Structure-Dependent Effects of Phthalates on Intercellular and Intracellular Communication in Liver Oval Cells

. 2020 Aug 23 ; 21 (17) : . [epub] 20200823

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32842520

Grantová podpora
GJ16-10775Y Grantová Agentura České Republiky

Humans are exposed to phthalates released from plastics, cosmetics, or food on a daily basis. Phthalates have low acute liver toxicity, but their chronic exposures could induce molecular and cellular effects linked to adverse health outcomes, such as liver tumor promotion or chronic liver diseases. The alternation of gap junctional intercellular communication (GJIC) and MAPK-Erk1/2 pathways in liver progenitor or oval cells can disrupt liver tissue homeostatic mechanisms and affect the development and severity of these adverse outcomes. Our study with 20 different phthalates revealed their structurally dependent effects on liver GJIC and MAPK-Erk1/2 signaling in rat liver WB-F344 cell line with characteristics of liver oval cells. The phthalates with a medium-length side chain (3-6 C) were the most potent dysregulators of GJIC and activators of MAPK-Erk1/2. The effects occurred rapidly, suggesting the activation of non-genomic (non-transcriptional) mechanisms directly by the parental compounds. Short-chain phthalates (1-2 C) did not dysregulate GJIC even after longer exposures and did not activate MAPK-Erk1/2. Longer chain (≥7 C) phthalates, such as DEHP or DINP, moderately activated MAPK-Erk1/2, but inhibited GJIC only after prolonged exposures (>12 h), suggesting that GJIC dysregulation occurs via genomic mechanisms, or (bio)transformation. Overall, medium-chain phthalates rapidly affected the key tissue homeostatic mechanisms in the liver oval cell population via non-genomic pathways, which might contribute to the development of chronic liver toxicity and diseases.

Zobrazit více v PubMed

Schettler T. Human exposure to phthalates via consumer products. Int. J. 2006;29:134–135. doi: 10.1111/j.1365-2605.2005.00567.x. PubMed DOI

Horn O., Nalli S., Cooper D., Nicell J. Plasticizer metabolites in the environment. Water Res. 2004;38:3693–3698. doi: 10.1016/j.watres.2004.06.012. PubMed DOI

Przybylińska P.A., Wyszkowski M. Environmental contamination with phthalates and its impact on living organisms. Ecol. Chem. Eng. S. 2016;23:347–356. doi: 10.1515/eces-2016-0024. DOI

Huang P.C., Tien C.J., Sun Y.M., Hsieh C.Y., Lee C.C. Occurrence of phthalates in sediment and biota: Relationship to aquatic factors and the biota-sediment accumulation factor. Chemosphere. 2008;73:539–544. doi: 10.1016/j.chemosphere.2008.06.019. PubMed DOI

Rowdhwal S.S.S., Chen J. Toxic effects of di-2-ethylhexyl phthalate: An overview. Biomed Res. Int. 2018;2018:1750368. doi: 10.1155/2018/1750368. PubMed DOI PMC

Heudorf U., Mersch-Sundermann V., Angerer J. Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health. 2007;210:623–634. doi: 10.1016/j.ijheh.2007.07.011. PubMed DOI

Ashworth M.J., Chappell A., Ashmore E., Fowles J. Analysis and assessment of exposure to selected phthalates found in children’s toys in Christchurch, New Zealand. Int. J. Environ. Res. Public Health. 2018;15:200. doi: 10.3390/ijerph15020200. PubMed DOI PMC

Larsson K., Lindh C.H., Jonsson B.A., Giovanoulis G., Bibi M., Bottai M., Bergstrom A., Berglund M. Phthalates, non-phthalate plasticizers and bisphenols in Swedish preschool dust in relation to children’s exposure. Environ. Int. 2017;102:114–124. doi: 10.1016/j.envint.2017.02.006. PubMed DOI

Latini G. Monitoring phthalate exposure in humans. Clin. Chim. Acta. 2005;361:20–29. doi: 10.1016/j.cccn.2005.05.003. PubMed DOI

Ito Y., Yamanoshita O., Asaeda N., Tagawa Y., Lee C.-H., Aoyama T., Ichihara G., Furuhashi K., Kamijima M., Gonzalez F.J., et al. Di(2-ethylhexyl)phthalate induces hepatic tumorigenesis through a peroxisome proliferator-activated receptor alpha-independent pathway. J. Occup. Health. 2007;49:172–182. doi: 10.1539/joh.49.172. PubMed DOI

Wang Y.-C., Chen H.-S., Long C.-Y., Tsai C.-F., Hsieh T.-H., Hsu C.-Y., Tsai E.-M. Possible mechanism of phthalates-induced tumorigenesis. Kaohsiung J. Med. Sci. 2012;28:S22–S27. doi: 10.1016/j.kjms.2012.05.006. PubMed DOI

Butterworth B.E., Bermudez E., Smith-Oliver T., Earle L., Cattley R., Martin J., Popp J.A., Strom S., Jirtle R., Michalopoulos G. Lack of genotoxic activity of di(2-ethylhexyl)phthalate (DEHP) in rat and human hepatocytes | Carcinogenesis | Oxford Academic. Carcinogenesis. 1984;5:1329–1335. doi: 10.1093/carcin/5.10.1329. PubMed DOI

Benjamin S., Masai E., Kamimura N., Takahashi K., Anderson R.C., Faisal P.A. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. J. Hazard. Mater. 2017;340:360–383. doi: 10.1016/j.jhazmat.2017.06.036. PubMed DOI

Miao Y., Wang R., Lu C., Zhao J., Deng Q. Lifetime cancer risk assessment for inhalation exposure to di(2-ethylhexyl) phthalate (DEHP) Environ. Sci. Pollut. Res. Int. 2017;24:312–320. doi: 10.1007/s11356-016-7797-4. PubMed DOI

United States Environmental Protection Agency Integrated Risk Information System: Di(2-ethylhexyl) Phthalate (DEHP) (CASRN 117-81-7) [(accessed on 22 August 2020)]; Available online: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0014_summary.pdf.

Berardis S., Sokal E. Pediatric non-alcoholic fatty liver disease: An increasing public health issue. Eur. J. Pediatr. 2014;173:131–139. doi: 10.1007/s00431-013-2157-6. PubMed DOI PMC

Fausto N., Campbell J.S. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech. Dev. 2003;120:117–130. doi: 10.1016/S0925-4773(02)00338-6. PubMed DOI

Huch M., Dorrell C., Boj S.F., van Es J.H., Li V.S.W., van de Wetering M., Sato T., Hamer K., Sasaki N., Finegold M.J., et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494:247–250. doi: 10.1038/nature11826. PubMed DOI PMC

Kholodenko I.V., Yarygin K.N. Cellular mechanisms of liver regeneration and cell-based therapies of liver diseases. Biomed Res. Int. 2017;2017:8910821. doi: 10.1155/2017/8910821. PubMed DOI PMC

Sadri A.-R., Jeschke M.G., Amini-Nik S. Advances in liver regeneration: Revisiting hepatic stem/progenitor cells and their origin. Stem Cells Int. 2016;2016:7920897. doi: 10.1155/2016/7920897. PubMed DOI PMC

Canovas-Jorda D., Louisse J., Pistollato F., Zagoura D., Bremer S. Regenerative toxicology: The role of stem cells in the development of chronic toxicities. Expert Opin. Drug Metab. Toxicol. 2014;10:39–50. doi: 10.1517/17425255.2013.844228. PubMed DOI

Kang K.-S., Trosko J.E. Stem cells in toxicology: Fundamental biology and practical considerations. Toxicol. Sci. 2011;120:S269–S289. doi: 10.1093/toxsci/kfq370. PubMed DOI

Knight B., Lim R., Yeoh G.C., Olynyk J.K. Interferon-gamma exacerbates liver damage, the hepatic progenitor cell response and fibrosis in a mouse model of chronic liver injury. J. Hepatol. 2007;47:826–833. doi: 10.1016/j.jhep.2007.06.022. PubMed DOI

Persano L., Zagoura D., Louisse J., Pistollato F. Role of environmental chemicals, processed food derivatives, and nutrients in the induction of carcinogenesis. Stem Cells Dev. 2015;24:2337–2352. doi: 10.1089/scd.2015.0081. PubMed DOI

Vanova T., Raska J., Babica P., Sovadinova I., Kunova Bosakova M., Dvorak P., Blaha L., Rotrekl V. Freshwater Cyanotoxin Cylindrospermopsin Has Detrimental Stage-specific Effects on hepatic differentiation from human embryonic stem cells. Toxicol. Sci. 2019;168:241–251. doi: 10.1093/toxsci/kfy293. PubMed DOI

Wang K., Sun D. Cancer stem cells of hepatocellular carcinoma. Oncotarget. 2018;9:23306–23314. doi: 10.18632/oncotarget.24623. PubMed DOI PMC

Vondráček J., Machala M., Vondracek J., Machala M., Vondráček J., Machala M. Environmental ligands of the aryl hydrocarbon receptor and their effects in models of adult liver progenitor cells. Stem Cells Int. 2016;2016:4326194. doi: 10.1155/2016/4326194. PubMed DOI PMC

Hernández-Guerra M., Hadjihambi A., Jalan R. Gap junctions in liver disease: Implications for pathogenesis and therapy. J. Hepatol. 2019;70:759–772. doi: 10.1016/j.jhep.2018.12.023. PubMed DOI

Maes M., Vinken M. Connexin-based signaling and drug-induced hepatotoxicity. J. Clin. Transl. Res. 2017;3:189–198. doi: 10.18053/jctres.03.2017S1.004. PubMed DOI PMC

Aasen T., Mesnil M., Naus C.C., Lampe P.D., Laird D.W. Gap junctions and cancer: Communicating for 50 years. Nat. Rev. Cancer. 2016;16:775–788. doi: 10.1038/nrc.2016.105. PubMed DOI PMC

Sai K., Upham B.L., Kang K.S., Hasegawa R., Inoue T., Trosko J.E. Inhibitory effect of pentachlorophenol on gap junctional intercellular communication in rat liver epithelial cells in vitro. Cancer Lett. 1998;130:9–17. doi: 10.1016/S0304-3835(98)00082-2. PubMed DOI

Trosko J.E., Ruch R.J. Cell-cell communication in carcinogenesis. Front. Biosci. 1998;3:d208–d236. doi: 10.2741/A275. PubMed DOI

Trosko J.E., Ruch R.J. Gap junctions as targets for cancer chemoprevention and chemotherapy. Curr. Drug Targets. 2002;3:465–482. doi: 10.2174/1389450023347371. PubMed DOI

Vinken M. Gap junctions and non-neoplastic liver disease. J. Hepatol. 2012;57:655–662. doi: 10.1016/j.jhep.2012.02.036. PubMed DOI

Vinken M., Doktorova T., Decrock E., Leybaert L., Vanhaecke T., Rogiers V. Gap junctional intercellular communication as a target for liver toxicity and carcinogenicity. Crit. Rev. Biochem. Mol. Biol. 2009;44:201–222. doi: 10.1080/10409230903061215. PubMed DOI

Yamasaki H., Omori Y., Zaidan-Dagli M.L., Mironov N., Mesnil M., Krutovskikh V. Genetic and epigenetic changes of intercellular communication genes during multistage carcinogenesis. Cancer Detect. Prev. 1999;23:273–279. doi: 10.1046/j.1525-1500.1999.99037.x. PubMed DOI

Jacobs M.N., Colacci A., Corvi R., Vaccari M., Aguila M.C., Corvaro M., Delrue N., Desaulniers D., Ertych N., Jacobs A., et al. Chemical carcinogen safety testing: OECD expert group international consensus on the development of an integrated approach for the testing and assessment of chemical non-genotoxic carcinogens. Arch. Toxicol. 2020;1:3. doi: 10.1007/s00204-020-02784-5. PubMed DOI PMC

Hu W., Jones P.D., Upham B.L., Trosko J.E., Lau C., Giesy J.P. Inhibition of gap junctional intercellular communication by perfluorinated compounds in rat liver and dolphin kidney epithelial cell lines in vitro and Sprague-Dawley rats in vivo. Toxicol. Sci. 2002;68:429–436. doi: 10.1093/toxsci/68.2.429. PubMed DOI

Kubincova P., Sychrova E., Raska J., Basu A., Yawer A., Dydowiczova A., Babica P., Sovadinova I. Polycyclic aromatic hydrocarbons and endocrine disruption: Role of testicular gap junctional intercellular communication and connexins. Toxicol. Sci. 2019;169:70–83. doi: 10.1093/toxsci/kfz023. PubMed DOI

Osgood R.S., Upham B.L., Hill T., 3rd, Helms K.L., Velmurugan K., Babica P., Bauer A.K. Polycyclic aromatic hydrocarbon-induced signaling events relevant to inflammation and tumorigenesis in lung cells are dependent on molecular structure. PLoS ONE. 2014;8:e65150. doi: 10.1371/journal.pone.0065150. PubMed DOI PMC

Sovadinova I., Babica P., Boke H., Kumar E., Wilke A., Park J.-S., Trosko J.E., Upham B.L. Phosphatidylcholine specific PLC-induced dysregulation of gap junctions, a robust cellular response to environmental toxicants, and prevention by resveratrol in a rat liver cell model. PLoS ONE. 2015;10:e0124454. doi: 10.1371/journal.pone.0124454. PubMed DOI PMC

Upham B.L., Sovadinova I., Babica P., Sovadinová I., Babica P. Gap junctional intercellular communication: A functional biomarker to assess adverse effects of toxicants and toxins, and health benefits of natural products. J. Vis. Exp. 2016;2016 doi: 10.3791/54281. PubMed DOI PMC

Upham B.L., Park J.-S., Babica P., Sovadinova I., Rummel A.M., Trosko J.E., Hirose A., Hasegawa R., Kanno J., Sai K. Structure-activity-dependent regulation of cell communication by perfluorinated fatty acids using in vivo and in vitro model systems. Environ. Health Perspect. 2009;117:545–551. doi: 10.1289/ehp.11728. PubMed DOI PMC

Upham B.L., Blaha L., Babica P., Park J.-S., Sovadinova I., Pudrith C., Rummel A.M., Weis L.M., Sai K., Tithof P.K., et al. Tumor promoting properties of a cigarette smoke prevalent polycyclic aromatic hydrocarbon as indicated by the inhibition of gap junctional intercellular communication via phosphatidylcholine-specific phospholipase C. Cancer Sci. 2008;99:696–705. doi: 10.1111/j.1349-7006.2008.00752.x. PubMed DOI PMC

Babica P., Zurabian R., Kumar E.R., Chopra R., Mianecki M.J., Park J.-S., Jasa L., Trosko J.E., Upham B.L. Methoxychlor and vinclozolin induce rapid changes in intercellular and intracellular signaling in liver progenitor cells. Toxicol. Sci. 2016;153:174–185. doi: 10.1093/toxsci/kfw114. PubMed DOI PMC

Klaunig J.E., Ruch R.J., DeAngelo A.B., Kaylor W.H. Inhibition of mouse hepatocyte intercellular communication by phthalate monoesters. Cancer Lett. 1988;43:65–71. doi: 10.1016/0304-3835(88)90215-7. PubMed DOI

Tsao M.S., Smith J.D., Nelson K.G., Grisham J.W. A diploid epithelial cell line from normal adult rat liver with phenotypic properties of “oval” cells. Exp. Cell Res. 1984;154:38–52. doi: 10.1016/0014-4827(84)90666-9. PubMed DOI

Dydowiczová A., Brózman O., Babica P., Sovadinová I., Dydowiczova A., Brozman O., Babica P., Sovadinova I. Improved multiparametric scrape loading-dye transfer assay for a simultaneous high-throughput analysis of gap junctional intercellular communication, cell density and viability. Sci. Rep. 2020;10:730. doi: 10.1038/s41598-020-57536-3. PubMed DOI PMC

Lawan A., Bennett A.M. Mitogen-Activated Protein Kinase Regulation in Hepatic Metabolism. Trends Endocrinol. Metab. 2017;28:868–878. doi: 10.1016/j.tem.2017.10.007. PubMed DOI PMC

McMullen P.D., Bhattacharya S., Woods C.G., Pendse S.N., McBride M.T., Soldatow V.Y., Deisenroth C., LeCluyse E.L., Clewell R.A., Andersen M.E. Identifying qualitative differences in PPARα signaling networks in human and rat hepatocytes and their significance for next generation chemical risk assessment methods. Toxicol. Vitr. 2020;64:104463. doi: 10.1016/j.tiv.2019.02.017. PubMed DOI

Mathieu-Denoncourt J., Wallace S.J., de Solla S.R., Langlois V.S. Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen. Comp. Endocrinol. 2015;219:74–88. doi: 10.1016/j.ygcen.2014.11.003. PubMed DOI

Ambe K., Sakakibara Y., Sakabe A., Makino H., Ochibe T., Tohkin M. Comparison of the developmental/reproductive toxicity and hepatotoxicity of phthalate esters in rats using an open toxicity data source. J. Toxicol. Sci. 2019;44:245–255. doi: 10.2131/jts.44.245. PubMed DOI

Han H., Lee H.A., Park B., Park B., Hong Y.S., Ha E.H., Park H. Associations of phthalate exposure with lipid levels and insulin sensitivity index in children: A prospective cohort study. Sci. Total Environ. 2019;662:714–721. doi: 10.1016/j.scitotenv.2019.01.151. PubMed DOI

Milosevic N., Milic N., Zivanovic Bosic D., Bajkin I., Percic I., Abenavoli L., Medic Stojanoska M. Potential influence of the phthalates on normal liver function and cardiometabolic risk in males. Environ. Monit. Assess. 2017;190:17. doi: 10.1007/s10661-017-6398-0. PubMed DOI

Trasande L., Spanier A.J., Sathyanarayana S., Attina T.M., Blustein J. Urinary phthalates and increased insulin resistance in adolescents. Pediatrics. 2013;132:e646–e655. doi: 10.1542/peds.2012-4022. PubMed DOI PMC

Praveena S.M., Teh S.W., Rajendran R.K., Kannan N., Lin C.-C., Abdullah R., Kumar S. Recent updates on phthalate exposure and human health: A special focus on liver toxicity and stem cell regeneration. Environ. Sci. Pollut. Res. Int. 2018;25:11333–11342. doi: 10.1007/s11356-018-1652-8. PubMed DOI

Rusyn I., Peters J.M., Cunningham M.L. Modes of action and species-specific effects of di-(2-ethylhexyl)phthalate in the liver. Crit. Rev. Toxicol. 2006;36:459–479. doi: 10.1080/10408440600779065. PubMed DOI PMC

Maes M., Yanguas S.C., Willebrords J., Vinken M. Models and methods for in vitro testing of hepatic gap junctional communication. Toxicol. Vitr. 2015;30:569–577. doi: 10.1016/j.tiv.2015.09.024. PubMed DOI PMC

Smith J.H., Isenberg J.S., Pugh G.J., Kamendulis L.M., Ackley D., Lington A.W., Klaunig J.E. Comparative in vivo hepatic effects of Di-isononyl phthalate (DINP) and related C7-C11 dialkyl phthalates on gap junctional intercellular communication (GJIC), peroxisomal beta-oxidation (PBOX), and DNA synthesis in rat and mouse liver. Toxicol. Sci. 2000;54:312–321. doi: 10.1093/toxsci/54.2.312. PubMed DOI

Pugh G.J., Isenberg J.S., Kamendulis L.M., Ackley D.C., Clare L.J., Brown R., Lington A.W., Smith J.H., Klaunig J.E. Effects of di-isononyl phthalate, di-2-ethylhexyl phthalate, and clofibrate in cynomolgus monkeys. Toxicol. Sci. 2000;56:181–188. doi: 10.1093/toxsci/56.1.181. PubMed DOI

Isenberg J.S., Kamendulis L.M., Smith J.H., Ackley D.C., Pugh G.J., Lington A.W., Klaunig J.E. Effects of Di-2-ethylhexyl phthalate (DEHP) on gap-junctional intercellular communication (GJIC), DNA synthesis, and peroxisomal beta oxidation (PBOX) in rat, mouse, and hamster liver. Toxicol. Sci. 2000;56:73–85. doi: 10.1093/toxsci/56.1.73. PubMed DOI

McKee R.H. The role of inhibition of gap junctional intercellular communication in rodent liver tumor induction by phthalates: Review of data on selected phthalates and the potential relevance to man. Regul. Toxicol. Pharm. 2000;32:51–55. doi: 10.1006/rtph.2000.1407. PubMed DOI

Melnick R.L. Is peroxisome proliferation an obligatory precursor step in the carcinogenicity of di(2-ethylhexyl)phthalate (DEHP)? Environ. Health Perspect. 2001;109:437–442. doi: 10.1289/ehp.01109437. PubMed DOI PMC

Kamendulis L.M., Isenberg J.S., Smith J.H., Pugh G.J., Lington A.W., Klaunig J.E. Comparative effects of phthalate monoesters on gap junctional intercellular communication and peroxisome proliferation in rodent and primate hepatocytes. J. Toxicol. Environ. Health. A. 2002;65:569–588. doi: 10.1080/152873902317349736. PubMed DOI

Pham N., Iyer S., Hackett E., Lock B.H., Sandy M., Zeise L., Solomon G., Marty M. Using ToxCast to explore chemical activities and hazard traits: A case study with ortho-phthalates. Toxicol. Sci. 2016;151:286–301. doi: 10.1093/toxsci/kfw049. PubMed DOI

Corton J.C., Peters J.M., Klaunig J.E. The PPARα-dependent rodent liver tumor response is not relevant to humans: Addressing misconceptions. Arch. Toxicol. 2018;92:83–119. doi: 10.1007/s00204-017-2094-7. PubMed DOI PMC

Guyton K.Z., Chiu W.A., Bateson T.F., Jinot J., Scott C.S., Brown R.C., Caldwell J.C. A reexamination of the PPAR-alpha activation mode of action as a basis for assessing human cancer risks of environmental contaminants. Environ. Health Perspect. 2009;117:1664–1672. doi: 10.1289/ehp.0900758. PubMed DOI PMC

Rusyn I., Corton J.C. Mechanistic considerations for human relevance of cancer hazard of di(2-ethylhexyl) phthalate. Mutat. Res. 2012;750:141–158. doi: 10.1016/j.mrrev.2011.12.004. PubMed DOI PMC

Li L., Zhao G.-D., Shi Z., Qi L.-L., Zhou L.-Y., Fu Z.-X. The Ras/Raf/MEK/ERK signaling pathway and its role in the occurrence and development of HCC. Oncol. Lett. 2016;12:3045–3050. doi: 10.3892/ol.2016.5110. PubMed DOI PMC

Tsai C.-F., Hsieh T.-H., Lee J.-N., Hsu C.-Y., Wang Y.-C., Lai F.-J., Kuo K.-K., Wu H.-L., Tsai E.-M., Kuo P.-L. Benzyl butyl phthalate induces migration, invasion, and angiogenesis of Huh7 hepatocellular carcinoma cells through nongenomic AhR/G-protein signaling. BMC Cancer. 2014;14:556. doi: 10.1186/1471-2407-14-556. PubMed DOI PMC

Hayashi T., Nomata K., Chang C.C., Ruch R.J., Trosko J.E. Cooperative effects of v-myc and c-Ha-ras oncogenes on gap junctional intercellular communication and tumorigenicity in rat liver epithelial cells. Cancer Lett. 1998;128:145–154. doi: 10.1016/S0304-3835(98)00060-3. PubMed DOI

Rae R.S., Mehta P.P., Chang C.C., Trosko J.E., Ruch R.J. Neoplastic phenotype of gap-junctional intercellular communication-deficient WB rat liver epithelial cells and its reversal by forced expression of connexin 32. Mol. Carcinog. 1998;22:120–127. doi: 10.1002/(SICI)1098-2744(199806)22:2<120::AID-MC7>3.0.CO;2-Q. PubMed DOI

Sun H., Liu G. Chemopreventive effect of dimethyl dicarboxylate biphenyl on malignant transformation of WB-F344 rat liver epithelial cells. Acta Pharm. Sin. 2005;26:1339–1344. doi: 10.1111/j.1745-7254.2005.00208.x. PubMed DOI

Li X., Li Y., Kang X., Guo K., Li H., Gao D., Sun L., Liu Y. Dynamic alteration of protein expression profiles during neoplastic transformation of rat hepatic oval-like cells. Cancer Sci. 2010;101:1099–1107. doi: 10.1111/j.1349-7006.2010.01513.x. PubMed DOI PMC

Solan J.L., Lampe P.D. Connexin43 phosphorylation: Structural changes and biological effects. Biochem. J. 2009;419:261–272. doi: 10.1042/BJ20082319. PubMed DOI PMC

Ruch R.J., Trosko J.E., Madhukar B.V. Inhibition of connexin43 gap junctional intercellular communication by TPA requires ERK activation. J. Cell. Biochem. 2001;83:163–169. doi: 10.1002/jcb.1227. PubMed DOI

Rivedal E., Opsahl H. Role of PKC and MAP kinase in EGF- and TPA-induced connexin43 phosphorylation and inhibition of gap junction intercellular communication in rat liver epithelial cells. Carcinogenesis. 2001;22:1543–1550. doi: 10.1093/carcin/22.9.1543. PubMed DOI

Wang Y., Zhu H., Kannan K. A review of biomonitoring of phthalate exposures. Toxics. 2019;7:21. doi: 10.3390/toxics7020021. PubMed DOI PMC

Hogberg J., Hanberg A., Berglund M., Skerfving S., Remberger M., Calafat A.M., Filipsson A.F., Jansson B., Johansson N., Appelgren M., et al. Phthalate diesters and their metabolites in human breast milk, blood or serum, and urine as biomarkers of exposure in vulnerable populations. Environ. Health Perspect. 2008;116:334–339. doi: 10.1289/ehp.10788. PubMed DOI PMC

Wan H.T., Leung P.Y., Zhao Y.G., Wei X., Wong M.H., Wong C.K.C. Blood plasma concentrations of endocrine disrupting chemicals in Hong Kong populations. J. Hazard. Mater. 2013;261:763–769. doi: 10.1016/j.jhazmat.2013.01.034. PubMed DOI

Chen J., Liu H., Qiu Z., Shu W. Analysis of di-n-butyl phthalate and other organic pollutants in Chongqing women undergoing parturition. Environ. Pollut. 2008;156:849–853. doi: 10.1016/j.envpol.2008.05.019. PubMed DOI

Kim S.H., Chun S., Jang J.Y., Chae H.D., Kim C.-H., Kang B.M. Increased plasma levels of phthalate esters in women with advanced-stage endometriosis: A prospective case-control study. Fertil. Steril. 2011;95:357–359. doi: 10.1016/j.fertnstert.2010.07.1059. PubMed DOI

Reddy B.S., Rozati R., Reddy B.V.R., Raman N.V.V.S.S. Association of phthalate esters with endometriosis in Indian women. BJOG. 2006;113:515–520. doi: 10.1111/j.1471-0528.2006.00925.x. PubMed DOI

Reddy B.S., Rozati R., Reddy S., Kodampur S., Reddy P., Reddy R. High plasma concentrations of polychlorinated biphenyls and phthalate esters in women with endometriosis: A prospective case control study. Fertil. Steril. 2006;85:775–779. doi: 10.1016/j.fertnstert.2005.08.037. PubMed DOI

El-Fouly M.H., Trosko J.E., Chang C.-C. Scrape-loading and dye transfer: A rapid and simple technique to study gap junctional intercellular communication. Exp. Cell Res. 1987;168:422–430. doi: 10.1016/0014-4827(87)90014-0. PubMed DOI

Babica P., Sovadinová I., Upham B.L. Scrape Loading/Dye Transfer Assay. In: Vinken M., Johnstone S.R., editors. Gap Junction Protocols. Volume 1437. Springer; New York, NY, USA: 2016. pp. 133–144.

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Raska J., Ctverackova L., Dydowiczova A., Sovadinova I., Blaha L., Babica P. Tumor-promoting cyanotoxin microcystin-LR does not induce procarcinogenic events in adult human liver stem cells. Toxicol. Appl. Pharm. 2018;345:103–113. doi: 10.1016/j.taap.2018.03.011. PubMed DOI

Rozen S., Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 2000;132:365–386. doi: 10.1385/1-59259-192-2:365. PubMed DOI

Dukic A.R., McClymont D.W., Tasken K. A Cell-based high-throughput assay for gap junction communication suitable for assessing connexin 43-Ezrin interaction disruptors using IncuCyte ZOOM. Slas Discov. Adv. Life Sci. R D. 2017;22:77–85. doi: 10.1177/1087057116669120. PubMed DOI

Picoli C., Soleilhac E., Journet A., Barette C., Comte M., Giaume C., Mouthon F., Fauvarque M.-O., Charveriat M. High-content screening identifies new inhibitors of connexin 43 gap junctions. Assay Drug Dev. Technol. 2019;17:240–248. doi: 10.1089/adt.2019.927. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing

. 2021 Aug 20 ; 22 (16) : . [epub] 20210820

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace