-5868-9-116. PubMed DOI PMC
Cusatis R, Garbarski D. Different domains of physical activity: the role of leisure, housework/care work, and paid work in socioeconomic differences in reported physical activity. SSM - Population Health. 2019;7:100387. doi: 10.1016/j.ssmph.2019.100387. PubMed DOI PMC
Jones SA, Wen F, Herring AH, Evenson KR. Correlates of US adult physical activity and sedentary behavior patterns. J Sci Med Sport. 2016;19(12):1020–1027. doi: 10.1016/j.jsams.2016.03.009. PubMed DOI PMC
Spence JC, Lee RE. Toward a comprehensive model of physical activity. Psychol Sport Exerc. 2003;4(1):7–24. doi: 10.1016/S1469-0292(02)00014-6. DOI
Rhodes RE, Mark RS, Temmel CP. Adult sedentary behavior: a systematic review. Am J Prev Med. 2012;42(3):e3–28. doi: 10.1016/j.amepre.2011.10.020. PubMed DOI
Kohl HW, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, et al. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380(9838):294–305. doi: 10.1016/S0140-6736(12)60898-8. PubMed DOI
Owen N, Leslie E, Salmon J, Fotheringham MJ. Environmental determinants of physical activity and sedentary behavior. Exerc Sport Sci Rev. 2000;28(4):153–158. PubMed
Kirk MA, Rhodes RE. Occupation correlates of adults’ participation in leisure-time physical activity: a systematic review. Am J Prev Med. 2011;40(4):476–485. doi: 10.1016/j.amepre.2010.12.015. PubMed DOI
Dempsey PC, Biddle SJH, Buman MP, Chastin S, Ekelund U, Friedenreich CM, et al. New global guidelines on sedentary behaviour and health for adults: broadening the behavioural targets. Int J Behav Nutr Phys Act. 2020;17:1–12. doi: 10.1186/s12966-020-01044-0. PubMed DOI PMC
Aitchison J. The statistical analysis of compositional data. London: Chapman and Hall; 1986.
Gupta N, Rasmussen CL, Holtermann A, Mathiassen SE. Time-based data in occupational studies: the whys, the Hows, and some remaining challenges in compositional data analysis (CoDA) Ann Work Expo Health. 2020;64(8):778–785. doi: 10.1093/annweh/wxaa056. PubMed DOI PMC
Dumuid D, Pedišić Ž, Palarea-Albaladejo J, Martín-Fernández JA, Hron K, Olds T. Compositional data analysis in time-use epidemiology: what, why, how. Int J Environ Res Public Health. 2020;17(7). 10.3390/ijerph17072220. PubMed PMC
Jørgensen MB, Korshøj M, Lagersted-Olsen J, Villumsen M, Mortensen OS, Skotte J, et al. Physical activities at work and risk of musculoskeletal pain and its consequences: protocol for a study with objective field measures among blue-collar workers. BMC Musculoskelet Disord. 2013;14:1. doi: 10.1186/1471-2474-14-1. PubMed DOI PMC
Gupta N, Jensen BS, Søgaard K, Carneiro IG, Christiansen CS, Hanisch C, Holtermann A. Face validity of the single work ability item: comparison with objectively measured heart rate reserve over several days. Int J Environ Res Public Health. 2014;11(5):5333–5348. doi: 10.3390/ijerph110505333. PubMed DOI PMC
Software | ActiGraph [Internet]. Available from: http://actigraphcorp.com/support/software/. Cited 2016 Dec 20.
Skotte J, Korshøj M, Kristiansen J, Hanisch C, Holtermann A. Detection of physical activity types using triaxial accelerometers. J Phys Act Health. 2014;11(1):76–84. doi: 10.1123/jpah.2011-0347. PubMed DOI
Stemland I, Ingebrigtsen J, Christiansen CS, Jensen BR, Hanisch C, Skotte J, Holtermann A. Validity of the Acti4 method for detection of physical activity types in free-living settings: comparison with video analysis. Ergonomics. 2015;58(6):953–965. doi: 10.1080/00140139.2014.998724. PubMed DOI
Pawlowsky-Glahn V, Egozcue JJ, Lovell D. Tools for compositional data with a total. Stat Model. 2015;15(2):175–190. doi: 10.1177/1471082X14535526. DOI
Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R. Modeling and analysis of compositional data. Chichester: Wiley; 2015.
Hron K, Filzmoser P, de Caritat P, Fišerová E, Gardlo A. Weighted pivot coordinates for compositional data and their application to geochemical mapping. Math Geosci. 2017;49(6):797–814. doi: 10.1007/s11004-017-9684-z. DOI
Dumuid D, Pedišić Ž, Stanford TE, Martín-Fernández J-A, Hron K, Maher CA, et al. The compositional isotemporal substitution model: a method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat Methods Med Res. 2019;28(3):846–57. PubMed
Lund Rasmussen C, Palarea-Albaladejo J, Bauman A, Gupta N, Nabe-Nielsen K, Jørgensen MB, et al. Does physically demanding work hinder a physically active lifestyle in low socioeconomic workers? A Compositional Data Analysis Based on Accelerometer Data. Int J Environ Res Public Health. 2018;15:1306. doi: 10.3390/ijerph15071306. PubMed DOI PMC
R Core Team . R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.
Boogaart K, Tolosana R, Bren M. compositions: Compositional Data Analysis. R (version ≥ 220) 2014.
Hadfield JD. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw. 2010;33:1–22. doi: 10.18637/jss.v033.i02. PubMed DOI
Baldwin SA, Imel ZE, Braithwaite SR, Atkins DC. Analyzing multiple outcomes in clinical research using multivariate multilevel models. J Consult Clin Psychol. 2014;82(5):920–930. doi: 10.1037/a0035628. PubMed DOI PMC
Stalsberg R, Pedersen A. Are differences in physical activity across socioeconomic groups associated with choice of physical activity variables to report? Int J Behav Nutr Phys Act. 2018;15:922. PubMed PMC
Brighenti-Zogg S, Mundwiler J, Schüpbach U, Dieterle T, Wolfer DP, Leuppi JD, Miedinger D. Physical workload and work capacity across occupational groups. PLoS One. 2016;11(5):e0154073. doi: 10.1371/journal.pone.0154073. PubMed DOI PMC
Miller R, Brown W. Steps and sitting in a working population. Int J Behav Med. 2004;11(4):219–224. doi: 10.1207/s15327558ijbm1104_5. PubMed DOI
Balasubramanian V, Adalarasu K, Regulapati R. Comparing dynamic and stationary standing postures in an assembly task. Int J Ind Ergon. 2009;39(5):649–654. doi: 10.1016/j.ergon.2008.10.017. DOI
Bahk JW, Kim H, Jung-Choi K, Jung M-C, Lee I. Relationship between prolonged standing and symptoms of varicose veins and nocturnal leg cramps among women and men. Ergonomics. 2012;55(2):133–139. doi: 10.1080/00140139.2011.582957. PubMed DOI
Bláfoss R, Micheletti JK, Sundstrup E, Jakobsen MD, Bay H, Andersen LL. Is fatigue after work a barrier for leisure-time physical activity? Cross-sectional study among 10,000 adults from the general working population. Scand J Public Health. 2019;47(3):383–91. PubMed
Lund Rasmussen C, Nabe-Nielsen K, Jørgensen MB, Holtermann A. The association between occupational standing and sedentary leisure time over consecutive workdays among blue-collar workers in manual jobs. Int Arch Occup Environ Health. 2018;92:481–90. PubMed
JaKa MM, Haapala JL, Wolfson J, French SA. Describing the relationship between occupational and non-occupational physical activity using objective measurement. Prev Med Rep. 2015;2:213–217. doi: 10.1016/j.pmedr.2015.03.003. PubMed DOI PMC
Tigbe WW, Lean MEJ, Granat MH. A physically active occupation does not result in compensatory inactivity during out-of-work hours. Prev Med. 2011;53(1-2):48–52. doi: 10.1016/j.ypmed.2011.04.018. PubMed DOI
Rhodes RE, Janssen I, Bredin SSD, Warburton DER, Bauman A. Physical activity: health impact, prevalence, correlates and interventions. Psychol Health. 2017;32(8):942–975. doi: 10.1080/08870446.2017.1325486. PubMed DOI
Adams J, Mytton O, White M, Monsivais P. Why are some population interventions for diet and obesity more equitable and effective than others? The role of individual agency. PLoS Med. 2016;13(4):e1001990. 10.1371/journal.pmed.1001990. PubMed PMC
Craike M, Wiesner G, Hilland TA, Bengoechea EG. Interventions to improve physical activity among socioeconomically disadvantaged groups: an umbrella review. Int J Behav Nutr Phys Act. 2018;15(1):43. doi: 10.1186/s12966-018-0676-2. PubMed DOI PMC
Strain T, Wijndaele K, Garcia L, Cowan M, Guthold R, Brage S, Bull FC. Levels of domain-specific physical activity at work, in the household, for travel and for leisure among 327 789 adults from 104 countries. Br J Sports Med. 2020;54(24):1488–1497. doi: 10.1136/bjsports-2020-102601. PubMed DOI PMC
Gidlow C, Johnston LH, Crone D, Ellis N, James D. A systematic review of the relationship between socio-economic position and physical activity. Health Educ J. 2006;65(4):338–367. doi: 10.1177/0017896906069378. DOI
Galobardes B, Shaw M, Lawlor DA, Lynch JW, Davey Smith G. Indicators of socioeconomic position (part 1) J Epidemiol Community Health. 2006;60(1):7–12. doi: 10.1136/jech.2004.023531. PubMed DOI PMC
Galobardes B, Shaw M, Lawlor DA, Lynch JW, Davey Smith G. Indicators of socioeconomic position (part 2) J Epidemiol Community Health. 2006;60(2):95–101. doi: 10.1136/jech.2004.028092. PubMed DOI PMC
Jørgensen MB, Gupta N, Korshøj M, Lagersted-Olsen J, Villumsen M, Mortensen OS, Skotte J, Søgaard K, Madeleine P, Samani A, Ørberg A, Rasmussen CL, Holtermann A. The DPhacto cohort: an overview of technically measured physical activity at work and leisure in blue-collar sectors for practitioners and researchers. Appl Ergon. 2019;77:29–39. doi: 10.1016/j.apergo.2019.01.003. PubMed DOI
Gupta N, Christiansen CS, Hallman DM, Korshøj M, Carneiro IG, Holtermann A. Is objectively measured sitting time associated with low back pain? A cross-sectional investigation in the NOMAD study. PLoS One. 2015;10:e0121159. doi: 10.1371/journal.pone.0121159. PubMed DOI PMC
Kruger J, Yore MM, Ainsworth BE, Macera CA. Is participation in occupational physical activity associated with lifestyle physical activity levels? J Occup Environ Med. 2006;48(11):1143–1148. doi: 10.1097/01.jom.0000245919.37147.79. PubMed DOI