Environmental Ligands of the Aryl Hydrocarbon Receptor and Their Effects in Models of Adult Liver Progenitor Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
27274734
PubMed Central
PMC4870370
DOI
10.1155/2016/4326194
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The toxicity of environmental and dietary ligands of the aryl hydrocarbon receptor (AhR) in mature liver parenchymal cells is well appreciated, while considerably less attention has been paid to their impact on cell populations exhibiting phenotypic features of liver progenitor cells. Here, we discuss the results suggesting that the consequences of the AhR activation in the cellular models derived from bipotent liver progenitors could markedly differ from those in hepatocytes. In contact-inhibited liver progenitor cells, the AhR agonists induce a range of effects potentially linked with tumor promotion. They can stimulate cell cycle progression/proliferation and deregulate cell-to-cell communication, which is associated with downregulation of proteins forming gap junctions, adherens junctions, and desmosomes (such as connexin 43, E-cadherin, β-catenin, and plakoglobin), as well as with reduced cell adhesion and inhibition of intercellular communication. At the same time, toxic AhR ligands may affect the activity of the signaling pathways contributing to regulation of liver progenitor cell activation and/or differentiation, such as downregulation of Wnt/β-catenin and TGF-β signaling, or upregulation of transcriptional targets of YAP/TAZ, the effectors of Hippo signaling pathway. These data illustrate the need to better understand the potential role of liver progenitors in the AhR-mediated liver carcinogenesis and tumor promotion.
Zobrazit více v PubMed
Grisham J. W. Organization principles of the liver. In: Arias I., Wolkoff A., Boyer J., et al., editors. The Liver: Biology and Pathobiology. Hoboken, NJ, USA: Wiley-Blackwell; 2009. pp. 3–15.
Stanger B. Z. Cellular homeostasis and repair in the mammalian liver. Annual Review of Physiology. 2015;77:179–200. doi: 10.1146/annurev-physiol-021113-170255. PubMed DOI PMC
Michalopoulos G. K., DeFrances M. C. Liver regeneration. Science. 1997;276(5309):60–65. doi: 10.1126/science.276.5309.60. PubMed DOI
Malato Y., Naqvi S., Schürmann N., et al. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. The Journal of Clinical Investigation. 2011;121(12):4850–4860. doi: 10.1172/jci59261. PubMed DOI PMC
Michalopoulos G. K., Khan Z. Liver stem cells: experimental findings and implications for human liver disease. Gastroenterology. 2015;149(4):876–882. doi: 10.1053/j.gastro.2015.08.004. PubMed DOI PMC
Miyajima A., Tanaka M., Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell. 2014;14(5):561–574. doi: 10.1016/j.stem.2014.04.010. PubMed DOI
Riehle K. J., Dan Y. Y., Campbell J. S., Fausto N. New concepts in liver regeneration. Journal of Gastroenterology and Hepatology. 2011;26(supplement 1):203–212. doi: 10.1111/j.1440-1746.2010.06539.x. PubMed DOI PMC
Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells. Hepatology. 2004;39(6):1477–1487. doi: 10.1002/hep.20214. PubMed DOI
Thorgeirsson S. S., Grisham J. W. Overview of recent experimental studies on liver stem cells. Seminars in Liver Disease. 2003;23(4):303–312. doi: 10.1055/s-2004-815559. PubMed DOI
Budinsky R. A., Schrenk D., Simon T., et al. Mode of action and dose-response framework analysis for receptor-mediated toxicity: the aryl hydrocarbon receptor as a case study. Critical Reviews in Toxicology. 2014;44(1):83–119. doi: 10.3109/10408444.2013.835787. PubMed DOI
Roskams T. A., Libbrecht L., Desmet V. J. Progenitor cells in diseased human liver. Seminars in Liver Disease. 2003;23(4):385–396. doi: 10.1055/s-2004-815564. PubMed DOI
Turányi E., Dezsö K., Csomor J., Schaff Z., Paku S., Nagy P. Immunohistochemical classification of ductular reactions in human liver. Histopathology. 2010;57(4):607–614. doi: 10.1111/j.1365-2559.2010.03668.x. PubMed DOI
Alison M. R. Characterization of the differentiation capacity of rat-derived hepatic stem cells. Seminars in Liver Disease. 2003;23(4):325–336. doi: 10.1055/s-2004-815561. PubMed DOI
Akhurst B., Croager E. J., Farley-Roche C. A., et al. A modified choline-deficient, ethionine-supplemented diet protocol effectively induces oval cells in mouse liver. Hepatology. 2001;34(3):519–522. doi: 10.1053/jhep.2001.26751. PubMed DOI
Farber E. Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3′-methyl-4-dimethylaminoazobenzene. Cancer Research. 1956;16:142–148. PubMed
Leduc E. H., Wilson J. W. Injury to liver cells in carbon tetrachloride poisoning; histochemical changes induced by carbon tetrachloride in mouse liver protected by sulfaguanidine. AMA Archives of Pathology. 1958;65(2):147–157. PubMed
Preisegger K.-H., Factor V. M., Fuchsbichler A., Stumptner C., Denk H., Thorgeirsson S. S. Atypical ductular proliferation and its inhibition by transforming growth factor beta1 in the 3,5-diethoxycarbonyl-1,4-dihydrocollidine mouse model for chronic alcoholic liver disease. Laboratory Investigation. 1999;79(2):103–109. PubMed
Dunsford H. A., Karnasuta C., Hunt J. M., Sell S. Different lineages of chemically induced hepatocellular carcinoma in rats defined by monoclonal antibodies. Cancer Research. 1989;49(17):4894–4900. PubMed
Lázaro C. A., Rhim J. A., Yamada Y., Fausto N. Generation of hepatocytes from oval cell precursors in culture. Cancer Research. 1998;58(23):5514–5522. PubMed
Paku S., Schnur J., Nagy P., Thorgeirsson S. S. Origin and structural evolution of the early proliferating oval cells in rat liver. The American Journal of Pathology. 2001;158(4):1313–1323. doi: 10.1016/s0002-9440(10)64082-5. PubMed DOI PMC
Yanger K., Zong Y., Maggs L. R., et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes & Development. 2013;27(7):719–724. PubMed PMC
Tarlow B. D., Pelz C., Naugler W. E., et al. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell. 2014;15(5):605–618. doi: 10.1016/j.stem.2014.09.008. PubMed DOI PMC
Kordes C., Sawitza I., Götze S., Herebian D., Häussinger D. Hepatic stellate cells contribute to progenitor cells and liver regeneration. The Journal of Clinical Investigation. 2014;124(12):5503–5515. doi: 10.1172/jci74119. PubMed DOI PMC
Michelotti G. A., Xie G., Swiderska M., et al. Smoothened is a master regulator of adult liver repair. The Journal of Clinical Investigation. 2013;123(6):2380–2394. doi: 10.1172/jci66904. PubMed DOI PMC
Itoh T., Miyajima A. Liver regeneration by stem/progenitor cells. Hepatology. 2014;59(4):1617–1626. doi: 10.1002/hep.26753. PubMed DOI
Lu W.-Y., Bird T. G., Boulter L., et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nature Cell Biology. 2015;17:971–983. doi: 10.1038/ncb3203. PubMed DOI PMC
Dorrell C., Erker L., Schug J., et al. Prospective isolation of a bipotential clonogenic liver progenitor cell in adult mice. Genes & Development. 2011;25(11):1193–1203. doi: 10.1101/gad.2029411. PubMed DOI PMC
Huch M., Dorrell C., Boj S. F., et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature. 2013;494(7436):247–250. doi: 10.1038/nature11826. PubMed DOI PMC
Okabe M., Tsukahara Y., Tanaka M., et al. Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Development. 2009;136(11):1951–1960. doi: 10.1242/dev.031369. PubMed DOI
Shin S., Walton G., Aoki R., et al. Foxl1-Cre-marked adult hepatic progenitors have clonogenic and bilineage differentiation potential. Genes and Development. 2011;25(11):1185–1192. doi: 10.1101/gad.2027811. PubMed DOI PMC
Huch M., Gehart H., Van Boxtel R., et al. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell. 2015;160(1-2):299–312. doi: 10.1016/j.cell.2014.11.050. PubMed DOI PMC
Furuyama K., Kawaguchi Y., Akiyama H., et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nature Genetics. 2011;43(1):34–41. doi: 10.1038/ng.722. PubMed DOI
Rodrigo-Torres D., Affò S., Coll M., et al. The biliary epithelium gives rise to liver progenitor cells. Hepatology. 2014;60(4):1367–1377. doi: 10.1002/hep.27078. PubMed DOI PMC
Español-Suñer R., Carpentier R., Van Hul N., et al. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology. 2012;143(6):1564–1575.e7. doi: 10.1053/j.gastro.2012.08.024. PubMed DOI
Schaub J. R., Malato Y., Gormond C., Willenbring H. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Reports. 2014;8(4):933–939. doi: 10.1016/j.celrep.2014.07.003. PubMed DOI PMC
Yanger K., Knigin D., Zong Y., et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell. 2014;15(3):340–349. doi: 10.1016/j.stem.2014.06.003. PubMed DOI PMC
Font-Burgada J., Shalapour S., Ramaswamy S., et al. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell. 2015;162(4):766–779. doi: 10.1016/j.cell.2015.07.026. PubMed DOI PMC
Wang B., Zhao L., Fish M., Logan C. Y., Nusse R. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Nature. 2015;524(7564):180–185. doi: 10.1038/nature14863. PubMed DOI PMC
Jörs S., Jeliazkova P., Ringelhan M., et al. Lineage fate of ductular reactions in liver injury and carcinogenesis. The Journal of Clinical Investigation. 2015;125(6):2445–2457. doi: 10.1172/jci78585. PubMed DOI PMC
Chiba T., Zheng Y.-W., Kita K., et al. Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation. Gastroenterology. 2007;133(3):937–950. doi: 10.1053/j.gastro.2007.06.016. PubMed DOI
Roskams T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene. 2006;25(27):3818–3822. doi: 10.1038/sj.onc.1209558. PubMed DOI
Lo R. C., Ng I. O. Hepatic progenitor cells: their role and functional significance in the new classification of primary liver cancers. Liver Cancer. 2013;2(2):84–92. PubMed PMC
Coulouarn C., Cavard C., Rubbia-Brandt L., et al. Combined hepatocellular-cholangiocarcinomas exhibit progenitor features and activation of Wnt and TGFβ signaling pathways. Carcinogenesis. 2012;33(9):1791–1796. doi: 10.1093/carcin/bgs208. PubMed DOI
McIntosh B. E., Hogenesch J. B., Bradfield C. A. Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annual Review of Physiology. 2009;72:625–645. doi: 10.1146/annurev-physiol-021909-135922. PubMed DOI
Nebert D. W., Dalton T. P. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nature Reviews Cancer. 2006;6(12):947–960. doi: 10.1038/nrc2015. PubMed DOI
Barouki R., Coumoul X., Fernandez-Salguero P. M. The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Letters. 2007;581(19):3608–3615. doi: 10.1016/j.febslet.2007.03.046. PubMed DOI
Bock K. W., Köhle C. Ah receptor- and TCDD-mediated liver tumor promotion: clonal selection and expansion of cells evading growth arrest and apoptosis. Biochemical Pharmacology. 2005;69(10):1403–1408. doi: 10.1016/j.bcp.2005.02.004. PubMed DOI
Dietrich C., Kaina B. The aryl hydrocarbon receptor (AhR) in the regulation of cell-cell contact and tumor growth. Carcinogenesis. 2010;31(8):1319–1328. doi: 10.1093/carcin/bgq028. PubMed DOI PMC
Kung T., Murphy K. A., White L. A. The aryl hydrocarbon receptor (AhR) pathway as a regulatory pathway for cell adhesion and matrix metabolism. Biochemical Pharmacology. 2009;77(4):536–546. doi: 10.1016/j.bcp.2008.09.031. PubMed DOI PMC
Puga A., Ma C., Marlowe J. L. The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochemical Pharmacology. 2009;77(4):713–722. doi: 10.1016/j.bcp.2008.08.031. PubMed DOI PMC
Mitchell K. A., Elferink C. J. Timing is everything: consequences of transient and sustained AhR activity. Biochemical Pharmacology. 2009;77(6):947–956. doi: 10.1016/j.bcp.2008.10.028. PubMed DOI PMC
Fernandez-Salguero P., Pineau T., Hilbert D. M., et al. Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science. 1995;268(5211):722–726. doi: 10.1126/science.7732381. PubMed DOI
Schmidt J. V., Su G. H.-T., Reddy J. K., Simon M. C., Bradfield C. A. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proceedings of the National Academy of Sciences of the United States of America. 1996;93(13):6731–6736. doi: 10.1073/pnas.93.13.6731. PubMed DOI PMC
Walisser J. A., Glover E., Pande K., Liss A. L., Bradfield C. A. Aryl hydrocarbon receptor-dependent liver development and hepatotoxicity are mediated by different cell types. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(49):17858–17863. doi: 10.1073/pnas.0504757102. PubMed DOI PMC
Poland A., Knutson J. C. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: examination of the mechanism of toxicity. Annual Review of Pharmacology and Toxicology. 1982;22:517–554. doi: 10.1146/annurev.pa.22.040182.002505. PubMed DOI
Pohjanvirta R., Tuomisto J. Short-term toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in laboratory animals: effects, mechanisms, and animal models. Pharmacological Reviews. 1994;46(4):483–549. PubMed
Van den Berg M., Birnbaum L., Bosveld A. T. C., et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environmental Health Perspectives. 1998;106(12):775–792. doi: 10.1289/ehp.98106775. PubMed DOI PMC
Walker N. J., Crockett P. W., Nyska A., et al. Dose-additive carcinogenicity of a defined mixture of ‘dioxin-like compounds’. Environmental Health Perspectives. 2005;113(1):43–48. doi: 10.1289/ehp.7351. PubMed DOI PMC
Kennedy G. D., Nukaya M., Moran S. M., et al. Liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin is dependent on the aryl hydrocarbon receptor and TNF/IL-1 receptors. Toxicological Sciences. 2014;140(1):135–143. doi: 10.1093/toxsci/kfu065. PubMed DOI PMC
Pitot H. C., Goldsworthy T., Campbell H. A., Poland A. Quantitative evaluation of the promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin of hepatocarcinogenesis from diethylnitrosamine. Cancer Research. 1980;40(10):3616–3620. PubMed
IARC. Chemical Agents and Related Occupations—A Review of Human Carcinogens. Lyon, France: IARC; 2012.
Knerr S., Schrenk D. Carcinogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in experimental models. Molecular Nutrition and Food Research. 2006;50(10):897–907. doi: 10.1002/mnfr.200600006. PubMed DOI
National Toxicology Program. NTP technical report on the toxicology and carcinogenesis studies of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (CAS No. 1746-01-6) in female Harlan Sprague-Dawley rats (Gavage Studies) National Toxicology Program Technical Report Series. 2006;(521):4–232. PubMed
National Toxicology Program. Toxicology and carcinogenesis studies of a binary mixture of 3,3',4,4',5-pentachlorobiphenyl (PCB 126) (Cas No. 57465-28-8) and 2,3',4,4',5-pentachlorobiphenyl (PCB 118) (Cas No. 31508-00-6) in female Harlan Sprague-Dawley rats (gavage studies) National Toxicology Program Technical Report Series. 2006;531:1–218. PubMed
Hailey J. R., Walker N. J., Sells D. M., Brix A. E., Jokinen M. P., Nyska A. Classification of proliferative hepatocellular lesions in Harlan Sprague-Dawley rats chronically exposed to dioxin-like compounds. Toxicologic Pathology. 2005;33(1):165–174. doi: 10.1080/01926230590888324. PubMed DOI
Bennett J. A., Singh K. P., Unnisa Z., Welle S. L., Gasiewicz T. A. Deficiency in aryl hydrocarbon receptor (AHR) expression throughout aging alters gene expression profiles in murine long-term hematopoietic stem cells. PLoS ONE. 2015;10(7) doi: 10.1371/journal.pone.0133791.e0133791 PubMed DOI PMC
Boitano A. E., Wang J., Romeo R., et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science. 2010;329(5997):1345–1348. doi: 10.1126/science.1191536. PubMed DOI PMC
Bunaciu R. P., Yen A. Activation of the aryl hydrocarbon receptor AhR Promotes retinoic acid-induced differentiation of myeloblastic leukemia cells by restricting expression of the stem cell transcription factor Oct4. Cancer Research. 2011;71(6):2371–2380. doi: 10.1158/0008-5472.can-10-2299. PubMed DOI PMC
Casado F. L., Singh K. P., Gasiewicz T. A. Aryl hydrocarbon receptor activation in hematopoietic stem/progenitor cells alters cell function and pathway-specific gene modulation reflecting changes in cellular trafficking and migration. Molecular Pharmacology. 2011;80(4):673–682. doi: 10.1124/mol.111.071381. PubMed DOI PMC
Roeven M. W., Thordardottir S., Kohela A., et al. The aryl hydrocarbon receptor antagonist stemregenin1 improves in vitro generation of highly functional natural killer cells from CD34+ hematopoietic stem and progenitor cells. Stem Cells and Development. 2015;24(24):2886–2898. doi: 10.1089/scd.2014.0597. PubMed DOI
Singh K. P., Garrett R. W., Casado F. L., Gasiewicz T. A. Aryl hydrocarbon receptor-null allele mice have hematopoietic stem/progenitor cells with abnormal characteristics and functions. Stem Cells and Development. 2011;20(5):769–784. doi: 10.1089/scd.2010.0333. PubMed DOI PMC
Xu T., Zhou Y., Qiu L., et al. Aryl hydrocarbon receptor protects lungs from cockroach allergen-induced inflammation by modulating mesenchymal stem cells. The Journal of Immunology. 2015;195(12):5539–5550. doi: 10.4049/jimmunol.1501198. PubMed DOI PMC
Contador-Troca M., Alvarez-Barrientos A., Merino J. M., et al. Dioxin receptor regulates aldehyde dehydrogenase to block melanoma tumorigenesis and metastasis. Molecular Cancer. 2015;14(1, article 148) doi: 10.1186/s12943-015-0419-9. PubMed DOI PMC
Prud'Homme G. J., Glinka Y., Toulina A., Ace O., Subramaniam V., Jothy S. Breast cancer stem-like cells are inhibited by a non-toxic aryl hydrocarbon receptor agonist. PLoS ONE. 2010;5(11) doi: 10.1371/journal.pone.0013831.e13831 PubMed DOI PMC
Harrill J. A., Parks B. B., Wauthier E., Rowlands J. C., Reid L. M., Thomas R. S. Lineage-dependent effects of aryl hydrocarbon receptor agonists contribute to liver tumorigenesis. Hepatology. 2015;61(2):548–560. doi: 10.1002/hep.27547. PubMed DOI PMC
Feng S., Cao Z., Wang X. Role of aryl hydrocarbon receptor in cancer. Biochimica et Biophysica Acta-Reviews on Cancer. 2013;1836(2):197–210. doi: 10.1016/j.bbcan.2013.05.001. PubMed DOI
Murray I. A., Patterson A. D., Perdew G. H. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nature Reviews Cancer. 2014;14(12):801–814. doi: 10.1038/nrc3846. PubMed DOI PMC
Safe S., Lee S.-O., Jin U.-H. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicological Sciences. 2013;135(1):1–16. doi: 10.1093/toxsci/kft128. PubMed DOI PMC
Fan Y., Boivin G. P., Knudsen E. S., Nebert D. W., Xia Y., Puga A. The aryl hydrocarbon receptor functions as a tumor suppressor of liver carcinogenesis. Cancer Research. 2010;70(1):212–220. doi: 10.1158/0008-5472.CAN-09-3090. PubMed DOI PMC
Moennikes O., Loeppen S., Buchmann A., et al. A constitutively active dioxin/aryl hydrocarbon receptor promotes hepatocarcinogenesis in mice. Cancer Research. 2004;64(14):4707–4710. doi: 10.1158/0008-5472.CAN-03-0875. PubMed DOI
Hanahan D., Weinberg R. A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Nahta R., Al-Mulla F., Al-Temaimi R., et al. Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression. Carcinogenesis. 2015;36(supplement 1):S2–S18. doi: 10.1093/carcin/bgv028. PubMed DOI PMC
Ma Q., Whitlock J. P., Jr. The aromatic hydrocarbon receptor modulates the Hepa 1c1c7 cell cycle and differentiated state independently of dioxin. Molecular and Cellular Biology. 1996;16(5):2144–2150. doi: 10.1128/MCB.16.5.2144. PubMed DOI PMC
Weiss C., Kolluri S. K., Kiefer F., Göttlicher M. Complementation of Ah receptor deficiency in hepatoma cells: negative feedback regulation and cell cycle control by the Ah receptor. Experimental Cell Research. 1996;226(1):154–163. doi: 10.1006/excr.1996.0214. PubMed DOI
Kolluri S. K., Weiss C., Koff A., Göttlicher M. p27(Kip1) induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. Genes and Development. 1999;13(13):1742–1753. doi: 10.1101/gad.13.13.1742. PubMed DOI PMC
Elferink C. J., Ge N.-L., Levine A. Maximal aryl hydrocarbon receptor activity depends on an interaction with the retinoblastoma protein. Molecular Pharmacology. 2001;59(4):664–673. PubMed
Ge N.-L., Elferink C. J. A direct interaction between the aryl hydrocarbon receptor and retinoblastoma protein: linking dioxin signaling to the cell cycle. Journal of Biological Chemistry. 1998;273(35):22708–22713. doi: 10.1074/jbc.273.35.22708. PubMed DOI
Puga A., Barnes S. J., Dalton T. P., Chang C.-Y., Knudsen E. S., Maier M. A. Aromatic hydrocarbon receptor interaction with the retinoblastoma protein potentiates repression of E2F-dependent transcription and cell cycle arrest. The Journal of Biological Chemistry. 2000;275(4):2943–2950. doi: 10.1074/jbc.275.4.2943. PubMed DOI
Huang G., Elferink C. J. Multiple mechanisms are involved in Ah receptor-mediated cell cycle arrest. Molecular Pharmacology. 2005;67(1):88–96. doi: 10.1124/mol.104.002410. PubMed DOI
Marlowe J. L., Knudsen E. S., Schwemberger S., Puga A. The aryl hydrocarbon receptor displaces p300 from E2F-dependent promoters and represses S phase-specific gene expression. The Journal of Biological Chemistry. 2004;279(28):29013–29022. doi: 10.1074/jbc.m404315200. PubMed DOI
Elferink C. J. Aryl hydrocarbon receptor-mediated cell cycle control. Progress in Cell Cycle Research. 2003;5:261–267. PubMed
Puga A., Xia Y., Elferink C. Role of the aryl hydrocarbon receptor in cell cycle regulation. Chemico-Biological Interactions. 2002;141(1-2):117–130. doi: 10.1016/S0009-2797(02)00069-8. PubMed DOI
Jackson D. P., Li H., Mitchell K. A., Joshi A. D., Elferink C. J. Ah receptor-mediated suppression of liver regeneration through NC-XRE-driven p21Cip1 expression. Molecular Pharmacology. 2014;85(4):533–541. doi: 10.1124/mol.113.089730. PubMed DOI PMC
Mitchell K. A., Lockhart C. A., Huang G., Elferink C. J. Sustained aryl hydrocarbon receptor activity attenuates liver regeneration. Molecular Pharmacology. 2006;70(1):163–170. doi: 10.1124/mol.106.023465. PubMed DOI
Mitchell K. A., Wilson S. R., Elferink C. J. The activated aryl hydrocarbon receptor synergizes mitogen-induced murine liver hyperplasia. Toxicology. 2010;276(2):103–109. doi: 10.1016/j.tox.2010.07.004. PubMed DOI PMC
Tsao M.-S., Smith J. D., Nelson K. G., Grisham J. W. A diploid epithelial cell line from normal adult rat liver with phenotypic properties of ‘oval’ cells. Experimental Cell Research. 1984;154(1):38–52. doi: 10.1016/0014-4827(84)90666-9. PubMed DOI
Shafritz D. A., Dabeva M. D. Liver stem cells and model systems for liver repopulation. Journal of Hepatology. 2002;36(4):552–564. doi: 10.1016/S0168-8278(02)00013-2. PubMed DOI
Köhle C., Gschaidmeier H., Lauth D., Topell S., Zitzer H., Bock K. W. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-mediated membrane translocation of c-Src protein kinase in liver WB-F344 cells. Archives of Toxicology. 1999;73(3):152–158. PubMed
Dietrich C., Faust D., Budt S., et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-dependent release from contact inhibition in WB-F344 cells: involvement of cyclin A. Toxicology and Applied Pharmacology. 2002;183(2):117–126. doi: 10.1016/s0041-008x(02)99475-5. PubMed DOI
Chramostová K., Vondráček J., Šindlerová L., Vojtěšek B., Kozubík A., Machala M. Polycyclic aromatic hydrocarbons modulate cell proliferation in rat hepatic epithelial stem-like WB-F344 cells. Toxicology and Applied Pharmacology. 2004;196(1):136–148. doi: 10.1016/j.taap.2003.12.008. PubMed DOI
Procházková J., Kozubík A., Machala M., Vondráček J. Differential effects of indirubin and 2,3,7,8-tetrachlorodibenzo-p-dioxin on the aryl hydrocarbon receptor (AhR) signalling in liver progenitor cells. Toxicology. 2011;279(1–3):146–154. doi: 10.1016/j.tox.2010.10.003. PubMed DOI
Vondráček J., Machala M., Bryja V., et al. Aryl hydrocarbon receptor-activating polychlorinated biphenyls and their hydroxylated metabolites induce cell proliferation in contact-inhibited rat liver epithelial cells. Toxicological Sciences. 2005;83(1):53–63. doi: 10.1093/toxsci/kfi009. PubMed DOI
Zatloukalová J., Švihálková-Šindlerová L., Kozubík A., Krčmář P., Machala M., Vondráček J. β-naphthoflavone and 3′-methoxy-4′-nitroflavone exert ambiguous effects on Ah receptor-dependent cell proliferation and gene expression in rat liver 'stem-like' cells. Biochemical Pharmacology. 2007;73(10):1622–1634. doi: 10.1016/j.bcp.2007.01.032. PubMed DOI
Andrysík Z., Vondráček J., Machala M., et al. The aryl hydrocarbon receptor-dependent deregulation of cell cycle control induced by polycyclic aromatic hydrocarbons in rat liver epithelial cells. Mutation Research—Fundamental and Molecular Mechanisms of Mutagenesis. 2007;615(1-2):87–97. doi: 10.1016/j.mrfmmm.2006.10.004. PubMed DOI
Weiss C., Faust D., Schreck I., et al. TCDD deregulates contact inhibition in rat liver oval cells via Ah receptor, JunD and cyclin A. Oncogene. 2008;27(15):2198–2207. doi: 10.1038/sj.onc.1210859. PubMed DOI
Faust D., Kletting S., Ueberham E., Dietrich C. Aryl hydrocarbon receptor-dependent cell cycle arrest in isolated mouse oval cells. Toxicology Letters. 2013;223(1):73–80. doi: 10.1016/j.toxlet.2013.08.022. PubMed DOI
Svobodová J., Kabátková M., Šmerdová L., et al. The aryl hydrocarbon receptor-dependent disruption of contact inhibition in rat liver WB-F344 epithelial cells is linked with induction of survivin, but not with inhibition of apoptosis. Toxicology. 2015;333:37–44. doi: 10.1016/j.tox.2015.04.001. PubMed DOI
Gripon P., Rumin S., Urban S., et al. Infection of a human hepatoma cell line by hepatitis B virus. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(24):15655–15660. doi: 10.1073/pnas.232137699. PubMed DOI PMC
Cerec V., Glaise D., Garnier D., et al. Transdifferentiation of hepatocyte-like cells from the human hepatoma HepaRG cell line through bipotent progenitor. Hepatology. 2007;45(4):957–967. doi: 10.1002/hep.21536. PubMed DOI
Andrysík Z., Procházková J., Kabátková M., et al. Aryl hydrocarbon receptor-mediated disruption of contact inhibition is associated with connexin43 downregulation and inhibition of gap junctional intercellular communication. Archives of Toxicology. 2013;87(3):491–503. doi: 10.1007/s00204-012-0963-7. PubMed DOI
Procházková J., Kabátková M., Bryja V., et al. The interplay of the aryl hydrocarbon receptor and β-catenin alters both AhR-dependent transcription and wnt/β-catenin signaling in liver progenitors. Toxicological Sciences. 2011;122(2):349–360. doi: 10.1093/toxsci/kfr129. PubMed DOI
Procházková J., Kabátková M., Ŝmerdová L., et al. Aryl hydrocarbon receptor negatively regulates expression of the plakoglobin gene (Jup) Toxicological Sciences. 2013;134(2):258–270. doi: 10.1093/toxsci/kft110. PubMed DOI
Dong B., Cheng W., Li W., et al. FRET analysis of protein tyrosine kinase c-Src activation mediated via aryl hydrocarbon receptor. Biochimica et Biophysica Acta—General Subjects. 2011;1810(4):427–431. doi: 10.1016/j.bbagen.2010.11.007. PubMed DOI PMC
Rey-Barroso J., Colo G. P., Alvarez-Barrientos A., et al. The dioxin receptor controls β1 integrin activation in fibroblasts through a Cbp–Csk–Src pathway. Cellular Signalling. 2013;25(4):848–859. doi: 10.1016/j.cellsig.2013.01.010. PubMed DOI
Tomkiewicz C., Herry L., Bui L.-C., et al. The aryl hydrocarbon receptor regulates focal adhesion sites through a non-genomic FAK/Src pathway. Oncogene. 2013;32(14):1811–1820. doi: 10.1038/onc.2012.197. PubMed DOI
Dietrich C., Faust D., Moskwa M., Kunz A., Bock K.-W., Oesch F. TCDD-dependent downregulation of γ-catenin in rat liver epithelial cells (WB-F344) International Journal of Cancer. 2003;103(4):435–439. doi: 10.1002/ijc.10830. PubMed DOI
Gumbiner B. M., Kim N.-G. The Hippo-YAP signaling pathway and contact inhibition of growth. Journal of Cell Science. 2014;127(4):709–717. doi: 10.1242/jcs.140103. PubMed DOI PMC
McClatchey A. I., Yap A. S. Contact inhibition (of proliferation) redux. Current Opinion in Cell Biology. 2012;24(5):685–694. doi: 10.1016/j.ceb.2012.06.009. PubMed DOI
Faust D., Vondráček J., Krčmář P., et al. AhR-mediated changes in global gene expression in rat liver progenitor cells. Archives of Toxicology. 2013;87(4):681–698. doi: 10.1007/s00204-012-0979-z. PubMed DOI
Anastas J. N., Moon R. T. WNT signalling pathways as therapeutic targets in cancer. Nature Reviews Cancer. 2013;13(1):11–26. doi: 10.1038/nrc3419. PubMed DOI
Clevers H., Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149(6):1192–1205. doi: 10.1016/j.cell.2012.05.012. PubMed DOI
MacDonald B. T., Tamai K., He X. Wnt/β-catenin signaling: components, mechanisms, and diseases. Developmental Cell. 2009;17(1):9–26. doi: 10.1016/j.devcel.2009.06.016. PubMed DOI PMC
Balda M. S., Matter K. Epithelial cell adhesion and the regulation of gene expression. Trends in Cell Biology. 2003;13(6):310–318. doi: 10.1016/S0962-8924(03)00105-3. PubMed DOI
Monga S. P. S. Role and regulation of β-catenin signaling during physiological liver growth. Gene Expression. 2014;16(2):51–62. doi: 10.3727/105221614x13919976902138. PubMed DOI PMC
Monga S. P. β-catenin signaling and roles in liver homeostasis, injury, and tumorigenesis. Gastroenterology. 2015;148(7):1294–1310. doi: 10.1053/j.gastro.2015.02.056. PubMed DOI PMC
Apte U., Thompson M. D., Cui S., Liu B., Cieply B., Monga S. P. S. Wnt/β-catenin signaling mediates oval cell response in rodents. Hepatology. 2008;47(1):288–295. doi: 10.1002/hep.21973. PubMed DOI
Boulter L., Govaere O., Bird T. G., et al. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nature Medicine. 2012;18(4):572–579. doi: 10.1038/nm.2667. PubMed DOI PMC
Hu M., Kurobe M., Jeong Y. J., et al. Wnt/β-catenin signaling in murine hepatic transit amplifying progenitor cells. Gastroenterology. 2007;133(5):1579–1591. doi: 10.1053/j.gastro.2007.08.036. PubMed DOI
Mokkapati S., Niopek K., Huang L., et al. β-catenin activation in a novel liver progenitor cell type is sufficient to cause hepatocellular carcinoma and hepatoblastoma. Cancer Research. 2014;74(16):4515–4525. doi: 10.1158/0008-5472.can-13-3275. PubMed DOI PMC
Soeda J., Mouralidarane A., Ray S., et al. The beta-adrenoceptor agonist isoproterenol rescues acetaminophen-injured livers through increasing progenitor numbers by Wnt in mice. Hepatology. 2014;60(3):1023–1034. doi: 10.1002/hep.27266. PubMed DOI
Yang W., Yan H.-X., Chen L., et al. Wnt/β-catenin signaling contributes to activation of normal and tumorigenic liver progenitor cells. Cancer Research. 2008;68(11):4287–4295. doi: 10.1158/0008-5472.can-07-6691. PubMed DOI
Schneider A. J., Branam A. M., Peterson R. E. Intersection of AHR and Wnt signaling in development, health, and disease. International Journal of Molecular Sciences. 2014;15(10):17852–17885. doi: 10.3390/ijms151017852. PubMed DOI PMC
Braeuning A., Sanna R., Huelsken J., Schwarz M. Inducibility of drug-metabolizing enzymes by xenobiotics in mice with liver-specific knockout of ctnnb1. Drug Metabolism and Disposition. 2009;37(5):1138–1145. doi: 10.1124/dmd.108.026179. PubMed DOI
Chesire D. R., Dunn T. A., Ewing C. M., Luo J., Isaacs W. B. Identification of aryl hydrocarbon receptor as a putative Wnt/β-catenin pathway target gene in prostate cancer cells. Cancer Research. 2004;64(7):2523–2533. doi: 10.1158/0008-5472.can-03-3309. PubMed DOI
Benhamouche S., Decaens T., Godard C., et al. Apc tumor suppressor gene is the ‘zonation-keeper’ of mouse liver. Developmental Cell. 2006;10(6):759–770. doi: 10.1016/j.devcel.2006.03.015. PubMed DOI
Gougelet A., Torre C., Veber P., et al. T-cell factor 4 and β-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology. 2014;59(6):2344–2357. doi: 10.1002/hep.26924. PubMed DOI
Lindros K. O., Oinonen T., Johansson I., Ingelman-Sundberg M. Selective centrilobular expression of the aryl hydrocarbon receptor in rat liver. Journal of Pharmacology and Experimental Therapeutics. 1997;280(1):506–511. PubMed
Braeuning A., Köhle C., Buchmann A., Schwarz M. Coordinate regulation of cytochrome P450 1a1 expression in mouse liver by the aryl hydrocarbon receptor and the β-catenin pathway. Toxicological Sciences. 2011;122(1):16–25. doi: 10.1093/toxsci/kfr080. PubMed DOI
Gerbal-Chaloin S., Dumé A.-S., Briolotti P., et al. The WNT/b-catenin pathway is a transcriptional regulator of CYP2E1, CYP1A2, and aryl hydrocarbon receptor gene expression in primary human hepatocytes. Molecular Pharmacology. 2014;86(6):624–634. doi: 10.1124/mol.114.094797. PubMed DOI
Kasai S., Ishigaki T., Takumi R., Kamimura T., Kikuchi H. β-Catenin signaling induces CYP1A1 expression by disrupting adherens junctions in Caco-2 human colon carcinoma cells. Biochimica et Biophysica Acta (BBA)—General Subjects. 2013;1830(3):2509–2516. doi: 10.1016/j.bbagen.2012.11.007. PubMed DOI
Vaas S., Kreft L., Schwarz M., Braeuning A. Cooperation of structurally different aryl hydrocarbon receptor agonists and β-catenin in the regulation of CYP1A expression. Toxicology. 2014;325:e31–e41. doi: 10.1016/j.tox.2014.08.010. PubMed DOI
Zhang Y., Li X.-M., Zhang F.-K., Wang B.-E. Activation of canonical Wnt signaling pathway promotes proliferation and self-renewal of rat hepatic oval cell line WB-F344 in vitro. World Journal of Gastroenterology. 2008;14(43):6673–6680. doi: 10.3748/wjg.14.6673. PubMed DOI PMC
Kawajiri K., Kobayashi Y., Ohtake F., et al. Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in ApcMin/+ mice with natural ligands. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(32):13481–13486. doi: 10.1073/pnas.0902132106. PubMed DOI PMC
Angers S., Moon R. T. Proximal events in Wnt signal transduction. Nature Reviews Molecular Cell Biology. 2009;10(7):468–477. doi: 10.1038/nrm2717. PubMed DOI
Bisgaard H. C., Nagy P., Ton P. T., Hu Z., Thorgeirsson S. S. Modulation of keratin 14 and α-fetoprotein expression during hepatic oval cell proliferation and liver regeneration. Journal of Cellular Physiology. 1994;159(3):475–484. doi: 10.1002/jcp.1041590312. PubMed DOI
Golding M., Sarraf C. E., Lalani E.-N., et al. Oval cell differentiation into hepatocytes in the acetylaminofluorene-treated regenerating rat liver. Hepatology. 1995;22(4):1243–1253. doi: 10.1016/0270-9139(95)90635-5. PubMed DOI
Branam A. M., Davis N. M., Moore R. W., Schneider A. J., Vezina C. M., Peterson R. E. TCDD inhibition of canonical wnt signaling disrupts prostatic bud formation in mouse urogenital sinus. Toxicological Sciences. 2013;133(1):42–53. doi: 10.1093/toxsci/kft027. PubMed DOI PMC
Tsang H., Cheung T.-Y., Kodithuwakku S. P., et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) suppresses spheroids attachment on endometrial epithelial cells through the down-regulation of the Wnt-signaling pathway. Reproductive Toxicology. 2012;33(1):60–66. doi: 10.1016/j.reprotox.2011.11.002. PubMed DOI
Xu G., Zhou Q., Wan C., et al. 2,3,7,8-TCDD induces neurotoxicity and neuronal apoptosis in the rat brain cortex and PC12 cell line through the down-regulation of the Wnt/β-catenin signaling pathway. NeuroToxicology. 2013;37:63–73. doi: 10.1016/j.neuro.2013.04.005. PubMed DOI
Zhao S., Kanno Y., Nakayama M., Makimura M., Ohara S., Inouye Y. Activation of the aryl hydrocarbon receptor represses mammosphere formation in MCF-7 cells. Cancer Letters. 2012;317(2):192–198. doi: 10.1016/j.canlet.2011.11.025. PubMed DOI
Wang Q., Kurita H., Carreira V., et al. Ah receptor activation by dioxin disrupts activin, BMP, and WNT signals during the early differentiation of mouse embryonic stem cells and inhibits cardiomyocyte functions. Toxicological Sciences. 2016;149(2):346–357. doi: 10.1093/toxsci/kfv246. PubMed DOI PMC
Attisano L., Wrana J. L. Signal integration in TGF-β, WNT, and Hippo pathways. F1000Prime Reports. 2013;5, article17 doi: 10.12703/p5-17. PubMed DOI PMC
Guo X., Wang X.-F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Research. 2009;19(1):71–88. doi: 10.1038/cr.2008.302. PubMed DOI PMC
Sánchez A., Fabregat I. Growth factor- and cytokine-driven pathways governing liver stemness and differentiation. World Journal of Gastroenterology. 2010;16(41):5148–5161. doi: 10.3748/wjg.v16.i41.5148. PubMed DOI PMC
Bird T. G., Lorenzini S., Forbes S. J. Activation of stem cells in hepatic diseases. Cell and Tissue Research. 2008;331(1):283–300. doi: 10.1007/s00441-007-0542-z. PubMed DOI PMC
Clark J. B., Rice L., Sadiq T., et al. Hepatic progenitor cell resistance to TGF-β1's proliferative and apoptotic effects. Biochemical and Biophysical Research Communications. 2005;329(1):337–344. doi: 10.1016/j.bbrc.2005.01.129. PubMed DOI
Ding Z.-Y., Liang H.-F., Jin G.-N., et al. Smad6 suppresses the growth and self-renewal of hepatic progenitor cells. Journal of Cellular Physiology. 2014;229(5):651–660. doi: 10.1002/jcp.24488. PubMed DOI
Nguyen L. N., Furuya M. H., Wolfraim L. A., et al. Transforming growth factor-beta differentially regulates oval cell and hepatocyte proliferation. Hepatology. 2007;45(1):31–41. doi: 10.1002/hep.21466. PubMed DOI
Zaher H., Fernandez-Salguero P. M., Letterio J., et al. The involvement of aryl hydrocarbon receptor in the activation of transforming growth factor-β and apoptosis. Molecular Pharmacology. 1998;54(2):313–321. PubMed
Puga A., Maier A., Medvedovic M. The transcriptional signature of dioxin in human hepatoma HepG2 cells. Biochemical Pharmacology. 2000;60(8):1129–1142. doi: 10.1016/S0006-2952(00)00403-2. PubMed DOI
Sahlberg C., Peltonen E., Lukinmaa P.-L., Alaluusua S. Dioxin alters gene expression in mouse embryonic tooth explants. Journal of Dental Research. 2007;86(7):600–605. doi: 10.1177/154405910708600704. PubMed DOI
Rodgarkia-Dara C., Vejda S., Erlach N., et al. The activin axis in liver biology and disease. Mutation Research—Reviews in Mutation Research. 2006;613(2-3):123–137. doi: 10.1016/j.mrrev.2006.07.002. PubMed DOI
Chen L., Zhang W., Liang H.-F., et al. Activin A induces growth arrest through a SMAD-dependent pathway in hepatic progenitor cells. Cell Communication and Signaling. 2014;12, article 18 doi: 10.1186/1478-811x-12-18. PubMed DOI PMC
Yao P., Zhan Y., Xu W., et al. Hepatocyte growth factor-induced proliferation of hepatic stem-like cells depends on activation of NF-kappaB. Journal of Hepatology. 2004;40:391–398. doi: 10.1016/j.jhep.2003.11.001. PubMed DOI
Evarts R. P., Hu Z., Fujio K., Marsden E. R., Thorgeirsson S. S. Activation of hepatic stem cell compartment in the rat: role of transforming growth factor alpha, hepatocyte growth factor, and acidic fibroblast growth factor in early proliferation. Cell Growth & Differentiation. 1993;4(7):555–561. PubMed
Evarts R. P., Nakatsukasa H., Marsden E. R., Hu Z., Thorgeirsson S. S. Expression of transforming growth factor-alpha in regenerating liver and during hepatic differentiation. Molecular Carcinogenesis. 1992;5(1):25–31. doi: 10.1002/mc.2940050107. PubMed DOI
Du B., Altorki N. K., Kopelovich L., Subbaramaiah K., Dannenberg A. J. Tobacco smoke stimulates the transcription of amphiregulin in human oral epithelial cells: evidence of a cyclic AMP-responsive element binding protein-dependent mechanism. Cancer Research. 2005;65(13):5982–5988. doi: 10.1158/0008-5472.can-05-0628. PubMed DOI
Choi S. S. H., Miller M. A., Harper P. A. In utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin induces amphiregulin gene expression in the developing mouse ureter. Toxicological Sciences. 2006;94(1):163–174. doi: 10.1093/toxsci/kfl090. PubMed DOI
Kiso S., Kawata S., Tamura S., et al. Liver regeneration in heparin-binding EGF-like growth factor transgenic mice after partial hepatectomy. Gastroenterology. 2003;124(3):701–707. doi: 10.1053/gast.2003.50097. PubMed DOI
Mitchell C., Nivison M., Jackson L. F., et al. Heparin-binding epidermal growth factor-like growth factor links hepatocyte priming with cell cycle progression during liver regeneration. The Journal of Biological Chemistry. 2005;280(4):2562–2568. doi: 10.1074/jbc.m412372200. PubMed DOI
Miyoshi E., Higashiyama S., Nakagawa T., et al. High expression of heparin-binding EGF-like growth factor in rat hepatocarcinogenesis. International Journal of Cancer. 1996;68(2):215–218. doi: 10.1002/(SICI)1097-0215(19961009)68:2<215::AID-IJC13>3.0.CO;2-9. PubMed DOI
Davis J. W., II, Lauer F. T., Burdick A. D., Hudson L. G., Burchiel S. W. Prevention of apoptosis by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the MCF-10A cell line: correlation with increased transforming growth factor α production. Cancer Research. 2001;61(8):3314–3320. PubMed
Patel R. D., Kim D. J., Peters J. M., Perdew G. H. The aryl hydrocarbon receptor directly regulates expression of the potent mitogen epiregulin. Toxicological Sciences. 2006;89(1):75–82. doi: 10.1093/toxsci/kfi344. PubMed DOI
Mo J.-S., Park H. W., Guan K.-L. The Hippo signaling pathway in stem cell biology and cancer. EMBO Reports. 2014;15(6):642–656. doi: 10.15252/embr.201438638. PubMed DOI PMC
Yu F.-X., Guan K.-L. The Hippo pathway: regulators and regulations. Genes and Development. 2013;27(4):355–371. doi: 10.1101/gad.210773.112. PubMed DOI PMC
Lai D., Ho K. C., Hao Y., Yang X. Taxol resistance in breast cancer cells is mediated by the hippo pathway component TAZ and its downstream transcriptional targets Cyr61 and CTGF. Cancer Research. 2011;71(7):2728–2738. doi: 10.1158/0008-5472.can-10-2711. PubMed DOI
Zhao B., Ye X., Yu J., et al. TEAD mediates YAP-dependent gene induction and growth control. Genes and Development. 2008;22(14):1962–1971. doi: 10.1101/gad.1664408. PubMed DOI PMC
Piccolo S., Dupont S., Cordenonsi M. The biology of YAP/TAZ: hippo signaling and beyond. Physiological reviews. 2014;94(4):1287–1312. doi: 10.1152/physrev.00005.2014. PubMed DOI
Zhao B., Wei X., Li W., et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes & Development. 2007;21:2747–2761. doi: 10.1101/gad.1602907. PubMed DOI PMC
Yu F. X., Meng Z., Plouffe S. W., Guan K. Hippo pathway regulation of gastrointestinal tissues. Annual Review of Physiology. 2015;77(1):201–227. doi: 10.1146/annurev-physiol-021014-071733. PubMed DOI
Yimlamai D., Christodoulou C., Galli G. G., et al. Hippo pathway activity influences liver cell fate. Cell. 2014;157(6):1324–1338. doi: 10.1016/j.cell.2014.03.060. PubMed DOI PMC
Zhang N., Bai H., David K. K., et al. The Merlin/NF2 tumor suppressor functions through the YAP oncoprotein to regulate tissue homeostasis in mammals. Developmental Cell. 2010;19(1):27–38. doi: 10.1016/j.devcel.2010.06.015. PubMed DOI PMC
Kowalik M. A., Saliba C., Pibiri M., et al. Yes-associated protein regulation of adaptive liver enlargement and hepatocellular carcinoma development in mice. Hepatology. 2011;53(6):2086–2096. doi: 10.1002/hep.24289. PubMed DOI
Fitamant J., Kottakis F., Benhamouche S., et al. YAP inhibition restores hepatocyte differentiation in advanced HCC, leading to tumor regression. Cell Reports. 2015;10(10):1692–1707. doi: 10.1016/j.celrep.2015.02.027. PubMed DOI PMC
Hayashi H., Higashi T., Yokoyama N., et al. An imbalance in TAZ and YAP expression in hepatocellular carcinoma confers cancer stem cell-like behaviors contributing to disease progression. Cancer Research. 2015;75(22):4985–4997. doi: 10.1158/0008-5472.can-15-0291. PubMed DOI
Xiao H., Jiang N., Zhou B., Liu Q., Du C. TAZ regulates cell proliferation and epithelial-mesenchymal transition of human hepatocellular carcinoma. Cancer Science. 2015;106(2):151–159. doi: 10.1111/cas.12587. PubMed DOI PMC
Li H., Wolfe A., Septer S., et al. Deregulation of Hippo kinase signalling in human hepatic malignancies. Liver International. 2012;32(1):38–47. doi: 10.1111/j.1478-3231.2011.02646.x. PubMed DOI PMC
Yang A.-T., Wang P., Tong X.-F., et al. Connective tissue growth factor induces hepatic progenitor cells to differentiate into hepatocytes. International Journal of Molecular Medicine. 2013;32(1):35–42. doi: 10.3892/ijmm.2013.1380. PubMed DOI
Kim S., Dere E., Burgoon L. D., Chang C.-C., Zacharewski T. R. Comparative analysis of AhR-mediated TCDD-elicited gene expression in human liver adult stem cells. Toxicological Sciences. 2009;112(1):229–244. doi: 10.1093/toxsci/kfp189. PubMed DOI PMC
Pande K., Moran S. M., Bradfield C. A. Aspects of dioxin toxicity are mediated by interleukin 1-like cytokines. Molecular Pharmacology. 2005;67(5):1393–1398. doi: 10.1124/mol.105.010983. PubMed DOI
Knight B., Matthews V. B., Akhurst B., et al. Liver inflammation and cytokine production, but not acute phase protein synthesis, accompany the adult liver progenitor (oval) cell response to chronic liver injury. Immunology and Cell Biology. 2005;83(4):364–374. doi: 10.1111/j.1440-1711.2005.01346.x. PubMed DOI
Knight B., Yeoh G. C. T., Husk K. L., et al. Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice. Journal of Experimental Medicine. 2000;192(12):1809–1818. doi: 10.1084/jem.192.12.1809. PubMed DOI PMC
Umannová L., Zatloukalová J., Machala M., et al. Tumor necrosis factor-α modulates effects of aryl hydrocarbon receptor ligands on cell proliferation and expression of cytochrome P450 enzymes in rat liver ‘stem-like’ cells. Toxicological Sciences. 2007;99(1):79–89. doi: 10.1093/toxsci/kfm149. PubMed DOI
Kabátková M., Svobodová J., Pěnčíková K., et al. Interactive effects of inflammatory cytokine and abundant low-molecular-weight PAHs on inhibition of gap junctional intercellular communication, disruption of cell proliferation control, and the AhR-dependent transcription. Toxicology Letters. 2015;232(1):113–121. doi: 10.1016/j.toxlet.2014.09.023. PubMed DOI
Šmerdová L., Svobodová J., Kabátková M., et al. Upregulation of CYP1B1 expression by inflammatory cytokines is mediated by the p38 MAP kinase signal transduction pathway. Carcinogenesis. 2014;35(11):2534–2543. doi: 10.1093/carcin/bgu190. PubMed DOI
Umannová L., Machala M., Topinka J., et al. Tumor necrosis factor-α potentiates genotoxic effects of benzo[a]pyrene in rat liver epithelial cells through upregulation of cytochrome P450 1B1 expression. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2008;640(1-2):162–169. doi: 10.1016/j.mrfmmm.2008.02.001. PubMed DOI
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing