Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LM2018121
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/26617_043/0009632
Operational Programme Research, Development and Innovation
GA19-19143S
Grantová Agentura České Republiky
R21ES031345.
NIH HHS - United States
PubMed
34445682
PubMed Central
PMC8396440
DOI
10.3390/ijms22168977
PII: ijms22168977
Knihovny.cz E-zdroje
- Klíčová slova
- carcinogenesis, carcinogens, gap junction intercellular communication, scrape loading-dye transfer,
- MeSH
- barvicí látky metabolismus MeSH
- biotest metody MeSH
- buněčné linie MeSH
- fluorescenční mikroskopie metody MeSH
- játra patologie MeSH
- karcinogeny MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- mezerový spoj metabolismus MeSH
- mezibuněčná komunikace účinky léků fyziologie MeSH
- testy karcinogenity metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- barvicí látky MeSH
- karcinogeny MeSH
Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.
Zobrazit více v PubMed
Rosenkranz H.S., Pollack N., Cunningham A.R. Exploring the relationship between the inhibition of gap junctional intercellular communication and other biological phenomena. Carcinogenesis. 2000;21:1007–1011. doi: 10.1093/carcin/21.5.1007. PubMed DOI
Mulkearns-Hubert E.E., Reizes O., Lathia J.D. Connexins in cancer: Jekyll or Hyde? Biomolecules. 2020;10:1654. doi: 10.3390/biom10121654. PubMed DOI PMC
Jacobs M.N., Colacci A., Corvi R., Vaccari M., Aguila M.C., Corvaro M., Delrue N., Desaulniers D., Ertych N., Jacobs A., et al. Chemical carcinogen safety testing: OECD expert group international consensus on the development of an integrated approach for the testing and assessment of chemical non-genotoxic carcinogens. Arch. Toxicol. 2020;1:3. doi: 10.1007/s00204-020-02784-5. PubMed DOI PMC
WHO Cancer. [(accessed on 10 April 2021)]; Available online: https://www.who.int/health-topics/cancer#tab=tab_1.
Madia F., Worth A., Whelan M., Corvi R. Carcinogenicity assessment: Addressing the challenges of cancer and chemicals in the environment. Environ. Int. 2019;128:417–429. doi: 10.1016/j.envint.2019.04.067. PubMed DOI PMC
Luijten M., Corvi R., Mehta J., Corvaro M., Delrue N., Felter S., Haas B., Hewitt N.J., Hilton G., Holmes T., et al. A comprehensive view on mechanistic approaches for cancer risk assessment of non-genotoxic agrochemicals. Regul. Toxicol. Pharmacol. 2020;118:104789. doi: 10.1016/j.yrtph.2020.104789. PubMed DOI
Jacobs M.N., Colacci A., Louekari K., Luijten M., Hakkert B.C., Paparella M., Vasseur P. International regulatory needs for development of an IATA for non-genotoxic carcinogenic chemical substances. ALTEX. 2016;33:359–392. doi: 10.14573/altex.1601201. PubMed DOI
Abel E.L., DiGiovanni J., Mendelsohn J., Howley P., Israel M., Gray J., Thompson C. Environmental carcinogenesis. In: Mendelsohn J., Howley P., Israel M., Gray J., Thompson C., editors. The Molecular Basis of Cancer. 4th ed. W.B. Saunders; Philadelphia, PA, USA: 2015. pp. 103–128.e2.
Basu A.K. DNA damage, mutagenesis and cancer. Int. J. Mol. Sci. 2018;19:970. doi: 10.3390/ijms19040970. PubMed DOI PMC
Luijten M., Olthof E.D., Hakkert B.C., Rorije E., van der Laan J.-W., Woutersen R.A., van Benthem J. An integrative test strategy for cancer hazard identification. Crit. Rev. Toxicol. 2016;46:615–639. doi: 10.3109/10408444.2016.1171294. PubMed DOI
Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9. PubMed DOI
Fouad Y.A., Aanei C. Revisiting the hallmarks of cancer. Am. J. Cancer Res. 2017;7:1016–1036. PubMed PMC
Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Trosko J.E., Chang C.-C., Upham B.L., Tai M.-H. Ignored hallmarks of carcinogenesis: Stem cells and cell-cell communication. Ann. N. Y. Acad. Sci. 2004;1028:192–201. doi: 10.1196/annals.1322.023. PubMed DOI
Smith C.J., Perfetti T.A., Hayes A.W., Berry S.C., Trosko J.E., King J.A., Goodman J.I., Begley C.G., Dayan A. Categorizing the characteristics of human carcinogens: A need for specificity. Arch. Toxicol. 2021;95:2883, 2889. doi: 10.1007/s00204-021-03109-w. PubMed DOI
Baba A., Câtoi C. Comparative Oncology. The Publishing House of the Romanian Academy; Bucharest, Romania: 2007. Carcinogenesis. PubMed
Bevan R.J., Harrison P.T.C. Threshold and non-threshold chemical carcinogens: A survey of the present regulatory landscape. Regul. Toxicol. Pharmacol. 2017;88:291–302. doi: 10.1016/j.yrtph.2017.01.003. PubMed DOI
Smith C.J., Perfetti T.A., King J.A. Rodent 2-year cancer bioassays and in vitro and in vivo genotoxicity tests insufficiently predict risk or model development of human carcinomas. Toxicol. Res. Appl. 2019;3:2397847319849648. doi: 10.1177/2397847319849648. DOI
Goodman J.I. Goodbye to the bioassay. Toxicol. Res. 2018;7:558–564. doi: 10.1039/c8tx00004b. PubMed DOI PMC
Cohen S.M. Evaluation of possible carcinogenic risk to humans based on liver tumors in rodent assays: The two-year bioassay is no longer necessary. Toxicol. Pathol. 2010;38:487–501. doi: 10.1177/0192623310363813. PubMed DOI
Paparella M., Colacci A., Jacobs M.N. Uncertainties of testing methods: What do we (want to) know about carcinogenicity? ALTEX. 2017;34:235–252. doi: 10.14573/altex.1608281. PubMed DOI
OECD Overview of the Set of OECD Genetic Toxicology Test Guidelines and Updates Performed in 2014–2015. [(accessed on 16 June 2021)];2017 Available online: https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV-JM-MONO(2016)33/rev1&doclanguage=en.
Nielsen M.S., Nygaard Axelsen L., Sorgen P.L., Verma V., Delmar M., Holstein-Rathlou N.-H. Gap junctions. Compr. Physiol. 2012;2:1981–2035. PubMed PMC
Zefferino R., Piccoli C., Di Gioia S., Capitanio N., Conese M. Gap junction intercellular communication in the carcinogenesis hallmarks: Is this a phenomenon or epiphenomenon? Cells. 2019;8:896. doi: 10.3390/cells8080896. PubMed DOI PMC
Aasen T., Mesnil M., Naus C.C., Lampe P.D., Laird D.W. Gap junctions and cancer: Communicating for 50 years. Nat. Rev. Cancer. 2016;16:775–788. doi: 10.1038/nrc.2016.105. PubMed DOI PMC
Axelsen L.N., Calloe K., Holstein-Rathlou N.-H., Nielsen M.S. Managing the complexity of communication: Regulation of gap junctions by post-translational modification. Front. Pharmacol. 2013;4:130. doi: 10.3389/fphar.2013.00130. PubMed DOI PMC
Babica P. Docent Habilitation Thesis. Masaryk University; Brno, Czech Republic: 2017. [(accessed on 16 June 2021)]. Gap Junctional Intercellular Communication: In Vitro Assessment of Hazardous and Beneficial Effects of Chemical. Available online: https://is.muni.cz/do/rect/habilitace/1431/12437/habilitacni_prace/Babica_2017_FINAL_TEXT_.pdf.
Trosko J.E. The gap junction as a “Biological Rosetta Stone”: Implications of evolution, stem cells to homeostatic regulation of health and disease in the Barker hypothesis. J. Cell Commun. Signal. 2011;5:53–66. doi: 10.1007/s12079-010-0108-9. PubMed DOI PMC
Trosko J.E. Evolution of microbial quorum sensing to human global quorum sensing: An insight into how gap junctional intercellular communication might be linked to the global metabolic disease crisis. Biology. 2016;5:29. doi: 10.3390/biology5020029. PubMed DOI PMC
Trosko J.E. Gap junctional intercellular communication as a biological “Rosetta stone” in understanding, in a systems biological manner, stem cell behavior, mechanisms of epigenetic toxicology, chemoprevention and chemotherapy. J. Membr. Biol. 2007;218:93–100. doi: 10.1007/s00232-007-9072-6. PubMed DOI
Upham B.L., Trosko J.E. Oxidative-dependent integration of signal transduction with intercellular gap junctional communication in the control of gene expression. Antioxid. Redox Signal. 2009;11:297–307. doi: 10.1089/ars.2008.2146. PubMed DOI PMC
Upham B.L. Role of integrative signaling through gap junctions in toxicology. Curr. Protoc. Toxicol. 2011;2:2.18. doi: 10.1002/0471140856.tx0218s47. PubMed DOI PMC
Upham B.L., Sovadinova I., Babica P. Gap junctional intercellular communication: A functional biomarker to assess adverse effects of toxicants and toxins, and health benefits of natural products. J. Vis. Exp. 2016;2016:e54281. doi: 10.3791/54281. PubMed DOI PMC
Mesnil M., Defamie N., Naus C., Sarrouilhe D. Brain disorders and chemical pollutants: A gap junction link? Biomolecules. 2020;11:51. doi: 10.3390/biom11010051. PubMed DOI PMC
Aasen T., Leithe E., Graham S.V., Kameritsch P., Mayán M.D., Mesnil M., Pogoda K., Tabernero A. Connexins in cancer: Bridging the gap to the clinic. Oncogene. 2019;38:4429–4451. doi: 10.1038/s41388-019-0741-6. PubMed DOI PMC
Trosko J.E. Reflections on the use of 10 IARC carcinogenic characteristics for an objective approach to identifying and organizing results from certain mechanistic studies. Toxicol. Res. Appl. 2017;1:2397847317710837. doi: 10.1177/2397847317710837. DOI
Czyż J., Piwowarczyk K., Paw M., Luty M., Wróbel T., Catapano J., Madeja Z., Ryszawy D. Connexin-dependent intercellular stress signaling in tissue homeostasis and tumor development. Acta Biochim. Pol. 2017;64:377–389. doi: 10.18388/abp.2017_1592. PubMed DOI
Jiang J.X., Penuela S. Connexin and pannexin channels in cancer. BMC Cell Biol. 2016;17(Suppl. 1):12. doi: 10.1186/s12860-016-0094-8. PubMed DOI PMC
Loch-Caruso R., Galvez M.M., Brant K., Chung D. Cell and toxicant specific phosphorylation of conexin43: Effects of lindane and TPA on rat myometrial and WB-F344 liver cell gap junctions. Cell Biol. Toxicol. 2004;20:147–169. doi: 10.1023/B:CBTO.0000029465.74815.62. PubMed DOI
Wong P., Laxton V., Srivastava S., Fiona Chan Y.W., Tse G. The role of gap junctions in inflammatory and neoplastic disorders (Review) Int. J. Mol. Med. 2017;39:498–506. doi: 10.3892/ijmm.2017.2859. PubMed DOI PMC
Nalewajska M., Marchelek-Myśliwiec M., Opara-Bajerowicz M., Dziedziejko V., Pawlik A. Connexins-therapeutic targets in cancers. Int. J. Mol. Sci. 2020;21:9119. doi: 10.3390/ijms21239119. PubMed DOI PMC
Trosko J.E. On the potential origin and characteristics of cancer stem cells. Carcinogenesis. 2021;42:905–912. doi: 10.1093/carcin/bgab042. PubMed DOI
Leone A., Longo C., Trosko J.E. The chemopreventive role of dietary phytochemicals through gap junctional intercellular communication. Phytochem. Rev. 2012;11:285–307. doi: 10.1007/s11101-012-9235-7. DOI
Mesnil M., Crespin S., Avanzo J.L., Zaidan-Dagli M.L. Defective gap junctional intercellular communication in the carcinogenic process. Biochim. Biophys. Acta-Biomembr. 2005;1719:125–145. doi: 10.1016/j.bbamem.2005.11.004. PubMed DOI
Vinken M., Henkens T., Vanhaecke T., Papeleu P., Geerts A., Van Rossen E., Chipman J.K., Meda P., Rogiers V. Trichostatin a enhances gap junctional intercellular communication in primary cultures of adult rat hepatocytes. Toxicol. Sci. 2006;91:484–492. doi: 10.1093/toxsci/kfj152. PubMed DOI
Mantz J., Cordier J., Giaume C. Effects of general anesthetics on intercellular communications mediated by gap junctions between astrocytes in primary culture. Anesthesiology. 1993;78:892–901. doi: 10.1097/00000542-199305000-00014. PubMed DOI
Vera B., Sánchez-Abarca L.I., Bolaños J.P., Medina J.M. Inhibition of astrocyte gap junctional communication by ATP depletion is reversed by calcium sequestration. FEBS Lett. 1996;392:225–228. doi: 10.1016/0014-5793(96)00794-6. PubMed DOI
Blomstrand F., Aberg N.D., Eriksson P.S., Hansson E., Rönnbäck L. Extent of intercellular calcium wave propagation is related to gap junction permeability and level of connexin-43 expression in astrocytes in primary cultures from four brain regions. Neuroscience. 1999;92:255–265. doi: 10.1016/S0306-4522(98)00738-6. PubMed DOI
Köster-Patzlaff C., Hosseini S.M., Reuss B. Persistent Borna disease virus infection changes expression and function of astroglial gap junctions in vivo and in vitro. Brain Res. 2007;1184:316–332. doi: 10.1016/j.brainres.2007.09.062. PubMed DOI
Morioka N., Suekama K., Zhang F.F., Kajitani N., Hisaoka-Nakashima K., Takebayashi M., Nakata Y. Amitriptyline up-regulates connexin43-gap junction in rat cultured cortical astrocytes via activation of the p38 and c-Fos/AP-1 signalling pathway. Br. J. Pharmacol. 2014;171:2854–2867. doi: 10.1111/bph.12614. PubMed DOI PMC
Herrmann S., Seidelin M., Bisgaard H.C., Vang O. Indolo[3,2-b]carbazole inhibits gap junctional intercellular communication in rat primary hepatocytes and acts as a potential tumor promoter. Carcinogenesis. 2002;23:1861–1868. doi: 10.1093/carcin/23.11.1861. PubMed DOI
Leaphart C.L., Qureshi F., Cetin S., Li J., Dubowski T., Batey C., Beer–Stolz D., Guo F., Murray S.A., Hackam D.J. Interferon-γ inhibits intestinal restitution by preventing gap junction communication between enterocytes. Gastroenterology. 2007;132:2395–2411. doi: 10.1053/j.gastro.2007.03.029. PubMed DOI
Fukumoto M., Kujiraoka T., Hara M., Shibasaki T., Hosoya T., Yoshida M. Effect of cadmium on gap junctional intercellular communication in primary cultures of rat renal proximal tubular cells. Life Sci. 2001;69:247–254. doi: 10.1016/S0024-3205(01)01063-3. PubMed DOI
Yoshida M., Kujiraoka T., Hara M., Nakazawa H., Sumi Y. Methylmercury inhibits gap junctional intercellular communication in primary cultures of rat proximal tubular cells. Arch. Toxicol. 1998;72:192–196. doi: 10.1007/s002040050487. PubMed DOI
Hills C.E., Price G.W., Wall M.J., Kaufmann T.J., Tang C.-W., Yiu W.H., Squires P.E. Transforming growth factor beta 1 drives a switch in connexin mediated cell-to-cell communication in tubular cells of the diabetic kidney. Cell. Physiol. Biochem. 2018;45:2369–2388. doi: 10.1159/000488185. PubMed DOI
Yaoita E., Yao J., Yoshida Y., Morioka T., Nameta M., Takata T., Kamiie J., Fujinaka H., Oite T., Yamamoto T. Up-regulation of connexin43 in glomerular podocytes in response to injury. Am. J. Pathol. 2002;161:1597–1606. doi: 10.1016/S0002-9440(10)64438-0. PubMed DOI PMC
Avanzo J.L., Mennecier G., Mesnil M., Hernandez-Blazquez F.J., Fukumasu H., da Silva T.C., Rao K.V.K., Dagli M.L.Z. Deletion of a single allele of Cx43 is associated with a reduction in the gap junctional intercellular communication and increased cell proliferation of mouse lung pneumocytes type II. Cell Prolif. 2007;40:411–421. doi: 10.1111/j.1365-2184.2007.00440.x. PubMed DOI PMC
Trovato-Salinaro A., Trovato-Salinaro E., Failla M., Mastruzzo C., Tomaselli V., Gili E., Crimi N., Condorelli F.D., Vancheri C. Altered intercellular communication in lung fibroblast cultures from patients with idiopathic pulmonary fibrosis. Respir. Res. 2006;7:122. doi: 10.1186/1465-9921-7-122. PubMed DOI PMC
Mensink A., de Haan L.H., Lakemond C.M., Koelman C.A., Koeman J.H. Inhibition of gap junctional intercellular communication between primary human smooth muscle cells by tumor necrosis factor alpha. Carcinogenesis. 1995;16:2063–2067. doi: 10.1093/carcin/16.9.2063. PubMed DOI
Dookwah H.D., Barhoumi R., Narasimhan T.R., Safe S.H., Burghardt R.C. Gap junctions in myometrial cell cultures: Evidence for modulation by cyclic adenosine 3′:5′-monophosphate. Biol. Reprod. 1992;47:397–407. doi: 10.1095/biolreprod47.3.397. PubMed DOI
Loch-Caruso R., Upham B.L., Harris C., Trosko J.E. Divergent roles for glutathione in lindane-induced acute and delayed-onset inhibition of rat myometrial gap junctions. Toxicol. Sci. 2005;85:694–702. doi: 10.1093/toxsci/kfi123. PubMed DOI
Changchien C.-Y., Sung M.-H., Chang H.-H., Tsai W.-C., Peng Y.-S., Chen Y. Uremic toxin indoxyl sulfate suppresses myocardial Cx43 assembly and expression via JNK activation. Chem. Biol. Interact. 2020;319:108979. doi: 10.1016/j.cbi.2020.108979. PubMed DOI
Hervé J.C., Pluciennik F., Verrecchia F., Bastide B., Delage B., Joffre M., Délèze J. Influence of the molecular structure of steroids on their ability to interrupt gap junctional communication. J. Membr. Biol. 1996;149:179–187. doi: 10.1007/s002329900018. PubMed DOI
Gingrich J., Pu Y., Upham B.L., Hulse M., Pearl S., Martin D., Avery A., Veiga-Lopez A. Bisphenol S enhances gap junction intercellular communication in ovarian theca cells. Chemosphere. 2021;263:128304. doi: 10.1016/j.chemosphere.2020.128304. PubMed DOI PMC
Chen Y.-C., Chang H.-M., Cheng J.-C., Tsai H.-D., Wu C.-H., Leung P.C.K. Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells. Hum. Reprod. 2015;30:2190–2201. doi: 10.1093/humrep/dev175. PubMed DOI PMC
Lin T.-C., Wang K.-H., Chuang K.-H., Kao A.-P., Kuo T.-C. Downregulation of gap junctional intercellular communication and connexin 43 expression by bisphenol A in human granulosa cells. Biotechnol. Appl. Biochem. 2020;68:676–682. doi: 10.1002/bab.1979. PubMed DOI
Durlej M., Kopera I., Knapczyk-Stwora K., Hejmej A., Duda M., Koziorowski M., Slomczynska M., Bilinska B. Connexin 43 gene expression in male and female gonads of porcine offspring following in utero exposure to an anti-androgen, flutamide. Acta Histochem. 2011;113:6–12. doi: 10.1016/j.acthis.2009.07.001. PubMed DOI
Cillo F., de Eguileor M., Gandolfi F., Brevini T.A.L. Aroclor-1254 affects mRNA polyadenylation, translational activation, cell morphology, and DNA integrity of rat primary prostate cells. Endocr. Relat. Cancer. 2007;14:257–266. doi: 10.1677/ERC-06-0081. PubMed DOI
Herve J.C., Pluciennik F., Bastide B., Cronier L., Verrecchia F., Malassine A., Joffre M., Deleze J. Contraceptive gossypol blocks cell-to-cell communication in human and rat cells. Eur. J. Pharmacol. 1996;313:243–255. doi: 10.1016/0014-2999(96)00476-1. PubMed DOI
You S., Li W., Lin T. Expression and regulation of connexin43 in rat Leydig cells. J. Endocrinol. 2000;166:447–453. doi: 10.1677/joe.0.1660447. PubMed DOI
Liu M.-L., Wang H., Wang Z.-R., Zhang Y.-F., Chen Y.-Q., Zhu F.-H., Zhang Y.-Q., Ma J., Li Z. TGF-β1 regulation of estrogen production in mature rat Leydig cells. PLoS ONE. 2013;8:e60197. doi: 10.1371/journal.pone.0060197. PubMed DOI PMC
Pamies D., Hartung T. 21st century cell culture for 21st century toxicology. Chem. Res. Toxicol. 2017;30:43–52. doi: 10.1021/acs.chemrestox.6b00269. PubMed DOI PMC
Zhang Q., Bai X., Liu Y., Wang K., Shen B., Sun X. Current concepts and perspectives on connexin43: A mini review. Curr. Protein Pept. Sci. 2018;19:1049–1057. doi: 10.2174/1389203719666180709103515. PubMed DOI
Maes M., Crespo Yanguas S., Willebrords J., Cogliati B., Vinken M. Connexin and pannexin signaling in gastrointestinal and liver disease. Transl. Res. 2015;166:332–343. doi: 10.1016/j.trsl.2015.05.005. PubMed DOI PMC
Horvath A., Upham B.L., Ganev V., Trosko J.E. Determination of the epigenetic effects of ochratoxin in a human kidney and a rat liver epithelial cell line. Toxicon. 2002;40:273–282. doi: 10.1016/S0041-0101(01)00219-7. PubMed DOI
Osgood R.S., Upham B.L., Bushel P.R., Velmurugan K., Xiong K.-N., Bauer A.K. Secondhand smoke-prevalent polycyclic aromatic hydrocarbon binary mixture-induced specific mitogenic and pro-inflammatory cell signaling events in lung epithelial cells. Toxicol. Sci. 2017;157:156–171. doi: 10.1093/toxsci/kfx027. PubMed DOI PMC
Kubincová P., Sychrová E., Raška J., Basu A., Yawer A., Dydowiczová A., Babica P., Sovadinová I. Polycyclic aromatic hydrocarbons and endocrine disruption: Role of testicular gap junctional intercellular communication and connexins. Toxicol. Sci. 2019;169:70–83. doi: 10.1093/toxsci/kfz023. PubMed DOI
Sovadinova I., Babica P., Boke H., Kumar E., Wilke A., Park J.-S., Trosko J.E., Upham B.L. Phosphatidylcholine specific PLC-induced dysregulation of gap junctions, a robust cellular response to environmental toxicants, and prevention by resveratrol in a rat liver cell model. PLoS ONE. 2015;10:e0124454. doi: 10.1371/journal.pone.0124454. PubMed DOI PMC
Upham B.L., Rummel A.M., Carbone J.M., Trosko J.E., Ouyang Y., Crawford R.B., Kaminski N.E. Cannabinoids inhibit gap junctional intercellular communication and activate ERK in a rat liver epithelial cell line. Int. J. Cancer. 2003;104:12–18. doi: 10.1002/ijc.10899. PubMed DOI
Hossain M.Z., Ao P., Boynton A.L. Platelet-derived growth factor-induced disruption of gap junctional communication and phosphorylation of connexin43 involves protein kinase C and mitogen-activated protein kinase. J. Cell. Physiol. 1998;176:332–341. doi: 10.1002/(SICI)1097-4652(199808)176:2<332::AID-JCP11>3.0.CO;2-5. PubMed DOI
Rivedal E., Opsahl H. Role of PKC and MAP kinase in EGF- and TPA-induced connexin43 phosphorylation and inhibition of gap junction intercellular communication in rat liver epithelial cells. Carcinogenesis. 2001;22:1543–1550. doi: 10.1093/carcin/22.9.1543. PubMed DOI
Cruciani V., Mikalsen S.O. Connexins, gap junctional intercellular communication and kinases. Biol. Cell. 2002;94:433–443. doi: 10.1016/S0248-4900(02)00014-X. PubMed DOI
Lampe P.D., Lau A.F. The effects of connexin phosphorylation on gap junctional communication. Int. J. Biochem. Cell Biol. 2004;36:1171–1186. doi: 10.1016/S1357-2725(03)00264-4. PubMed DOI PMC
Albright C.D., Grimley P.M., Jones R.T., Fontana J.A., Keenan K.P., Resau J.H. Cell-to-cell communication: A differential response to TGF-beta in normal and transformed (BEAS-2B) human bronchial epithelial cells. Carcinogenesis. 1991;12:1993–1999. doi: 10.1093/carcin/12.11.1993. PubMed DOI
Budunova I.V., Mittelman L.A., Miloszewska J. Role of protein kinase C in the regulation of gap junctional communication. Teratog. Carcinog. Mutagen. 1994;14:259–270. doi: 10.1002/tcm.1770140603. PubMed DOI
Criswell K.A., Lochcaruso R., Stuenkel E.L. Lindane inhibition of gap junctional communication in myometrial myocytes is partially dependent on phosphoinositide-generated second messengers. Toxicol. Appl. Pharmacol. 1995;130:280–293. doi: 10.1006/taap.1995.1033. PubMed DOI
Husøy T., Cruciani V., Sanner T., Mikalsen S.O. Phosphorylation of connexin43 and inhibition of gap junctional communication in 12-O-tetradecanoylphorbol-13-acetate-exposed R6 fibroblasts: Minor role of protein kinase C beta I and mu. Carcinogenesis. 2001;22:221–231. doi: 10.1093/carcin/22.2.221. PubMed DOI
Koo S.K., Kim D.Y., Park S.D., Kang K.W., Joe C.O. PKC phosphorylation disrupts gap junctional communication at G0/S phase in clone 9 cells. Mol. Cell. Biochem. 1997;167:41–49. doi: 10.1023/A:1006831114120. PubMed DOI
Upham B.L., Blaha L., Babica P., Park J.-S., Sovadinova I., Pudrith C., Rummel A.M., Weis L.M., Sai K., Tithof P.K., et al. Tumor promoting properties of a cigarette smoke prevalent polycyclic aromatic hydrocarbon as indicated by the inhibition of gap junctional intercellular communication via phosphatidylcholine-specific phospholipase C. Cancer Sci. 2008;99:696–705. doi: 10.1111/j.1349-7006.2008.00752.x. PubMed DOI PMC
Machala M., Bláha L., Vondráček J., Trosko J.E., Scott J., Upham B.L. Inhibition of gap junctional intercellular communication by noncoplanar polychlorinated biphenyls: Inhibitory potencies and screening for potential mode(s) of action. Toxicol. Sci. 2003;76:102–111. doi: 10.1093/toxsci/kfg209. PubMed DOI
Chang C.C., Trosko J.E., Kung H.J., Bombick D., Matsumura F. Potential role of the src gene product in inhibition of gap-junctional communication in NIH/3T3 cells. Proc. Natl. Acad. Sci. USA. 1985;82:5360–5364. doi: 10.1073/pnas.82.16.5360. PubMed DOI PMC
Cottrell G.T., Lin R., Warn-Cramer B.J., Lau A.F., Burt J.M. Mechanism of v-Src- and mitogen-activated protein kinase-induced reduction of gap junction communication. Am. J. Physiol. Cell Physiol. 2003;284:C511–C520. doi: 10.1152/ajpcell.00214.2002. PubMed DOI PMC
Filson A.J., Azarnia R., Beyer E.C., Loewenstein W.R., Brugge J.S. Tyrosine phosphorylation of a gap junction protein correlates with inhibition of cell-to-cell communication. Cell Growth Differ. Mol. Biol. J. Am. Assoc. Cancer Res. 1990;1:661–668. PubMed
Lin R., Warn-Cramer B.J., Kurata W.E., Lau A.F. v-Src phosphorylation of connexin 43 on Tyr247 and Tyr265 disrupts gap junctional communication. J. Cell Biol. 2001;154:815–827. doi: 10.1083/jcb.200102027. PubMed DOI PMC
Pahujaa M., Anikin M., Goldberg G.S. Phosphorylation of connexin43 induced by Src: Regulation of gap junctional communication between transformed cells. Exp. Cell Res. 2007;313:4083–4090. doi: 10.1016/j.yexcr.2007.09.010. PubMed DOI
Ghoshal S., Weber W.J., Rummel A.M., Trosko J.E., Upham B.L. Epigenetic toxicity of a mixture of polycyclic aromatic hydrocarbons on gap junctional intercellular communication before and after biodegradation. Environ. Sci. Technol. 1999;33:1044–1050. doi: 10.1021/es9809511. DOI
Abbaci M., Barberi-Heyob M., Blondel W., Guillemin F., Didelon J. Advantages and limitations of commonly used methods to assay the molecular permeability of gap junctional intercellular communication. Biotechniques. 2008;45:33–62. doi: 10.2144/000112810. PubMed DOI
Maes M., Yanguas S.C., Willebrords J., Vinken M. Models and methods for in vitro testing of hepatic gap junctional communication. Toxicol. In Vitro. 2015;30:569–577. doi: 10.1016/j.tiv.2015.09.024. PubMed DOI PMC
Iyyathurai J., Himpens B., Bultynck G., D’hondt C. Calcium wave propagation triggered by local mechanical stimulation as a method for studying gap junctions and hemichannels. In: Vinken M., Johnstone S.R., editors. Gap Junction Protocols. Volume 1437. Springer; Berlin/Heidelberg, Germany: 2016. pp. 203–211. Methods in Molecular Biology. PubMed
Brümmer F., Zempel G., Bühle P., Stein J.C., Hülser D.F. Retinoic acid modulates gap junctional permeability: A comparative study of dye spreading and ionic coupling in cultured cells. Exp. Cell Res. 1991;196:158–163. doi: 10.1016/0014-4827(91)90245-P. PubMed DOI
Sidorova T.S., Matesic D.F. Protective effect of the natural product, chaetoglobosin K, on lindane- and dieldrin-induced changes in astroglia: Identification of activated signaling pathways. Pharm. Res. 2008;25:1297–1308. doi: 10.1007/s11095-007-9487-x. PubMed DOI
Choi S.J., Kim S.W., Lee J.B., Lim H.J., Kim Y.J., Tian C., So H.S., Park R., Choung Y.-H. Gingko biloba extracts protect auditory hair cells from cisplatin-induced ototoxicity by inhibiting perturbation of gap junctional intercellular communication. Neuroscience. 2013;244:49–61. doi: 10.1016/j.neuroscience.2013.04.001. PubMed DOI
Pulukuri S., Sitaramayya A. Retinaldehyde, a potent inhibitor of gap junctional intercellular communication. Cell Commun. Adhes. 2004;11:25–33. doi: 10.1080/15419060490471784. PubMed DOI
Traoré A., Baudrimont I., Dano S., Sanni A., Larondelle Y., Schneider Y.J., Creppy E.E., Traore A., Baudrimont I., Dano S., et al. Epigenetic properties of the diarrhetic marine toxin okadaic acid: Inhibition of the gap junctional intercellular communication in a human intestine epithelial cell line. Arch. Toxicol. 2003;77:657–662. doi: 10.1007/s00204-003-0460-0. PubMed DOI
Creppy E.E., Traore A., Baudrimont I., Cascante M., Carratu M.R. Recent advances in the study of epigenetic effects induced by the phycotoxin okadaic acid. Toxicology. 2002;181:433–439. doi: 10.1016/S0300-483X(02)00489-4. PubMed DOI
Morita H., Katsuno T., Hoshimoto A., Hirano N., Saito Y., Suzuki Y. Connexin 26-mediated gap junctional intercellular communication suppresses paracellular permeability of human intestinal epithelial cell monolayers. Exp. Cell Res. 2004;298:1–8. doi: 10.1016/j.yexcr.2004.03.046. PubMed DOI
Ey B., Eyking A., Gerken G., Podolsky D.K., Cario E. TLR2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury. J. Biol. Chem. 2009;284:22332–22343. doi: 10.1074/jbc.M901619200. PubMed DOI PMC
Pitts J.D., Hamilton A.E., Kam E., Burk R.R., Murphy J.P. Retinoic acid inhibits junctional communication between animal cells. Carcinogenesis. 1986;7:1003–1010. doi: 10.1093/carcin/7.6.1003. PubMed DOI
Ayashi T., Hasler C., Oh S.Y., Madhukar B., Chang C.C., Trosko J., Hayashi T. A human kidney epithelial cell culture as an in vitro model to study chemical modulation of intercellular communication. In Vitro Mol. Toxicol. J. Basic Appl. Res. 1996;9:3–17.
Mally A., Decker M., Bekteshi M., Dekant W. Ochratoxin A alters cell adhesion and gap junction intercellular communication in MDCK cells. Toxicology. 2006;223:15–25. doi: 10.1016/j.tox.2006.02.024. PubMed DOI
Budunova I.V., Williams G.M., Spray D.C. Effect of tumor-promoting stimuli on gap junction permeability and connexin43 expression in Arl-18 rat liver cell line. Arch. Toxicol. 1993;67:565–572. doi: 10.1007/BF01969270. PubMed DOI
Hu D., Zou H., Han T., Xie J., Dai N., Zhuo L., Gu J., Bian J., Yuan Y., Liu X., et al. Gap junction blockage promotes cadmium-induced apoptosis in BRL 3A derived from Buffalo rat liver cells. J. Vet. Sci. 2016;17:63–70. doi: 10.4142/jvs.2016.17.1.63. PubMed DOI PMC
Zou H., Liu X., Han T., Hu D., Yuan Y., Gu J., Bian J., Liu Z. Alpha-lipoic acid protects against cadmium-induced hepatotoxicity via calcium signalling and gap junctional intercellular communication in rat hepatocytes. J. Toxicol. Sci. 2015;40:469–477. doi: 10.2131/jts.40.469. PubMed DOI
Zou H., Hu D., Han T., Zhao H., Xie J., Liu X., Wang Y., Gu J., Yuan Y., Bian J., et al. Salidroside ameliorates Cd-induced calcium overload and gap junction dysfunction in BRL 3A rat liver cells. Biol. Trace Elem. Res. 2015;164:90–98. doi: 10.1007/s12011-014-0201-7. PubMed DOI
Zou H., Liu X., Han T., Hu D., Wang Y., Yuan Y., Gu J., Bian J., Zhu J., Liu Z.-P.Z. Salidroside protects against cadmium-induced hepatotoxicity in rats via GJIC and MAPK pathways. PLoS ONE. 2015;10:e0129788. doi: 10.1371/journal.pone.0129788. PubMed DOI PMC
Wu J., Lin L., Luan T., Chan Gilbert Y.S., Lan C. Effects of organophosphorus pesticides and their ozonation byproducts on gap junctional intercellular communication in rat liver cell line. Food Chem. Toxicol. 2007;45:2057–2063. doi: 10.1016/j.fct.2007.05.006. PubMed DOI
Tang N., Cai Z., Chen H., Cao L., Chen B., Lin B. Involvement of gap junctions in propylthiouracil-induced cytotoxicity in BRL-3A cells. Exp. Ther. Med. 2019;17:2799–2806. doi: 10.3892/etm.2019.7244. PubMed DOI PMC
Huang F., Li S., Gan X., Wang R., Chen Z. Propofol inhibits gap junctions by attenuating sevoflurane-induced cytotoxicity against rat liver cells in vitro. Eur. J. Anaesthesiol. 2014;31:219–224. doi: 10.1097/01.EJA.0000435059.98170.da. PubMed DOI
Wang R., Huang F., Chen Z., Li S. Downregulation of connexin 32 attenuates hypoxia/reoxygenation injury in liver cells. J. Biochem. Mol. Toxicol. 2015;29:189–197. doi: 10.1002/jbt.21684. PubMed DOI
Zou H., Zhuo L., Han T., Hu D., Yang X., Wang Y., Yuan Y., Gu J., Bian J., Liu X., et al. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells. Biochem. Biophys. Res. Commun. 2015;459:713–719. doi: 10.1016/j.bbrc.2015.03.027. PubMed DOI
Carruba G., Cocciadiferro L., Bellavia V., Rizzo S., Tsatsanis C., Spandidos D., Muti P., Smith C., Mehta P., Castagnetta L. Intercellular communication and human hepatocellular carcinoma. Ann. N. Y. Acad. Sci. 2004;1028:202–212. doi: 10.1196/annals.1322.025. PubMed DOI
Benane S.G., Nelson G.B., Ross J.A., Blackman C.F. Benzo{[}a]pyrene and dibenzo{[}a,l]pyrene do not alter gap junction communication in rat liver epithelial cells. Polycycl. Aromat. Compd. 1999;17:53–62. doi: 10.1080/10406639908020601. DOI
Thompson D.C., Barhoumi R., Burghardt R.C. Comparative toxicity of eugenol and its quinone methide metabolite in cultured liver cells using kinetic fluorescence bioassays. Toxicol. Appl. Pharmacol. 1998;149:55–63. doi: 10.1006/taap.1997.8348. PubMed DOI
Meola S., Meola R., Barhoumi R., Miles J.M., Burghardt R.C. Laser cytometric analysis of permethrin toxicity in insect and mammalian epithelial cells. Toxic Subst. Mech. 1997;16:237–249.
Zhang J., Grindstaff R.D., Thai S.-F., Murray S.A., Kohan M., Blackman C.F. Chloral hydrate decreases gap junction communication in rat liver epithelial cells. Cell Biol. Toxicol. 2011;27:207–216. doi: 10.1007/s10565-011-9182-x. PubMed DOI
Berthoud V.M., Rook M.B., Traub O., Hertzberg E.L., Sáez J.C. On the mechanisms of cell uncoupling induced by a tumor promoter phorbol ester in clone 9 cells, a rat liver epithelial cell line. Eur. J. Cell Biol. 1993;62:384–396. PubMed
Na M.R., Koo S.K., Kim D.Y., Park S.D., Rhee S.K., Kang K.W., Joe C.O. In vitro inhibition of gap junctional intercellular communication by chemical carcinogens. Toxicology. 1995;98:199–206. doi: 10.1016/0300-483X(94)02931-J. PubMed DOI
Griffin G.D., Williams M.W., Gailey P.C. Cellular communication in clone 9 cells exposed to magnetic fields. Radiat. Res. 2000;153:690–698. doi: 10.1667/0033-7587(2000)153[0690:CCICCE]2.0.CO;2. PubMed DOI
Barhoumi R., Mouneimne Y., Ramos K.S., Safe S.H., Phillips T.D., Centonze V.E., Ainley C., Gupta M.S., Burghardt R.C. Analysis of benzo{[}a]pyrene partitioning and cellular homeostasis in a rat liver cell line. Toxicol. Sci. 2000;53:264–270. doi: 10.1093/toxsci/53.2.264. PubMed DOI
Ottinger S., Barhoumi R., McKenzie K.S., McDonald T., Burgardt R., Huebner H.J., Phillips T.D., Burghardt R., Huebner H.J., Phillips T.D., et al. FIA/MS analysis of temporally ozonated benzo{[}a]pyrene and pyrene and their reaction products: Inhibition of gap junction-mediated intercellular communication. Chemosphere. 2005;60:1025–1033. doi: 10.1016/j.chemosphere.2005.01.025. PubMed DOI
Hutchinson R.W., Barhoumi R., Miles J.M., Burghardt R.C. Attenuation of gossypol cytotoxicity by cyclic AMP in a rat liver cell line. Toxicol. Appl. Pharmacol. 1998;151:311–318. doi: 10.1006/taap.1998.8461. PubMed DOI
Sharovskaja J.J., Vaiman A.V., Solomatina N.A., Kobliakov V.A. Inhibition of gap junction intercellular communications in cell culture by polycyclic aromatic hydrocarbons (PAH) in the absence of PAH metabolism. Biochemistry. 2004;69:413–419. doi: 10.1023/B:BIRY.0000026197.00159.0a. PubMed DOI
Sharovskaya J., Kobliakova I., Solomatina N., Kobliakov V. Effect of some carcinogenic and non-carcinogenic polycyclic aromatic hydrocarbons on gap junction intercellular communication in hepatoma cell cultures. Eur. J. Cell Biol. 2006;85:387–397. doi: 10.1016/j.ejcb.2005.11.006. PubMed DOI
Sharovskaya Y.Y., Vajman A.V., Solomatina N.A., Kobliakov V.A. Inhibition of gap junction intercellular communications in cell culture by polycyclic aromatic hydrocarbons (PAH) in the absence of PAH metabolism. Biokhimiya. 2004;69:511–518. PubMed
Yang Y., Qin S.-K., Wu Q., Wang Z.-S., Zheng R.-S., Tong X.-H., Liu H., Tao L., He X.-D. Connexin-dependent gap junction enhancement is involved in the synergistic effect of sorafenib and all-trans retinoic acid on HCC growth inhibition. Oncol. Rep. 2014;31:540–550. doi: 10.3892/or.2013.2894. PubMed DOI PMC
Jansen L.A.M., Jongen W.M.F. The use of initiated cells as a test system for the detection of inhibitors of gap junctional intercellular communication. Carcinogenesis. 1996;17:333–339. doi: 10.1093/carcin/17.2.333. PubMed DOI
He C., Yang S., Yu W., Chen Q., Shen J., Hu Y., Shi J., Wu X., Li J., Li N. Effects of continuous renal replacement therapy on intestinal mucosal barrier function during extracorporeal membrane oxygenation in a porcine model. J. Cardiothorac. Surg. 2014;9:72. doi: 10.1186/1749-8090-9-72. PubMed DOI PMC
Kamendulis L.M., Isenberg J.S., Smith J.H., Pugh G.J., Lington A.W., Klaunig J.E. Comparative effects of phthalate monoesters on gap junctional intercellular communication and peroxisome proliferation in rodent and primate hepatocytes. J. Toxicol. Environ. Health. A. 2002;65:569–588. doi: 10.1080/152873902317349736. PubMed DOI
Dukic A.R., McClymont D.W., Tasken K. Cell-based high-throughput assay for gap junction communication suitable for assessing connexin 43-ezrin interaction disruptors using IncuCyte ZOOM. SLAS Discov. Adv. Life Sci. R D. 2017;22:77–85. doi: 10.1177/1087057116669120. PubMed DOI
Kenne K., Fransson-Steen R., Honkasalo S., Wärngård L. Two inhibitors of gap junctional intercellular communication, TPA and endosulfan: Different effects on phosphorylation of connexin 43 in the rat liver epithelial cell line, IAR 20. Carcinogenesis. 1994;15:1161–1165. doi: 10.1093/carcin/15.6.1161. PubMed DOI
Mesnil M., Montesano R., Yamasaki H. Intercellular communication of transformed and non-transformed rat liver epithelial cells: Modulation by TPA. Exp. Cell Res. 1986;165:391–402. doi: 10.1016/0014-4827(86)90593-8. PubMed DOI
Leithet E., Rivedal E. Ubiquitination and down-regulation of gap junction protein connexin-43 in response to 12-O-tetradecanoylphorbol 13-acetate treatment. J. Biol. Chem. 2004;279:50089–50096. doi: 10.1074/jbc.M402006200. PubMed DOI
Rivedal E., Leithe E. Connexin43 synthesis, phosphorylation, and degradation in regulation of transient inhibition of gap junction intercellular communication by the phorbol ester TPA in rat liver epithelial cells. Exp. Cell Res. 2005;302:143–152. doi: 10.1016/j.yexcr.2004.09.004. PubMed DOI
Rivedal E., Witz G. Metabolites of benzene are potent inhibitors of gap-junction intercellular communication. Arch. Toxicol. 2005;79:303–311. doi: 10.1007/s00204-004-0638-0. PubMed DOI
Kato Y., Kenne K., Haraguchi K., Masuda Y., Kimura R., Wärngård L. Inhibition of cell-cell communication by methylsulfonyl metabolites of polychlorinated biphenyl congeners in rat liver epithelial IAR 20 cells. Arch. Toxicol. 1998;72:178–182. doi: 10.1007/s002040050484. PubMed DOI
Kato Y., Kenne K. Inhibition of cell-cell communication by commercial chlorinated paraffins in rat liver epithelial IAR 20 cells. Pharmacol. Toxicol. 1996;79:23–28. doi: 10.1111/j.1600-0773.1996.tb00236.x. PubMed DOI
Hori T., Asamoto M., Krutovskikh V., Iwahori Y., Maeda M., ToriyamaBaba H., Takasuka N., Tsuda H. Triazine derivatives inhibit rat hepatocarcinogenesis but do not enhance gap junctional intercellular communication. Jpn. J. Cancer Res. 1997;88:12–17. doi: 10.1111/j.1349-7006.1997.tb00295.x. PubMed DOI PMC
Bager Y., Lindebro M.C., Martel P., Chaumontet C., Warngard L. Altered function, localization and phosphorylation of gap junctions in rat liver epithelial, IAR 20, cells after treatment with PCBs or TCDD. Environ. Toxicol. Pharmacol. 1997;3:257–266. doi: 10.1016/S1382-6689(97)00021-5. PubMed DOI
Leithe E., Cruciani V., Sanner T., Mikalsen S.-O., Rivedal E. Recovery of gap junctional intercellular communication after phorbol ester treatment requires proteasomal degradation of protein kinase C. Carcinogenesis. 2003;24:1239–1245. doi: 10.1093/carcin/bgg066. PubMed DOI
Leithe E., Rivedal E. Epidermal growth factor regulates ubiquitination, internalization and proteasome-dependent degradation of connexin43. J. Cell Sci. 2004;117:1211–1220. doi: 10.1242/jcs.00951. PubMed DOI
Sirnes S., Leithe E., Rivedal E. The detergent resistance of Connexin43 is lost upon TPA or EGF treatment and is an early step in gap junction endocytosis. Biochem. Biophys. Res. Commun. 2008;373:597–601. doi: 10.1016/j.bbrc.2008.06.095. PubMed DOI
Mercier T., Honikman-Leban E., Chaumontet C., Martel P., Shahin M.M. Studies on the modulating effects of retinoic acid and retinol acetate using dye transfer and metabolic cooperation assays. Fundam. Appl. Toxicol. 1993;21:270–276. doi: 10.1006/faat.1993.1099. PubMed DOI
Chaumontet C., Bex V., Véran F., Martel P. The vitamin E analog tocopherol succinate strongly inhibits gap junctional intercellular communication in rat liver epithelial cells (IAR203) J. Nutr. Biochem. 2008;19:263–268. doi: 10.1016/j.jnutbio.2007.03.005. PubMed DOI
Bex V., Mercier T., Chaumontet C., Gaillard-Sanchez I., Flechon B., Mazet F., Traub O., Martel P. Retinoic acid enhances connexin43 expression at the post-transcriptional level in rat liver epithelial cells. Cell Biochem. Funct. 1995;13:69–77. doi: 10.1002/cbf.290130112. PubMed DOI
Lampe P.D. Analyzing phorbol ester effects on gap junctional communication: A dramatic inhibition of assembly. J. Cell Biol. 1994;127:1895–1905. doi: 10.1083/jcb.127.6.1895. PubMed DOI PMC
Apostoli P., Huard C., Chaumontet C., Martel P., Alessio L., Mazzoleni G. Effects of four inorganic lead compounds on the proliferation and junctional coupling of cultured REL liver cells. Am. J. Ind. Med. 2000;38:340–348. doi: 10.1002/1097-0274(200009)38:3<340::AID-AJIM15>3.0.CO;2-S. PubMed DOI
Huard C., Druesne N., Guyonnet D., Thomas M., Pagniez A., Le Bon A.-M., Martel P., Chaumontet C. Diallyl disulfide (DADS) enhances gap-junctional intercellular communication by both direct and indirect mechanisms in rat liver cells. Carcinogenesis. 2004;25:91–98. doi: 10.1093/carcin/bgg182. PubMed DOI
Chaumontet C., Droumaguet C., Bex V., Heberden C., Gaillard-Sanchez I., Martel P. Flavonoids (apigenin, tangeretin) counteract tumor promoter-induced inhibition of intercellular communication of rat liver epithelial cells. Cancer Lett. 1997;114:207–210. doi: 10.1016/S0304-3835(97)04664-8. PubMed DOI
Chaumontet C., Suschetet M., Honikman-Leban E., Krutovskikh V.A., Berges R., Le Bon A.M., Heberden C., Shahin M.M., Yamasaki H., Martel P. Lack of tumor-promoting effects of flavonoids: Studies on rat liver preneoplastic foci and on in vivo and in vitro gap junctional intercellular communication. Nutr. Cancer. 1996;26:251–263. doi: 10.1080/01635589609514482. PubMed DOI
Huang R.P., Peng A., Hossain M.Z., Fan Y., Jagdale A., Boynton A.L. Tumor promotion by hydrogen peroxide in rat liver epithelial cells. Carcinogenesis. 1999;20:485–492. doi: 10.1093/carcin/20.3.485. PubMed DOI
Lau A.F., Kanemitsu M.Y., Kurata W.E., Danesh S., Boynton A.L. Epidermal growth factor disrupts gap-junctional communication and induces phosphorylation of connexin43 on serine. Mol. Biol. Cell. 1992;3:865–874. doi: 10.1091/mbc.3.8.865. PubMed DOI PMC
Huang R.P., Peng A., Golard A., Hossain M.Z., Huang R., Liu Y.G., Boynton A.L. Hydrogen peroxide promotes transformation of rat liver non-neoplastic epithelial cells through activation of epidermal growth factor receptor. Mol. Carcinog. 2001;30:209–217. doi: 10.1002/mc.1030. PubMed DOI
Hossain M.Z., Jagdale A.B., Ao P., Boynton A.L. Mitogen-activated protein kinase and phosphorylation of connexin43 are not sufficient for the disruption of gap junctional communication by platelet-derived growth factor and tetradecanoylphorbol acetate. J. Cell. Physiol. 1999;179:87–96. doi: 10.1002/(SICI)1097-4652(199904)179:1<87::AID-JCP11>3.0.CO;2-K. PubMed DOI
Kanemitsu M.Y., Lau A.F. Epidermal growth factor stimulates the disruption of gap junctional communication and connexin43 phosphorylation independent of 12-0- tetradecanoylphorbol 13-acetate-sensitive protein kinase C: The possible involvement of mitogen-activated protein kinase. Mol. Biol. Cell. 1993;4:837–848. doi: 10.1091/mbc.4.8.837. PubMed DOI PMC
Kang N.J., Lee K.M., Kim J.H., Lee B.K., Kwon J.Y., Lee K.W., Lee H.J. Inhibition of gap junctional intercellular communication by the green tea polyphenol (-)-epigallocatechin gallate in normal rat liver epithelial cells. J. Agric. Food Chem. 2008;56:10422–10427. doi: 10.1021/jf801981w. PubMed DOI
Upham B.L., Masten S.J., Lockwood B.R., Trosko J.E. Nongenotoxic effects of polycyclic aromatic hydrocarbons and their oxygenation by-products on the intercellular communication of rat liver epithelial cells. Fundam. Appl. Toxicol. 1994;23:470–475. doi: 10.1006/faat.1994.1129. PubMed DOI
Kang K.S., Kang B.C., Lee B.J., Che J.H., Li G.X., Trosko J.E., Lee Y.S. Preventive effect of epicatechin and ginsenoside Rb2 on the inhibition of gap junctional intercellular communication by TPA and H2O2. Cancer Lett. 2000;152:97–106. doi: 10.1016/S0304-3835(99)00438-3. PubMed DOI
Abdelmohsen K., Stuhlmann D., Daubrawa F., Klotz L.-O. Dicumarol is a potent reversible inhibitor of gap junctional intercellular communication. Arch. Biochem. Biophys. 2005;434:241–247. doi: 10.1016/j.abb.2004.11.002. PubMed DOI
Fransson R., Nicotera P., Wärngård L., Ahlborg U.G. Changes in cytosolic CA2+ are not involved in DDT-induced loss of gap junctional communication in WB-F344 cells. Cell Biol. Toxicol. 1990;6:235–244. doi: 10.1007/BF00249596. PubMed DOI
Hii C.S., Ferrante A., Schmidt S., Rathjen D.A., Robinson B.S., Poulos A., Murray A.W. Inhibition of gap junctional communication by polyunsaturated fatty acids in WB cells: Evidence that connexin 43 is not hyperphosphorylated. Carcinogenesis. 1995;16:1505–1511. doi: 10.1093/carcin/16.7.1505. PubMed DOI
Lee K.M., Kwon J.Y., Lee K.W., Lee H.J. Ascorbic acid 6-palmitate suppresses gap-junctional intercellular communication through phosphorylation of connexin 43 via activation of the MEK-ERK pathway. Mutat. Res. Mol. Mech. Mutagen. 2009;660:51–56. doi: 10.1016/j.mrfmmm.2008.10.012. PubMed DOI
Upham B.L., Deocampo N.D., Wurl B., Trosko J.E. Inhibition of gap junctional intercellular communication by perfluorinated fatty acids is dependent on the chain length of the fluorinated tail. Int. J. Cancer. 1998;78:491–495. doi: 10.1002/(SICI)1097-0215(19981109)78:4<491::AID-IJC16>3.0.CO;2-9. PubMed DOI
Hakulinen P., Rintala E., Mäki-Paakkanen J., Komulainen H. Altered expression of connexin43 in the inhibition of gap junctional intercellular communication by chlorohydroxyfuranones in WB-F344 rat liver epithelial cells. Toxicol. Appl. Pharmacol. 2006;212:146–155. doi: 10.1016/j.taap.2005.07.013. PubMed DOI
Flodström S., Warngård L., Hemming H., Ahlborg U.G. Chlorobenzilate-induced effects on enzyme-altered foci in rat liver and intercellular communication in rat liver WB-F344 epithelial cells. Cancer Lett. 1988;43:161–166. doi: 10.1016/0304-3835(88)90165-6. PubMed DOI
Sai K., Upham B.L., Kang K.S., Hasegawa R., Inoue T., Trosko J.E. Inhibitory effect of pentachlorophenol on gap junctional intercellular communication in rat liver epithelial cells in vitro. Cancer Lett. 1998;130:9–17. doi: 10.1016/S0304-3835(98)00082-2. PubMed DOI
Kim J.H., Kang N.J., Lee B.K., Lee K.W., Lee H.J. Gallic acid, a metabolite of the antioxidant propyl gallate, inhibits gap junctional intercellular communication via phosphorylation of connexin 43 and extracellular-signal-regulated kinase1/2 in rat liver epithelial cells. Mutat. Res. 2008;638:175–183. doi: 10.1016/j.mrfmmm.2007.10.005. PubMed DOI
Forejtníková H., Lunerová K., Kubínová R., Jankovská D., Marek R., Kares R., Suchý V., Vondrácek J., Machala M. Chemoprotective and toxic potentials of synthetic and natural chalcones and dihydrochalcones in vitro. Toxicology. 2005;208:81–93. doi: 10.1016/j.tox.2004.11.011. PubMed DOI
Nishikawa A., Sai K., Okazaki K., Son H.-Y., Kanki K., Nakajima M., Kinae N., Nohmi T., Trosko J.E., Inoue T., et al. MX, a by-product of water chlorination, lacks in vivo genotoxicity in gpt delta mice but inhibits gap junctional intercellular communication in rat WB cells. Environ. Mol. Mutagen. 2006;47:48–55. doi: 10.1002/em.20167. PubMed DOI
Hsiao P.-J., Jao J.-C., Tsai J.-L., Chang W.-T., Jeng K.-S., Kuo K.-K. Inorganic arsenic trioxide induces gap junction loss in association with the downregulation of connexin43 and E-cadherin in rat hepatic “stem-like” cells. Kaohsiung J. Med. Sci. 2014;30:57–67. doi: 10.1016/j.kjms.2013.10.002. PubMed DOI
Hill C.S., Oh S.Y., Schmidt S.A., Clark K.J., Murray A.W. Lysophosphatidic acid inhibits gap-junctional communication and stimulates phosphorylation of connexin-43 in WB cells: Possible involvement of the mitogen-activated protein kinase cascade. Biochem. J. 1994;303 Pt 2:475–479. doi: 10.1042/bj3030475. PubMed DOI PMC
Jeong S.H., Cho M.H., Cho J.H. Effects of cadmium on gap junctional intercellular communication in WB-F344 rat liver epithelial cells. Hum. Exp. Toxicol. 2001;20:577–583. doi: 10.1191/096032701718620855. PubMed DOI
Masten S.J., Tian M., Upham B.L., Trosko J.E. Effect of selected pesticides and their ozonation by-products on gap junctional intercellular communication using rat liver epithelial cell lines. Chemosphere. 2001;44:457–465. doi: 10.1016/S0045-6535(00)00296-4. PubMed DOI
Alpatova A.L., Shan W., Babica P., Upham B.L., Rogensues A.R., Masten S.J., Drown E., Mohanty A.K., Alocilja E.C., Tarabara V.V. Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: Effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Water Res. 2010;44:505–520. doi: 10.1016/j.watres.2009.09.042. PubMed DOI
Upham B.L., Guzvić M., Scott J., Carbone J.M., Blaha L., Coe C., Li L.L., Rummel A.M., Trosko J.E. Inhibition of gap junctional intercellular communication and activation of mitogen-activated protein kinase by tumor-promoting organic peroxides and protection by resveratrol. Nutr. Cancer. 2007;57:38–47. doi: 10.1080/01635580701268188. PubMed DOI
Flodström S., Hemming H., Wärngård L., Ahlborg U.G. Promotion of altered hepatic foci development in rat liver, cytochrome P450 enzyme induction and inhibition of cell-cell communication by DDT and some structurally related organohalogen pesticides. Carcinogenesis. 1990;11:1413–1417. doi: 10.1093/carcin/11.8.1413. PubMed DOI
Babica P., Čtveráčková L., Lenčešová Z., Trosko J.E., Upham B.L. Chemopreventive agents attenuate rapid inhibition of gap junctional intercellular communication induced by environmental toxicants. Nutr. Cancer. 2016;68:827–837. doi: 10.1080/01635581.2016.1180409. PubMed DOI PMC
Nielsen M., Ruch R.J., Vang O. Resveratrol reverses tumor-promoter-induced inhibition of gap-junctional intercellular communication. Biochem. Biophys. Res. Commun. 2000;275:804–809. doi: 10.1006/bbrc.2000.3378. PubMed DOI
Matesic D.F., Abifadel D.N., Garcia E.L., Jann M.W. Effect of thioridazine on gap junction intercellular communication in connexin 43-expressing cells. Cell Biol. Toxicol. 2006;22:257–268. doi: 10.1007/s10565-006-0047-7. PubMed DOI
Lee C.-H., Chen I.-H., Lee C.-R., Chi C.-H., Tsai M.-C., Tsai J.-L., Lin H.-F. Inhibition of gap junctional Intercellular communication in WB-F344 rat liver epithelial cells by triphenyltin chloride through MAPK and PI3-kinase pathways. J. Occup. Med. Toxicol. 2010;5:17. doi: 10.1186/1745-6673-5-17. PubMed DOI PMC
Hasler C.M., Frick M.A., Bennink M.R., Trosko J.E. TPA-induced inhibition of gap junctional intercellular communication is not mediated through free radicals. Toxicol. Appl. Pharmacol. 1990;103:389–398. doi: 10.1016/0041-008X(90)90312-I. PubMed DOI
Lee B.K., Chung M.-Y., Lee K.W. Benzo[a]pyrene-7,8-diol-9,10-epoxide inhibits gap junction intercellular communication via phosphorylation of tumor progression locus 2 in WB-F344 rat liver epithelial cells. Mol. Carcinog. 2015;54:351–358. doi: 10.1002/mc.22103. PubMed DOI
Upham B.L., Weis L.M., Rummel A.M., Masten S.J., Trosko J.E. The effects of anthracene and methylated anthracenes on gap junctional intercellular communication in rat liver epithelial cells. Fundam. Appl. Toxicol. 1996;34:260–264. doi: 10.1006/faat.1996.0195. PubMed DOI
Upham B.L., Weis L.M., Trosko J.E. Modulated gap junctional intercellular communication as a biomarker of PAH epigenetic toxicity: Structure-function relationship. Environ. Health Perspect. 1998;106(Suppl. 4):975–981. doi: 10.1289/ehp.98106s4975. PubMed DOI PMC
Weis L.M., Rummel A.M., Masten S.J., Trosko J.E., Upham B.L. Bay or baylike regions of polycyclic aromatic hydrocarbons were potent inhibitors of gap junctional intercellular communication. Environ. Health Perspect. 1998;106:17–22. doi: 10.1289/ehp.9810617. PubMed DOI PMC
Rummel A.M., Trosko J.E., Wilson M.R., Upham B.L. Polycyclic aromatic hydrocarbons with bay-like regions inhibited gap junctional intercellular communication and stimulated MAPK activity. Toxicol. Sci. 1999;49:232–240. doi: 10.1093/toxsci/49.2.232. PubMed DOI
Bláha L., Kapplová P., Vondráček J., Upham B., Machala M. Inhibition of gap-junctional intercellular communication by environmentally occuring polycyclic aromatic hydrocarbons. Toxicol. Sci. 2002;65:43–51. doi: 10.1093/toxsci/65.1.43. PubMed DOI
Marvanová S., Vondrácek J., Penccíková K., Trilecová L., Krcmárr P., Topinka J., Nováková Z., Milcová A., Machala M. Toxic effects of methylated benz[a]anthracenes in liver cells. Chem. Res. Toxicol. 2008;21:503–512. doi: 10.1021/tx700305x. PubMed DOI
Svihálková-Sindlerová L., Machala M., Pencíková K., Marvanová S., Neca J., Topinka J., Sevastyanova O., Kozubík A., Vondrácek J., Švihálková-Šindlerová L., et al. Dibenzanthracenes and benzochrysenes elicit both genotoxic and nongenotoxic events in rat liver “stem-like” cells. Toxicology. 2007;232:147–159. doi: 10.1016/j.tox.2006.12.024. PubMed DOI
Kabátková M., Svobodová J., Pěnčíková K., Mohatad D.S., Šmerdová L., Kozubík A., Machala M., Vondráček J., Kabatkova M., Svobodova J., et al. Interactive effects of inflammatory cytokine and abundant low-molecular-weight PAHs on inhibition of gap junctional intercellular communication, disruption of cell proliferation control, and the AhR-dependent transcription. Toxicol. Lett. 2015;232:113–121. doi: 10.1016/j.toxlet.2014.09.023. PubMed DOI
Novakova K., Blaha L., Babica P. Tumor promoting effects of cyanobacterial extracts are potentiated by anthropogenic contaminants-Evidence from in vitro study. Chemosphere. 2012;89:30–37. doi: 10.1016/j.chemosphere.2012.04.008. PubMed DOI
Luster-Teasley S.L., Ganey P.E., DiOrio M., Ward J.S., 3rd, Maleczka R.E.J., Trosko J.E., Masten S.J. Effect of byproducts from the ozonation of pyrene: Biphenyl-2,2′,6,6′-tetracarbaldehyde and biphenyl-2,2′,6,6′-tetracarboxylic acid on gap junction intercellular communication and neutrophil function. Environ. Toxicol. Chem. 2005;24:733–740. doi: 10.1897/04-679.1. PubMed DOI
Herner H.A., Trosko J.E., Masten S.J. The epigenetic toxicity of pyrene and related ozonation byproducts containing an aldehyde functional group. Environ. Sci. Technol. 2001;35:3576–3583. doi: 10.1021/es0106117. PubMed DOI
Machala M., Svihálková-Sindlerová L., Pencíková K., Krcmár P., Topinka J., Milcová A., Nováková Z., Kozubík A., Vondrácek J. Effects of methylated chrysenes on AhR-dependent and -independent toxic events in rat liver epithelial cells. Toxicology. 2008;247:93–101. doi: 10.1016/j.tox.2008.02.008. PubMed DOI
Vondrácek J., Chramostová K., Plísková M., Bláha L., Brack W., Kozubík A., Machala M., Vondracek J., Chramostova K., Pliskova M., et al. Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans. Environ. Toxicol. Chem. 2004;23:2214–2220. doi: 10.1897/03-620. PubMed DOI
Vondráček J., Švihálková-Šindlerová L., Pěnčíková K., Krčmář P., Andrysík Z., Chramostová K., Marvanová S., Valovičová Z., Kozubík A., Gábelová A., et al. 7H-Dibenzo[c,g]carbazole and 5,9-dimethyldibenzo[c,g]carbazole exert multiple toxic events contributing to tumor promotion in rat liver epithelial “stem-like” cells. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2006;596:43–56. doi: 10.1016/j.mrfmmm.2005.11.005. PubMed DOI
Evans M.G., Trosko J.E. Concentration/response effect of 2,2′, 4,4′, 5,5′-hexabromobiphenyl on cell-cell communication in vitro: Assessment by fluorescence redistribution after photobleaching (“FRAP”) Cell Biol. Toxicol. 1988;4:163–171. doi: 10.1007/BF00119243. PubMed DOI
Hamers T., Kamstra J.H., Cenijn P.H., Pencikova K., Palkova L., Simeckova P., Vondracek J., Andersson P.L., Stenberg M., Machala M. In vitro toxicity profiling of ultrapure non-dioxin-like polychlorinated biphenyl congeners and their relative toxic contribution to PCB mixtures in humans. Toxicol. Sci. 2011;121:88–100. doi: 10.1093/toxsci/kfr043. PubMed DOI
Simecková P., Vondrácek J., Andrysík Z., Zatloukalová J., Krcmár P., Kozubík A., Machala M. The 2,2′,4,4′,5,5′-hexachlorobiphenyl-enhanced degradation of connexin 43 involves both proteasomal and lysosomal activities. Toxicol. Sci. 2009;107:9–18. doi: 10.1093/toxsci/kfn202. PubMed DOI
Machala M., Bláha L., Lehmler H.-J., Plísková M., Májková Z., Kapplová P., Sovadinová I., Vondrácek J., Malmberg T., Robertson L.W. Toxicity of hydroxylated and quinoid PCB metabolites: Inhibition of gap junctional intercellular communication and activation of aryl hydrocarbon and estrogen receptors in hepatic and mammary cells. Chem. Res. Toxicol. 2004;17:340–347. doi: 10.1021/tx030034v. PubMed DOI
Satoh A.Y., Trosko J.E., Masten S.J. Epigenetic toxicity of hydroxylated biphenyls and hydroxylated polychlorinated biphenyls on normal rat liver epithelial cells. Environ. Sci. Technol. 2003;37:2727–2733. doi: 10.1021/es021041t. PubMed DOI
Andrysik Z., Prochazkova J., Kabatkova M., Umannova L., Simeckova P., Kohoutek J., Kozubik A., Machala M., Vondracek J., Andrysík Z., et al. Aryl hydrocarbon receptor-mediated disruption of contact inhibition is associated with connexin43 downregulation and inhibition of gap junctional intercellular communication. Arch. Toxicol. 2013;87:491–503. doi: 10.1007/s00204-012-0963-7. PubMed DOI
Upham B.L., Trosko J.E. A paradigm shift in the understanding of oxidative stress and its implications to exposure of low-level ionizing radiation. Acta Med. Nagasaki. 2005;50:63–68.
Oh S.-Y., Schmidt S.A., Murray A.W. Epidermal growth factor inhibits gap junctional communication and stimulates serine-phosphorylation of connexin43 in WB cells by a protein kinase c-independent mechanism. Cell Commun. Adhes. 1993;1:143–149. doi: 10.3109/15419069309095690. PubMed DOI
Cho J.-H., Cho S.-D., Hu H., Kim S.-H., Lee S.K., Lee Y.-S., Kang K.-S. The roles of ERK1/2 and p38 MAP kinases in the preventive mechanisms of mushroom Phellinus linteus against the inhibition of gap junctional intercellular communication by hydrogen peroxide. Carcinogenesis. 2002;23:1163–1169. doi: 10.1093/carcin/23.7.1163. PubMed DOI
Upham B.L., Kang K.S., Cho H.Y., Trosko J.E. Hydrogen peroxide inhibits gap junctional intercellular communication in glutathione sufficient but not glutathione deficient cells. Carcinogenesis. 1997;18:37–42. doi: 10.1093/carcin/18.1.37. PubMed DOI
Kim Y.-J., Seo S.G., Choi K., Kim J.E., Kang H., Chung M.-Y., Lee K.W., Lee H.J. Recovery effect of onion peel extract against H2O2-induced inhibition of gap-junctional intercellular communication is mediated through quercetin. J. Food Sci. 2014;79:H1011–H1017. doi: 10.1111/1750-3841.12440. PubMed DOI
Kim J.-S., Ha T.-Y., Ahn J., Kim H.-K., Kim S. Pterostilbene from Vitis coignetiae protect H2O2-induced inhibition of gap junctional intercellular communication in rat liver cell line. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2009;47:404–409. doi: 10.1016/j.fct.2008.11.038. PubMed DOI
Lee S.J., Lee K.W., Lee H.J. Abies nephrolepis leaf phenolics prevent the inhibition of gap junction intercellular communication by hydrogen peroxide in rat liver epithelial cells. Biofactors. 2004;21:357–360. doi: 10.1002/biof.552210168. PubMed DOI
Kim J.H., Choi S.H., Kim J., Lee B.K., Lee K.W., Lee H.J. Differential regulation of the hydrogen-peroxide-induced inhibition of gap-junction intercellular communication by resveratrol and butylated hydroxyanisole. Mutat. Res. 2009;671:40–44. doi: 10.1016/j.mrfmmm.2009.08.011. PubMed DOI
Lee D.E., Shin B.J., Hur H.J., Kim J.H., Kim J., Kang N.J., Kim D.O., Lee C.Y., Lee K.W., Lee H.J. Quercetin, the active phenolic component in kiwifruit, prevents hydrogen peroxide-induced inhibition of gap-junction intercellular communication. Br. J. Nutr. 2010;104:164–170. doi: 10.1017/S0007114510000346. PubMed DOI
Kim J.H., Lee B.K., Lee K.W., Lee H.J. Resveratrol counteracts gallic acid-induced down-regulation of gap-junction intercellular communication. J. Nutr. Biochem. 2009;20:149–154. doi: 10.1016/j.jnutbio.2008.01.008. PubMed DOI
Jung J.-W., Cho S.-D., Ahn N.-S., Yang S.-R., Park J.-S., Jo E.-H., Hwang J.-W., Aruoma O.I., Lee Y.-S., Kang K.-S. Effects of the histone deacetylases inhibitors sodium butyrate and trichostatin A on the inhibition of gap junctional intercellular communication by H2O2- and 12-O-tetradecanoylphorbol-13-acetate in rat liver epithelial cells. Cancer Lett. 2006;241:301–308. doi: 10.1016/j.canlet.2005.10.029. PubMed DOI
Lee K.W., Hur H.J., Lee H.J., Lee C.Y., Ki W.L., Haeng J.H., Hyong J.L., Chang Y.L., Lee K.W., Hur H.J., et al. Antiproliferative effects of dietary phenolic substances and hydrogen peroxide. J. Agric. Food Chem. 2005;53:1990–1995. doi: 10.1021/jf0486040. PubMed DOI
Lee K.W., Hwang E.-S., Kang N.J., Kim K.H., Lee H.J. Extraction and chromatographic separation of anticarcinogenic fractions from cacao bean husk. BioFactors. 2005;23:141–150. doi: 10.1002/biof.5520230303. PubMed DOI
Kim J.-S., Lee W.-M., Rhee H.C., Kim S. Red paprika (Capsicum annuum L.) and its main carotenoids, capsanthin and β-carotene, prevent hydrogen peroxide-induced inhibition of gap-junction intercellular communication. Chem. Biol. Interact. 2016;254:146–155. doi: 10.1016/j.cbi.2016.05.004. PubMed DOI
Hu W., Jones P.D., Upham B.L., Trosko J.E., Lau C., Giesy J.P. Inhibition of gap junctional intercellular communication by perfluorinated compounds in rat liver and dolphin kidney epithelial cell lines in vitro and Sprague-Dawley rats in vivo. Toxicol. Sci. 2002;68:429–436. doi: 10.1093/toxsci/68.2.429. PubMed DOI
Upham B.L., Park J.-S., Babica P., Sovadinova I., Rummel A.M., Trosko J.E., Hirose A., Hasegawa R., Kanno J., Sai K. Structure-activity-dependent regulation of cell communication by perfluorinated fatty acids using in vivo and in vitro model systems. Environ. Health Perspect. 2009;117:545–551. doi: 10.1289/ehp.11728. PubMed DOI PMC
Madhukar B.V., de Feijter-Rupp H.L., Trosko J.E. Pulse treatment with the tumor promoter TPA delays the onset of desensitization response and prolongs the inhibitory effect on gap junctional intercellular communication of a rat liver epithelial cell line WB F-344. Cancer Lett. 1996;106:117–123. doi: 10.1016/0304-3835(96)04315-7. PubMed DOI
Sun H., Liu G.-T. Chemopreventive effect of bicyclol on malignant transformation of WB-F344 rat liver epithelial cells and its effect on related signal transduction in vitro. Cancer Lett. 2006;236:239–249. doi: 10.1016/j.canlet.2005.05.019. PubMed DOI
Kang K.S., Yun J.W., Yoon B., Lim Y.K., Lee Y.S. Preventive effect of germanium dioxide on the inhibition of gap junctional intercellular communication by TPA. Cancer Lett. 2001;166:147–153. doi: 10.1016/S0304-3835(01)00446-3. PubMed DOI
Oh S.Y., Madhukar B.V., Trosko J.E. Inhibition of gap junctional blockage by palmitoyl carnitine and TMB-8 in a rat liver epithelial cell line. Carcinogenesis. 1988;9:135–139. doi: 10.1093/carcin/9.1.135. PubMed DOI
Park J.-R., Park J.-S., Jo E.-H., Hwang J.-W., Kim S.-J., Ra J.-C., Aruoma O.I., Lee Y.-S., Kang K.-S. Reversal of the TPA-induced inhibition of gap junctional intercellular communication by Chaga mushroom (Inonotus obliquus) extracts: Effects on MAP kinases. Biofactors. 2006;27:147–155. doi: 10.1002/biof.5520270113. PubMed DOI
Prochazka L., Turanek J., Tesarik R., Knotigova P., Polaskova P., Andrysik Z., Kozubik A., Zak F., Sova P., Neuzil J., et al. Apoptosis and inhibition of gap-junctional intercellular communication induced by LA-12, a novel hydrophobic platinum(IV) complex. Arch. Biochem. Biophys. 2007;462:54–61. doi: 10.1016/j.abb.2007.03.021. PubMed DOI
Čtveráčková L., Jančula D., Raška J., Babica P., Sovadinová I. Structure-dependent effects of phthalates on intercellular and intracellular communication in liver oval cells. Int. J. Mol. Sci. 2020;21:6069. doi: 10.3390/ijms21176069. PubMed DOI PMC
Babica P., Zurabian R., Kumar E.R., Chopra R., Mianecki M.J., Park J.-S., Jasa L., Trosko J.E., Upham B.L. Methoxychlor and vinclozolin induce rapid changes in intercellular and intracellular signaling in liver progenitor cells. Toxicol. Sci. 2016;153:174–185. doi: 10.1093/toxsci/kfw114. PubMed DOI PMC
Ye Y.-X., Bombick D., Hirst K., Zhang G., Chang C.-C., Trosko J.E., Akera T. The modulation of gap junctional communication by Gossypol in various mammalian cell lines in vitro. Toxicol. Sci. 1990;14:817–832. doi: 10.1093/toxsci/14.4.817. PubMed DOI
Suzuki J., Na H.K., Upham B.L., Chang C.C., Trosko J.E. lambda-Carrageenan-induced inhibition of gap-junctional intercellular communication in rat liver epithelial cells. Nutr. Cancer Int. J. 2000;36:122–128. doi: 10.1207/S15327914NC3601_16. PubMed DOI
Upham B.L., Koski T.R., Rummel A.M., Wilson M.R., Horvath A., Trosko J.E. Differential roles of 2, 6, and 8 carbon ceramides on the modulation of gap junctional communication and apoptosis during carcinogenesis. Cancer Lett. 2003;191:27–34. doi: 10.1016/S0304-3835(02)00620-1. PubMed DOI
Ale-Agha N., Stahl W., Sies H. (-)-Epicatechin effects in rat liver epithelial cells: Stimulation of gap junctional communication and counteraction of its loss due to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate. Biochem. Pharmacol. 2002;63:2145–2149. doi: 10.1016/S0006-2952(02)01021-3. PubMed DOI
Guan X., Ruch R.J. Gap junction endocytosis and lysosomal degradation of connexin43-P2 in WB-F344 rat liver epithelial cells treated with DDT and lindane. Carcinogenesis. 1996;17:1791–1798. doi: 10.1093/carcin/17.9.1791. PubMed DOI
Sigler K., Ruch R.J. Enhancement of gap junctional intercellular communication in tumor promoter-treated cells by components of green tea. Cancer Lett. 1993;69:15–19. doi: 10.1016/0304-3835(93)90026-6. PubMed DOI
Hu J., Speisky H., Cotgreave I.A. The inhibitory effects of boldine, glaucine, and probucol on TPA-induced down regulation of gap junction function. Relationships to intracellular peroxides, protein kinase C translocation, and connexin 43 phosphorylation. Biochem. Pharmacol. 1995;50:1635–1643. doi: 10.1016/0006-2952(95)02055-1. PubMed DOI
Roemer E., Lammerich H.-P., Conroy L.L., Weisensee D. Characterization of a gap-junctional intercellular communication (GJIC) assay using cigarette smoke. Toxicol. Lett. 2013;219:248–253. doi: 10.1016/j.toxlet.2013.03.028. PubMed DOI
Pierucci F., Frati A., Squecco R., Lenci E., Vicenti C., Slavik J., Francini F., Machala M., Meacci E. Non-dioxin-like organic toxicant PCB153 modulates sphingolipid metabolism in liver progenitor cells: Its role in Cx43-formed gap junction impairment. Arch. Toxicol. 2017;91:749–760. doi: 10.1007/s00204-016-1750-7. PubMed DOI
Ogawa T., Hayashi T., Kyoizumi S., Kusunoki Y., Nakachi K., MacPhee D.G., Trosko J.E., Kataoka K., Yorioka N. Anisomycin downregulates gap-junctional intercellular communication via the p38 MAP-kinase pathway. J. Cell Sci. 2004;117:2087–2096. doi: 10.1242/jcs.01056. PubMed DOI
Kuslikis B.I., Trosko J.E., Braselton W.E.J. Mutagenicity and effect on gap-junctional intercellular communication of 4,4′-methylenebis(2-chloroaniline) and its oxidized metabolites. Mutagenesis. 1991;6:19–24. doi: 10.1093/mutage/6.1.19. PubMed DOI
Jone C., Trosko J.E., Chang C.C. Characterization of a rat liver epithelial cell line to detect inhibitors of metabolic cooperation. In Vitro Cell. Dev. Biol. J. Tissue Cult. Assoc. 1987;23:214–220. doi: 10.1007/BF02623582. PubMed DOI
Bokkala S., Reis H.M., Rubin E., Joseph S.K. Effect of angiotensin II and ethanol on the expression of connexin 43 in WB rat liver epithelial cells. Biochem. J. 2001;357:769–777. doi: 10.1042/bj3570769. PubMed DOI PMC
Ren P., Ruch R.J. Inhibition of gap junctional intercellular communication by barbiturates in long-term primary cultured rat hepatocytes is correlated with liver tumour promoting activity. Carcinogenesis. 1996;17:2119–2124. doi: 10.1093/carcin/17.10.2119. PubMed DOI
Gerashchenko B.I., Howell R.W. Cell proximity is a prerequisite for the proliferative response of bystander cells co-cultured with cells irradiated with gamma-rays. Cytom. A. 2003;56:71–80. doi: 10.1002/cyto.a.10092. PubMed DOI
Ren P., Mehta P.P., Ruch R.J. Inhibition of gap junctional intercellular communication by tumor promoters in connexin43 and connexin32-expressing liver cells: Cell specificity and role of protein kinase C. Carcinogenesis. 1998;19:169–175. doi: 10.1093/carcin/19.1.169. PubMed DOI
Matesic D.F., Rupp H.L., Bonney W.J., Ruch R.J., Trosko J.E. Changes in gap-junction permeability, phosphorylation, and number mediated by phorbol ester and non-phorbol-ester tumor promoters in rat liver epithelial cells. Mol. Carcinog. 1994;10:226–236. doi: 10.1002/mc.2940100407. PubMed DOI
Guan X., Bonney W.J., Ruch R.J. Changes in gap junction permeability, gap junction number, and connexin43 expression in lindane-treated rat liver epithelial cells. Toxicol. Appl. Pharmacol. 1995;130:79–86. doi: 10.1006/taap.1995.1011. PubMed DOI
Hasler C.M., Bennink M.R., Trosko J.E. Inhibition of gap junction-mediated intercellular communication by alpha-linolenate. Am. J. Physiol. 1991;261:C161–C168. doi: 10.1152/ajpcell.1991.261.1.C161. PubMed DOI
Hasler C.M., Trosko J.E., Bennink M.R. Incorporation of n-3 fatty acids into WB-F344 cell phospholipids inhibits gap junctional intercellular communication. Lipids. 1991;26:788–792. doi: 10.1007/BF02536159. PubMed DOI
Fransson-Steen R., Wärngård L. Inhibitory effects of endosulfan on gap junctional intercellular communication in WB-F344 rat liver cells and primary rat hepatocytes. Carcinogenesis. 1992;13:657–662. doi: 10.1093/carcin/13.4.657. PubMed DOI
Ehrhardt C., Kneuer C., Fiegel J., Hanes J., Schaefer U.F., Kim K.-J., Lehr C.-M. Influence of apical fluid volume on the development of functional intercellular junctions in the human epithelial cell line 16HBE14o-: Implications for the use of this cell line as an in vitro model for bronchial drug absorption studies. Cell Tissue Res. 2002;308:391–400. doi: 10.1007/s00441-002-0548-5. PubMed DOI
Yeh S.-L., Hu M.-L. Oxidized beta-carotene inhibits gap junction intercellular communication in the human lung adenocarcinoma cell line A549. Food Chem. Toxicol. 2003;41:1677–1684. doi: 10.1016/S0278-6915(03)00192-3. PubMed DOI
Dydowiczová A., Brózman O., Babica P., Sovadinová I. Improved multiparametric scrape loading-dye transfer assay for a simultaneous high-throughput analysis of gap junctional intercellular communication, cell density and viability. Sci. Rep. 2020;10:730. doi: 10.1038/s41598-020-57536-3. PubMed DOI PMC
Guan X., Hardenbrook J., Fernstrom M.J., Chaudhuri R., Malkinson A.M., Ruch R.J. Down-regulation by butylated hydroxytoluene of the number and function of gap junctions in epithelial cell lines derived from mouse lung and rat liver. Carcinogenesis. 1995;16:2575–2582. doi: 10.1093/carcin/16.10.2575. PubMed DOI
Brózman O., Novák J., Bauer A.K., Babica P. Airborne PAHs inhibit gap junctional intercellular communication and activate MAPKs in human bronchial epithelial cell line. Environ. Toxicol. Pharmacol. 2020;79:103422. doi: 10.1016/j.etap.2020.103422. PubMed DOI PMC
Aylsworth C.F., Trosko J.E., Chang C.C., Benjamin K., Lockwood E. Synergistic inhibition of metabolic cooperation by oleic acid or 12-0-tetradecanoylphorbol-13-acetate and dichlorodiphenyltrichlorethane (DDT) in Chinese hamster V79 cells: Implication of a role for protein kinase C in the regulation of gap junctional in. Cell Biol. Toxicol. 1989;5:27–37. doi: 10.1007/BF00141062. PubMed DOI
Wärngård L., Flodström S. Effects of tetradecanoyl phorbol acetate, pyrethroids and DDT in the V79. Cell Biol. Toxicol. 1989;5:67–75. doi: 10.1007/BF00141065. PubMed DOI
Wärngård L., Flodström S., Ljungquist S., Ahlborg U.G. Interaction between quercetin, TPA and DDT in the V79 metabolic cooperation assay. Carcinogenesis. 1987;8:1201–1205. doi: 10.1093/carcin/8.9.1201. PubMed DOI
Zeilmaker M.J., Yamasaki H. Inhibition of junctional intercellular communication as a possible short-term test to detect tumor-promoting agents: Results with nine chemicals tested by dye transfer assay in Chinese hamster V79 cells. Cancer Res. 1986;46:6180–6186. PubMed
Lin Z.X., Kavanagh T., Trosko J.E., Chang C.C. Inhibition of gap junctional intercellular communication in human teratocarcinoma cells by organochlorine pesticides. Toxicol. Appl. Pharmacol. 1986;83:10–19. doi: 10.1016/0041-008x(86)90318-2. PubMed DOI
Tsushimoto G., Chang C.C., Trosko J.E., Matsumura F. Cytotoxic, mutagenic, and cell-cell communication inhibitory properties of DDT, lindane, and chlordane on Chinese hamster cells in vitro. Arch. Environ. Contam. Toxicol. 1983;12:721–729. doi: 10.1007/BF01060757. PubMed DOI
Lee I.-K., Rhee S.-K. Inhibitory effect of bisphenol A on gap junctional intercellular communication in an epithelial cell line of rat mammary tissue. Arch. Pharm. Res. 2007;30:337–343. doi: 10.1007/BF02977615. PubMed DOI
Tai M.-H., Upham B.L., Olson L.K., Tsao M.-S., Reed D.N.J., Trosko J.E. Cigarette smoke components inhibited intercellular communication and differentiation in human pancreatic ductal epithelial cells. Int. J. Cancer. 2007;120:1855–1862. doi: 10.1002/ijc.22530. PubMed DOI
Carruba G., Stefano R., Cocciadiferro L., Saladino F., Di Cristina A., Tokar E., Quader S.T.A., Webber M.M., Castagnetta L. Intercellular communication and human prostate carcinogenesis. Ann. N. Y. Acad. Sci. 2002;963:156–168. doi: 10.1111/j.1749-6632.2002.tb04107.x. PubMed DOI
Carruba G., Webber M.M., Quader S.T.A., Amoroso M., Cocciadiferro L., Saladino F., Trosko J.E., Castagnetta L.A.M. Regulation of cell-to-cell communication in non-tumorigenic and malignant human prostate epithelial cells. Prostate. 2002;50:73–82. doi: 10.1002/pros.10034. PubMed DOI
Tateno C., Ito S., Tanaka M., Yoshitake A. Effects of pyrethroid insecticides on gap junctional intercellular communications in Balb/c3T3 cells by dye-transfer assay. Cell Biol. Toxicol. 1993;9:215–221. doi: 10.1007/BF00755600. PubMed DOI
Zhang Q., Wu S., Liu L., Hou X., Jiang J., Wei X., Hao W. Effects of bisphenol A on gap junctions in HaCaT cells as mediated by the estrogen receptor pathway. J. Appl. Toxicol. 2019;39:271–281. doi: 10.1002/jat.3717. PubMed DOI
Swierenga S.H.H., Yamasaki H., Piccoli C., Robertson L., Bourgon L., Marceau N., Fitzgerald D.J. Effects of intercellular communication in human keratinocytes and liver-derived cells of polychlorinated biphenyl congeners with differing in vivo promotion activities. Carcinogenesis. 1990;11:921–926. doi: 10.1093/carcin/11.6.921. PubMed DOI
Choung Y.-H., Choi S.J., Joo J.S., Lee J.B., Lee H.K., Lee S.J. Green tea prevents down-regulation of gap junction intercellular communication in human keratinocytes treated with PMA. Eur. Arch. Otorhinolaryngol. 2011;268:885–892. doi: 10.1007/s00405-010-1411-z. PubMed DOI
Defamie N., Mograbi B., Roger C., Cronier L., Malassine A., Brucker-Davis F., Fenichel P., Segretain D., Pointis G. Disruption of gap junctional intercellular communication by lindane is associated with aberrant localization of connexin43 and zonula occludens-1 in 42GPA9 Sertoli cells. Carcinogenesis. 2001;22:1537–1542. doi: 10.1093/carcin/22.9.1537. PubMed DOI
Fiorini C., Gilleron J., Carette D., Valette A., Tilloy A., Chevalier S., Segretain D., Pointis G. Accelerated internalization of junctional membrane proteins (connexin 43, N-cadherin and ZO-1) within endocytic vacuoles: An early event of DDT carcinogenicity. Biochim. Biophys. Acta. 2008;1778:56–67. doi: 10.1016/j.bbamem.2007.08.032. PubMed DOI
Yawer A., Sychrová E., Labohá P., Raška J., Jambor T., Babica P., Sovadinová I. Endocrine-disrupting chemicals rapidly affect intercellular signaling in Leydig cells. Toxicol. Appl. Pharmacol. 2020;404:115177. doi: 10.1016/j.taap.2020.115177. PubMed DOI
Aravindakshan J., Cyr D.G. Nonylphenol alters connexin 43 levels and connexin 43 phosphorylation via an inhibition of the p38-mitogen-activated protein kinase pathway. Biol. Reprod. 2005;72:1232–1240. doi: 10.1095/biolreprod.104.038596. PubMed DOI
Liu J., Siragam V., Chen J., Fridman M.D., Hamilton R.M., Sun Y. High-throughput measurement of gap junctional intercellular communication. Am. J. Physiol. Heart Circ. Physiol. 2014;306:H1708–H1713. doi: 10.1152/ajpheart.00110.2014. PubMed DOI
Hofgaard J.P., Mollerup S., Holstein-Rathlou N.-H., Nielsen M.S. Quantification of gap junctional intercellular communication based on digital image analysis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;297:R243–R247. doi: 10.1152/ajpregu.00089.2009. PubMed DOI
Begandt D., Bader A., Antonopoulos G.C., Schomaker M., Kalies S., Meyer H., Ripken T., Ngezahayo A. Gold nanoparticle-mediated (GNOME) laser perforation: A new method for a high-throughput analysis of gap junction intercellular coupling. J. Bioenerg. Biomembr. 2015;47:441–449. doi: 10.1007/s10863-015-9623-y. PubMed DOI
Homolya L., Holló Z., Germann U.A., Pastan I., Gottesman M.M., Sarkadi B. Fluorescent cellular indicators are extruded by the multidrug resistance protein. J. Biol. Chem. 1993;268:21493–21496. doi: 10.1016/S0021-9258(20)80566-3. PubMed DOI
Picoli C., Soleilhac E., Journet A., Barette C., Comte M., Giaume C., Mouthon F., Fauvarque M.-O., Charveriat M. High-content screening identifies new inhibitors of connexin 43 gap junctions. Assay Drug Dev. Technol. 2019;17:240–248. doi: 10.1089/adt.2019.927. PubMed DOI
Li Z., Yan Y., Powers E.A., Ying X., Janjua K., Garyantes T., Baron B. Identification of gap junction blockers using automated fluorescence microscopy imaging. J. Biomol. Screen. 2003;8:489–499. doi: 10.1177/1087057103257309. PubMed DOI
Ye N., Bathany C., Hua S.Z. Assay for molecular transport across gap junction channels in one-dimensional cell arrays. Lab Chip. 2011;11:1096–1101. doi: 10.1039/c0lc00350f. PubMed DOI
Chen S., Lee L.P. Non-invasive microfluidic gap junction assay. Integr. Biol. 2010;2:130–138. doi: 10.1039/b919392h. PubMed DOI
Haq N., Grose D., Ward E., Chiu O., Tigue N., Dowell S.J., Powell A.J., Chen M.X. A high-throughput assay for connexin 43 (Cx43, GJA1) gap junctions using codon-optimized aequorin. Assay Drug Dev. Technol. 2013;11:93–100. doi: 10.1089/adt.2012.469. PubMed DOI
Lee J.Y., Choi E.J., Lee J. A new high-throughput screening-compatible gap junctional intercellular communication assay. BMC Biotechnol. 2015;15:90. doi: 10.1186/s12896-015-0211-3. PubMed DOI PMC
Yeo J.H., Lee J. An iodide-yellow fluorescent protein-gap junction-intercellular communication assay. JOVE J. Vis. Exp. 2019;144:e58966. doi: 10.3791/58966. PubMed DOI
Danish A., Gedschold R., Hinz S., Schiedel A.C., Thimm D., Bedner P., Steinhäuser C., Müller C.E. A cellular assay for the identification and characterization of connexin gap junction modulators. Int. J. Mol. Sci. 2021;22:1417. doi: 10.3390/ijms22031417. PubMed DOI PMC
El-Fouly M.H., Trosko J.E., Chang C.-C. Scrape-loading and dye transfer: A rapid and simple technique to study gap junctional intercellular communication. Exp. Cell Res. 1987;168:422–430. doi: 10.1016/0014-4827(87)90014-0. PubMed DOI
Babica P., Sovadinová I., Upham B.L. Scrape loading/dye transfer assay. In: Vinken M., Johnstone S.R., editors. Gap Junction Protocols. Volume 1437. Springer; New York, NY, USA: 2016. pp. 133–144.
Tsao M.S., Smith J.D., Nelson K.G., Grisham J.W. A diploid epithelial cell line from normal adult rat liver with phenotypic properties of “oval” cells. Exp. Cell Res. 1984;154:38–52. doi: 10.1016/0014-4827(84)90666-9. PubMed DOI
Shafritz D.A., Dabeva M.D. Liver stem cells and model systems for liver repopulation. J. Hepatol. 2002;36:552–564. doi: 10.1016/S0168-8278(02)00013-2. PubMed DOI
De Feijter A.W., Ray J.S., Weghorst C.M., Klaunig J.E., Goodman J.I., Chang C.C., Ruch R.J., Trosko J.E. Infection of rat liver epithelial cells with v-Ha-ras: Correlation between oncogene expression, gap junctional communication, and tumorigenicity. Mol. Carcinog. 1990;3:54–67. doi: 10.1002/mc.2940030203. PubMed DOI
Coleman W.B., McCullough K.D., Esch G.L., Faris R.A., Hixson D.C., Smith G.J., Grisham J.W. Evaluation of the differentiation potential of WB-F344 rat liver epithelial stem-like cells in vivo. Differentiation to hepatocytes after transplantation into dipeptidylpeptidase-IV-deficient rat liver. Am. J. Pathol. 1997;151:353–359. PubMed PMC
Grisham J.W., Coleman W.B., Smith G.J. Isolation, culture, and transplantation of rat hepatocytic precursor (stem-like) cells. Proc. Soc. Exp. Biol. Med. 1993;204:270–279. doi: 10.3181/00379727-204-43663. PubMed DOI
Malouf N.N., Coleman W.B., Grisham J.W., Lininger R.A., Madden V.J., Sproul M., Anderson P.A. Adult-derived stem cells from the liver become myocytes in the heart in vivo. Am. J. Pathol. 2001;158:1929–1935. doi: 10.1016/S0002-9440(10)64661-5. PubMed DOI PMC
Han Y.-Y., Xue X.-W., Shi Z.-M., Wang P.-Y., Wu X.-R., Wang X.-J. Oleanolic acid and ursolic acid inhibit proliferation in transformed rat hepatic oval cells. World J. Gastroenterol. 2014;20:1348–1356. doi: 10.3748/wjg.v20.i5.1348. PubMed DOI PMC
Labine M., Minuk G.Y. Long-term, low-dose exposure to microcystin toxin does not increase the risk of liver tumor development or growth in mice. Hepatol. Res. 2015;45:683–692. doi: 10.1111/hepr.12394. PubMed DOI
Sun H., Liu G. Chemopreventive effect of dimethyl dicarboxylate biphenyl on malignant transformation of WB-F344 rat liver epithelial cells. Acta Pharmacol. Sin. 2005;26:1339–1344. doi: 10.1111/j.1745-7254.2005.00208.x. PubMed DOI
Oh S.Y., Dupont E., Madhukar B.V., Briand J.P., Chang C.C., Beyer E., Trosko J.E. Characterization of gap junctional communication-deficient mutants of a rat liver epithelial cell line. Eur. J. Cell Biol. 1993;60:250–255. PubMed
DeoCampo N.D., Wilson M.R., Trosko J.E. Cooperation of bcl-2 and myc in the neoplastic transformation of normal rat liver epithelial cells is related to the down-regulation of gap junction-mediated intercellular communication. Carcinogenesis. 2000;21:1501–1506. PubMed
Hayashi T., Nomata K., Chang C.C., Ruch R.J., Trosko J.E. Cooperative effects of v-myc and c-Ha-ras oncogenes on gap junctional intercellular communication and tumorigenicity in rat liver epithelial cells. Cancer Lett. 1998;128:145–154. doi: 10.1016/S0304-3835(98)00060-3. PubMed DOI
Jou Y.S., Layhe B., Matesic D.F., Chang C.C., de Feijter A.W., Lockwood L., Welsch C.W., Klaunig J.E., Trosko J.E. Inhibition of gap junctional intercellular communication and malignant transformation of rat liver epithelial cells by neu oncogene. Carcinogenesis. 1995;16:311–317. doi: 10.1093/carcin/16.2.311. PubMed DOI
Hooth M.J., Coleman W.B., Presnell S.C., Borchert K.M., Grisham J.W., Smith G.J. Spontaneous neoplastic transformation of WB-F344 rat liver epithelial cells. Am. J. Pathol. 1998;153:1913–1921. doi: 10.1016/S0002-9440(10)65705-7. PubMed DOI PMC
de Feijter A.W., Matesic D.F., Ruch R.J., Guan X.J., Chang C.C., Trosko J.E., de Feijter A.W. Localization and function of the connexin 43 gap-junction protein in normal and various oncogene-expressing rat liver epithelial cells. Mol. Carcinog. 1996;16:203–212. doi: 10.1002/(SICI)1098-2744(199608)16:4<203::AID-MC4>3.0.CO;2-G. PubMed DOI
Rae R.S., Mehta P.P., Chang C.C., Trosko J.E., Ruch R.J. Neoplastic phenotype of gap-junctional intercellular communication-deficient WB rat liver epithelial cells and its reversal by forced expression of connexin 32. Mol. Carcinog. 1998;22:120–127. doi: 10.1002/(SICI)1098-2744(199806)22:2<120::AID-MC7>3.0.CO;2-Q. PubMed DOI
Jou Y.S., Matesic D., Dupont E., Lu S.C., Rupp H.L., Madhukar B.V., Oh S.Y., Trosko J.E., Chang C.C. Restoration of gap-junctional intercellular communication in a communication-deficient rat liver cell mutant by transfection with connexin 43 cDNA. Mol. Carcinog. 1993;8:234–244. doi: 10.1002/mc.2940080406. PubMed DOI
Upham B.L., Suzuki J., Chen G., Wang Y., McCabe L.R., Chang C.-C., Krutovskikh V.A., Yamasaki H., Trosko J.E. Reduced gap junctional intercellular communication and altered biological effects in mouse osteoblast and rat liver oval cell lines transfected with dominant-negative connexin 43. Mol. Carcinog. 2003;37:192–201. doi: 10.1002/mc.10137. PubMed DOI
Caruso R.L., Upham B.L., Harris C., Trosko J.E. Biphasic lindane-induced oxidation of glutathione and inhibition of gap junctions in myometrial cells. Toxicol. Sci. 2005;86:417–426. doi: 10.1093/toxsci/kfi208. PubMed DOI
SciRap In Vitro Web-Based Tool. [(accessed on 16 June 2021)]; Available online: http://www.scirap.org/
Bláha L., Babica P., Hilscherová K., Upham B.L. Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extracts-indications of novel tumor-promoting cyanotoxins? Toxicon. 2010;55:126–134. doi: 10.1016/j.toxicon.2009.07.009. PubMed DOI PMC
Corvi R., Madia F. EURL ECVAM Genotoxicity and Carcinogenicity Consolidated Database of Ames Positive Chemicals. European Commission; Brussels, Belgium: 2018.
Madia F., Kirkland D., Morita T., White P., Asturiol D., Corvi R. EURL ECVAM genotoxicity and carcinogenicity database of substances eliciting negative results in the Ames test: Construction of the database. Mutat. Res. Toxicol. Environ. Mutagen. 2020;854–855:503199. doi: 10.1016/j.mrgentox.2020.503199. PubMed DOI PMC
Warren S.T., Doolittle D.J., Chang C.C., Goodmann J.I., Trosko J.E. Evaluation of the carcinogenic potential of 2,4-dinitrofluorobenzene and its implications regarding mutagenicity testing. Carcinogenesis. 1982;3:139–145. doi: 10.1093/carcin/3.2.139. PubMed DOI
IARC Monographs. [(accessed on 10 October 2020)]; Available online: https://monographs.iarc.fr/list-of-classifications.
Shi H., Hardesty J.E., Jin J., Head K.Z., Falkner K.C., Cave M.C., Prough R.A. Concentration dependence of human and mouse aryl hydrocarbon receptor responsiveness to polychlorinated biphenyl exposures: Implications for aroclor mixtures. Xenobiotica. 2019;49:1414–1422. doi: 10.1080/00498254.2019.1566582. PubMed DOI PMC
Baker N.A., Shoemaker R., English V., Larian N., Sunkara M., Morris A.J., Walker M., Yiannikouris F., Cassis L.A. Effects of adipocyte aryl hydrocarbon receptor deficiency on PCB-induced disruption of glucose homeostasis in lean and obese mice. Environ. Health Perspect. 2015;123:944–950. doi: 10.1289/ehp.1408594. PubMed DOI PMC
Baker N.A., Karounos M., English V., Fang J., Wei Y., Stromberg A., Sunkara M., Morris A.J., Swanson H.I., Cassis L.A. Coplanar polychlorinated biphenyls impair glucose homeostasis in lean C57BL/6 mice and mitigate beneficial effects of weight loss on glucose homeostasis in obese mice. Environ. Health Perspect. 2013;121:105–110. doi: 10.1289/ehp.1205421. PubMed DOI PMC
Hennig B., Meerarani P., Slim R., Toborek M., Daugherty A., Silverstone A.E., Robertson L.W. Proinflammatory properties of coplanar PCBs: In vitro and in vivo evidence. Toxicol. Appl. Pharmacol. 2002;181:174–183. doi: 10.1006/taap.2002.9408. PubMed DOI
Hao J.-L., Suzuki K., Lu Y., Hirano S., Fukuda K., Kumagai N., Kimura K., Nishida T. Inhibition of gap junction–mediated intercellular communication by TNF-α in cultured human corneal fibroblasts. Investig. Ophthalmol. Vis. Sci. 2005;46:1195–1200. doi: 10.1167/iovs.04-0840. PubMed DOI
Hu J., Cotgreave I.A. Differential regulation of gap junctions by proinflammatory mediators in vitro. J. Clin. Investig. 1997;99:2312–2316. doi: 10.1172/JCI119410. PubMed DOI PMC
van Rijen H.V., van Kempen M.J., Postma S., Jongsma H.J. Tumour necrosis factor alpha alters the expression of connexin43, connexin40, and connexin37 in human umbilical vein endothelial cells. Cytokine. 1998;10:258–264. doi: 10.1006/cyto.1997.0287. PubMed DOI
Osgood R.S., Upham B.L., Hill T., 3rd, Helms K.L., Velmurugan K., Babica P., Bauer A.K., Hill III T., Helms K.L., Velmurugan K., et al. Polycyclic aromatic hydrocarbon-induced signaling events relevant to inflammation and tumorigenesis in lung cells are dependent on molecular structure. PLoS ONE. 2013;8:e65150. doi: 10.1371/journal.pone.0065150. PubMed DOI PMC
Romo D., Velmurugan K., Upham B.L., Dwyer-Nield L.D., Bauer A.K. Dysregulation of gap junction function and cytokine production in response to non-genotoxic polycyclic aromatic hydrocarbons in an in vitro lung cell model. Cancers. 2019;11:572. doi: 10.3390/cancers11040572. PubMed DOI PMC
Siegrist K.J., Romo D., Upham B.L., Armstrong M., Quinn K., Vanderlinden L., Osgood R.S., Velmurugan K., Elie M., Manke J., et al. Early mechanistic events induced by low molecular weight polycyclic aromatic hydrocarbons in mouse lung epithelial cells: A role for eicosanoid signaling. Toxicol. Sci. 2019;169:180–193. doi: 10.1093/toxsci/kfz030. PubMed DOI PMC
Hill T., 3rd, Osgood R.S., Velmurugan K., Alexander C.-M., Upham B.L., Bauer A.K. Bronchoalveolar lavage fluid utilized ex vivo to validate in vivo findings: Inhibition of gap junction activity in lung tumor promotion is Toll-like receptor 4-dependent. J. Mol. Biomark. Diagn. 2013;5:22168. doi: 10.4172/2155-9929.1000160. PubMed DOI PMC
Raska J., Ctverackova L., Dydowiczova A., Sovadinova I., Blaha L., Babica P. Tumor-promoting cyanotoxin microcystin-LR does not induce procarcinogenic events in adult human liver stem cells. Toxicol. Appl. Pharmacol. 2018;345:103–113. doi: 10.1016/j.taap.2018.03.011. PubMed DOI
Kubickova B., Babica P., Hilscherová K., Šindlerová L. Effects of cyanobacterial toxins on the human gastrointestinal tract and the mucosal innate immune system. Environ. Sci. Eur. 2019;31:31. doi: 10.1186/s12302-019-0212-2. DOI
Buratti F.M., Manganelli M., Vichi S., Stefanelli M., Scardala S., Testai E., Funari E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017;91:1049–1130. doi: 10.1007/s00204-016-1913-6. PubMed DOI
Vondráček J., Machala M. Environmental ligands of the aryl hydrocarbon receptor and their effects in models of adult liver progenitor cells. Stem Cells Int. 2016;2016:4326194. doi: 10.1155/2016/4326194. PubMed DOI PMC
Bauer A.K., Velmurugan K., Plöttner S., Siegrist K.J., Romo D., Welge P., Brüning T., Xiong K.-N., Käfferlein H.U. Environmentally prevalent polycyclic aromatic hydrocarbons can elicit co-carcinogenic properties in an in vitro murine lung epithelial cell model. Arch. Toxicol. 2018;92:1311–1322. doi: 10.1007/s00204-017-2124-5. PubMed DOI PMC
Kass L., Gomez A.L., Altamirano G.A. Relationship between agrochemical compounds and mammary gland development and breast cancer. Mol. Cell. Endocrinol. 2020;508:110789. doi: 10.1016/j.mce.2020.110789. PubMed DOI
Williams A.J., Grulke C.M., Edwards J., McEachran A.D., Mansouri K., Baker N.C., Patlewicz G., Shah I., Wambaugh J.F., Judson R.S., et al. The comptox chemistry dashboard: A community data resource for environmental chemistry. J. Cheminform. 2017;9:61. doi: 10.1186/s13321-017-0247-6. PubMed DOI PMC
US EPA Oncologic 9/8. [(accessed on 10 April 2021)]; Available online: https://www.epa.gov/tsca-screening-tools/oncologictm-expert-system-evaluate-carcinogenic-potential-chemicals.
Sakai A., Iwase Y., Nakamura Y., Sasaki K., Tanaka N., Umeda M. Use of a cell transformation assay with established cell lines, and a metabolic cooperation assay with V79 cells for the detection of tumour promoters: A review. Altern. Lab. Anim. 2002;30:33–59. doi: 10.1177/026119290203000105. PubMed DOI
Rosenkranz M., Rosenkranz H.S., Klopman G. Intercellular communication, tumor promotion and non-genotoxic carcinogenesis: Relationships based upon structural considerations. Mutat. Res. 1997;381:171–188. doi: 10.1016/S0027-5107(97)00165-6. PubMed DOI
Hernández-Guerra M., Hadjihambi A., Jalan R. Gap junctions in liver disease: Implications for pathogenesis and therapy. J. Hepatol. 2019;70:759–772. doi: 10.1016/j.jhep.2018.12.023. PubMed DOI
Rosenberg E., Faris R.A., Spray D.C., Monfils B., Abreu S., Danishefsky I., Reid L.M. Correlation of expression of connexin mRNA isoforms with degree of cellular differentiation. Cell Adhes. Commun. 1996;4:223–235. doi: 10.3109/15419069609010768. PubMed DOI
Neveu M.J., Sattler C.A., Sattler G.L., Hully J.R., Hertzberg E.L., Paul D.L., Nicholson B.J., Pitot H.C. Differences in the expression of connexin genes in rat hepatomas in vivo and in vitro. Mol. Carcinog. 1994;11:145–154. doi: 10.1002/mc.2940110305. PubMed DOI
Piechocki M.P., Burk R.D., Ruch R.J. Regulation of connexin32 and connexin43 gene expression by DNA methylation in rat liver cells. Carcinogenesis. 1999;20:401–406. doi: 10.1093/carcin/20.3.401. PubMed DOI
Park J.S., Babica P., Sovadinová I., Trosko J.E., Chang C.C., Upham B. The Effects of Polycyclic Aromatic Hydrocarbons on Adult Human Epithelial Liver Stem Cell Line; Proceedings of the First Midwest Conference on Stem Cell Biology and Therapy-Book of Abstracts; Rochester, MI, USA. 9–11 May 2008; p. 52.
Bauer A.K., Upham B.L., Rondini E.A., Tennis M.A., Velmuragan K., Wiese D. Toll-like receptor expression in human non-small cell lung carcinoma: Potential prognostic indicators of disease. Oncotarget. 2017;8:91860–91875. doi: 10.18632/oncotarget.19463. PubMed DOI PMC
Ouzzani M., Hammady H., Fedorowicz Z., Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst. Rev. 2016;5:210. doi: 10.1186/s13643-016-0384-4. PubMed DOI PMC
Watford S., Ly Pham L., Wignall J., Shin R., Martin M.T., Friedman K.P. ToxRefDB version 2.0: Improved utility for predictive and retrospective toxicology analyses. Reprod. Toxicol. 2019;89:145–158. doi: 10.1016/j.reprotox.2019.07.012. PubMed DOI PMC