New approach methodologies to facilitate and improve the hazard assessment of non-genotoxic carcinogens-a PARC project
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
37492623
PubMed Central
PMC10364052
DOI
10.3389/ftox.2023.1220998
PII: 1220998
Knihovny.cz E-zdroje
- Klíčová slova
- NAM, NGTxC, PARC, new approach methodologies, non-genotoxic carcinogens,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Carcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established in vitro and in vivo battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific in vitro assay for detecting NGTxCs. Therefore, the evaluation of the carcinogenic potential is still dependent on long-term studies in rodents. This 2-year bioassay, mainly applied for testing agrochemicals and pharmaceuticals, is time-consuming, costly and requires very high numbers of animals. More importantly, its relevance for human risk assessment is questionable due to the limited predictivity for human cancer risk, especially with regard to NGTxCs. Thus, there is an urgent need for a transition to new approach methodologies (NAMs), integrating human-relevant in vitro assays and in silico tools that better exploit the current knowledge of the multiple processes involved in carcinogenesis into a modern safety assessment toolbox. Here, we describe an integrative project that aims to use a variety of novel approaches to detect the carcinogenic potential of NGTxCs based on different mechanisms and pathways involved in carcinogenesis. The aim of this project is to contribute suitable assays for the safety assessment toolbox for an efficient and improved, internationally recognized hazard assessment of NGTxCs, and ultimately to contribute to reliable mechanism-based next-generation risk assessment for chemical carcinogens.
Department of Chemistry RPTU Division of Food Chemistry and Toxicology Kaiserslautern Germany
Health Effects Laboratory NILU The Climate and Environmental Research Institute Kjeller Norway
INRAE Toxalim INRAE INP ENVT INP EI Purpan Université de Toulouse 3 Paul Sabatier Toulouse France
INSERM INSERM UMR S 1124 T3S Université Paris Cité Paris France
IRFMN Istituto di Ricerche Farmacologiche Mario Negri IRCCS Milan Italy
RECETOX RECETOX Faculty of Science Masaryk University Brno Czechia
RIVM National Institute for Public Health and the Environment Bilthoven Netherlands
UL LACDR Leiden Academic Centre for Drug Research Leiden University Leiden Netherlands
Zobrazit více v PubMed
Aasen T., Mesnil M., Naus C. C., Lampe P. D., Laird D. W. (2016). Gap junctions and cancer: Communicating for 50 years. Nat. Rev. Cancer 16 (12), 775–788. 10.1038/nrc.2016.105 PubMed DOI PMC
Ahmed D., Eide P. W., Eilertsen I. A., Danielsen S. A., Eknæs M., Hektoen M., et al. (2013). Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2 (9), e71. 10.1038/oncsis.2013.35 PubMed DOI PMC
Arner E. N., Rathmell W. K. (2022). Mutation and tissue lineage lead to organ-specific cancer. Nature 606 (7916), 871–872. 10.1038/d41586-022-01535-z PubMed DOI
Arnold C., Demuth P., Seiwert N., Wittmann S., Boengler K., Rasenberger B., et al. (2022). The mitochondrial disruptor devimistat (CPI-613) synergizes with genotoxic anticancer drugs in colorectal cancer therapy in a bim-dependent manner. Mol. Cancer Ther. 21 (1), 100–112. 10.1158/1535-7163.MCT-21-0393 PubMed DOI
Baderna D., Gadaleta D., Lostaglio E., Selvestrel G., Raitano G., Golbamaki A., et al. (2020). New in silico models to predict in vitro micronucleus induction as marker of genotoxicity. J. Hazard Mater 5 (385), 121638. 10.1016/j.jhazmat.2019.121638 PubMed DOI
Bauer B., Mally A., Liedtke D. (2021). Zebrafish embryos and larvae as alternative animal models for toxicity testing. Int. J. Mol. Sci. 22 (24), 13417. 10.3390/ijms222413417 PubMed DOI PMC
Benfenati E. M. A., Gini G. (2013). “VEGA-QSAR: AI inside a platform for predictive toxicology in CEUR workshop proceedings,” in Proceedings of the workshop "Popularize Artificial Intelligence 2013 Turin, Italy: December 5, 2013.
Benigni R., Bossa C., Jeliazkova N., Netzeva T., Worth A. (2008). The Benigni/Bossa rulebase for mutagenicity and carcinogenicity - a module of Toxtree. EUR 23241 EN - 2008 Brussels, Belgium: European Commission.
Benigni R., Bossa C., Tcheremenskaia O. (2013). Nongenotoxic carcinogenicity of chemicals: Mechanisms of action and early recognition through a new set of structural alerts. Chem. Rev. 113 (5), 2940–2957. 10.1021/cr300206t PubMed DOI
Benoit L., Tomkiewicz C., Delit M., Khider H., Audouze K., Kowandy F., et al. (2023). Cigarette smoke and tumor microenvironment copromote aggressiveness of human breast cancer cells. Toxicol. Sci. 192 (1), 30–42. 10.1093/toxsci/kfad013 PubMed DOI
Bernasconi C., Pelkonen O., Andersson T. B., Strickland J., Wilk-Zasadna I., Asturiol D., et al. (2019). Validation of in vitro methods for human cytochrome P450 enzyme induction: Outcome of a multi-laboratory study. Toxicol Vitro 60, 212–228. 10.1016/j.tiv.2019.05.019 PubMed DOI PMC
Bianchi J. J., Zhao X., Mays J. C., Davoli T. (2020). Not all cancers are created equal: Tissue specificity in cancer genes and pathways. Curr. Opin. Cell. Biol. 63, 135–143. 10.1016/j.ceb.2020.01.005 PubMed DOI PMC
Bissell M. J., Hines W. C. (2011). Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17 (3), 320–329. 10.1038/nm.2328 PubMed DOI PMC
Bonefeld-Jorgensen E. C., Long M., Bossi R., Ayotte P., Asmund G., Krüger T., et al. (2011). Perfluorinated compounds are related to breast cancer risk in Greenlandic inuit: A case control study. Environ. Health 10, 88. 10.1186/1476-069X-10-88 PubMed DOI PMC
Bray F., Ferlay J., Soerjomataram I., Siegel R. L., Torre L. A., Jemal A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68 (6), 394–424. 10.3322/caac.21492 PubMed DOI
Bray M. A., Singh S., Han H., Davis C. T., Borgeson B., Hartland C., et al. (2016). Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 11 (9), 1757–1774. 10.1038/nprot.2016.105 PubMed DOI PMC
Colacci A., Corvi R., Ohmori K., Paparella M., Serra S., Da Rocha Carrico I., et al. (2023). The cell transformation assay: A historical assessment of current knowledge of applications in an integrated approach to testing and assessment for non-genotoxic carcinogens. Int. J. Mol. Sci. 24 (6), 5659. 10.3390/ijms24065659 PubMed DOI PMC
Collins A., Møller P., Gajski G., Vodenková S., Abdulwahed A., Anderson D., et al. (2023). Measuring DNA modifications with the comet assay: A compendium of protocols. Nat. Protoc. 18 (3), 929–989. 10.1038/s41596-022-00754-y PubMed DOI PMC
Corvi R., Madia F. (2017). In vitro genotoxicity testing-Can the performance be enhanced? Food Chem. Toxicol. 106 (Pt B), 600–608. 10.1016/j.fct.2016.08.024 PubMed DOI
de Beco S., Gueudry C., Amblard F., Coscoy S. (2009). Endocytosis is required for E-cadherin redistribution at mature adherens junctions. Proc. Natl. Acad. Sci. U. S. A. 106 (17), 7010–7015. 10.1073/pnas.0811253106 PubMed DOI PMC
Desaulniers D., Vasseur P., Jacobs A., Aguila M. C., Ertych N., Jacobs M. N. (2021). Integration of epigenetic mechanisms into non-genotoxic carcinogenicity hazard assessment: Focus on DNA methylation and histone modifications. Int. J. Mol. Sci. 22 (20), 10969. 10.3390/ijms222010969 PubMed DOI PMC
Dharshini L. C. P., Rasmi R. R., Kathirvelan C., Kumar K. M., Saradhadevi K. M., Sakthivel K. M. (2023). Regulatory components of oxidative stress and inflammation and their complex interplay in carcinogenesis. Appl. Biochem. Biotechnol. 195 (5), 2893–2916. 10.1007/s12010-022-04266-z PubMed DOI
Doe J. E., Boobis A. R., Cohen S. M., Dellarco V. L., Fenner-Crisp P. A., Moretto A., et al. (2022). A new approach to the classification of carcinogenicity. Arch. Toxicol. 96 (9), 2419–2428. 10.1007/s00204-022-03324-z PubMed DOI PMC
Doe J. E., Boobis A. R., Dellarco V., Fenner-Crisp P. A., Moretto A., Pastoor T. P., et al. (2019). Chemical carcinogenicity revisited 2: Current knowledge of carcinogenesis shows that categorization as a carcinogen or non-carcinogen is not scientifically credible. Regul. Toxicol. Pharmacol. 103, 124–129. 10.1016/j.yrtph.2019.01.024 PubMed DOI
Dorsam B., Seiwert N., Foersch S., Stroh S., Nagel G., Begaliew D., et al. (2018). PARP-1 protects against colorectal tumor induction, but promotes inflammation-driven colorectal tumor progression. Proc. Natl. Acad. Sci. U. S. A. 115 (17), E4061–E4070. 10.1073/pnas.1712345115 PubMed DOI PMC
Duijndam B., Goudriaan A., van den Hoorn T., van der Stel W., Le Dévédec S., Bouwman P., et al. (2021). Physiologically relevant estrogen receptor alpha pathway reporters for single-cell imaging-based carcinogenic hazard assessment of estrogenic compounds. Toxicol. Sci. 181 (2), 187–198. 10.1093/toxsci/kfab037 PubMed DOI PMC
Duijndam B., Tedeschi M., van der Stel W., van den Hoorn T., van der Burg B., Bouwman P., et al. (2022). Evaluation of an imaging-based in vitro screening platform for estrogenic activity with OECD reference chemicals. Toxicol Vitro 81, 105348. 10.1016/j.tiv.2022.105348 PubMed DOI
Dyba T., Randi G., Bray F., Martos C., Giusti F., Nicholson N., et al. (2021). The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer 157, 308–347. 10.1016/j.ejca.2021.07.039 PubMed DOI PMC
Dydowiczova A., Brózman O., Babica P., Sovadinová I. (2020). Improved multiparametric scrape loading-dye transfer assay for a simultaneous high-throughput analysis of gap junctional intercellular communication, cell density and viability. Sci. Rep. 10 (1), 730. 10.1038/s41598-020-57536-3 PubMed DOI PMC
EC (2020). Chemicals strategy for sustainability. Brussels, Belgium: European Commission.
EC (2023). URLs. Available at: https://commission.europa.eu/resources-partners/europa-web-guide/planning-your-web-presence/define-and-plan/urls-and-redirects/url-structure_en .
EEA (2022). Beating cancer — The role of Europe’s environment. Norway, Europe: EEA.
EFSA (2011). Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. EFSA J. 9, 1–68. 10.2903/j.efsa.2011.2379 DOI
Ellinger-Ziegelbauer H., Stuart B., Wahle B., Bomann W., Ahr H. J. (2005). Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat. Res. 575 (1-2), 61–84. 10.1016/j.mrfmmm.2005.02.004 PubMed DOI
Esquivel-Velazquez M., Ostoa-Saloma P., Palacios-Arreola M. I., Nava-Castro K. E., Castro J. I., Morales-Montor J. (2015). The role of cytokines in breast cancer development and progression. J. Interferon Cytokine Res. 35 (1), 1–16. 10.1089/jir.2014.0026 PubMed DOI PMC
Fetz V., Prochnow H., Brönstrup M., Sasse F. (2016). Target identification by image analysis. Nat. Prod. Rep. 33 (5), 655–667. 10.1039/c5np00113g PubMed DOI
Fjodorova N., Vracko M., Novic M., Roncaglioni A., Benfenati E. (2010). New public QSAR model for carcinogenicity. Chem. Cent. J. 4 (1), S3. 10.1186/1752-153X-4-S1-S3 PubMed DOI PMC
Gabet S., Lemarchand C., Guénel P., Slama R. (2021). Breast cancer risk in association with atmospheric pollution exposure: A meta-analysis of effect estimates followed by a health impact assessment. Environ. Health Perspect. 129 (5), 57012. 10.1289/EHP8419 PubMed DOI PMC
Garcia-Martinez L., Zhang Y., Nakata Y., Chan H. L., Morey L. (2021). Epigenetic mechanisms in breast cancer therapy and resistance. Nat. Commun. 12 (1), 1786. 10.1038/s41467-021-22024-3 PubMed DOI PMC
Golbamaki A., Benfenati E., Golbamaki N., Manganaro A., Merdivan E., Roncaglioni A., et al. (2016). New clues on carcinogenicity-related substructures derived from mining two large datasets of chemical compounds. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 34 (2), 97–113. 10.1080/10590501.2016.1166879 PubMed DOI
Guyton K. Z., Rieswijk L., Wang A., Chiu W. A., Smith M. T. (2018). Key characteristics approach to carcinogenic hazard identification. Chem. Res. Toxicol. 31 (12), 1290–1292. 10.1021/acs.chemrestox.8b00321 PubMed DOI PMC
Hanahan D. (2022). Hallmarks of cancer: New dimensions. Cancer Discov. 12 (1), 31–46. 10.1158/2159-8290.CD-21-1059 PubMed DOI
Hanahan D., Weinberg R. A. (2011). Hallmarks of cancer: The next generation. Cell. 144 (5), 646–674. 10.1016/j.cell.2011.02.013 PubMed DOI
Hanahan D., Weinberg R. A. (2000). The hallmarks of cancer. Cell. 100 (1), 57–70. 10.1016/s0092-8674(00)81683-9 PubMed DOI
Hayes J. D., Dinkova-Kostova A. T., Tew K. D. (2020). Oxidative stress in cancer. Cancer Cell. 38 (2), 167–197. 10.1016/j.ccell.2020.06.001 PubMed DOI PMC
Hernandez L. G., van Steeg H., Luijten M., van Benthem J. (2009). Mechanisms of non-genotoxic carcinogens and importance of a weight of evidence approach. Mutat. Res. 682 (2-3), 94–109. 10.1016/j.mrrev.2009.07.002 PubMed DOI
Heusinkveld H., Braakhuis H., Gommans R., Botham P., Corvaro M., van der Laan J. W., et al. (2020a). Towards a mechanism-based approach for the prediction of nongenotoxic carcinogenic potential of agrochemicals. Crit. Rev. Toxicol. 50 (9), 725–739. 10.1080/10408444.2020.1841732 PubMed DOI
Heusinkveld H. J., Schoonen W. G., Hodemaekers H. M., Nugraha A., Sirks J. J., Veenma V., et al. (2020b). Distinguishing mode of action of compounds inducing craniofacial malformations in zebrafish embryos to support dose-response modeling in combined exposures. Reprod. Toxicol. 96, 114–127. 10.1016/j.reprotox.2020.06.002 PubMed DOI
ICH (2008). Guideline S2 (R1) on genotoxicity testing and data interpretation for pharmaceuticals intended for human use, https://www.ema.europa.eu/en/ich-s2-r1-genotoxicity-testing-data-interpretation-pharmaceuticals-intended-human-use-scientific. PubMed
Jacobs M. N., Colacci A., Corvi R., Vaccari M., Aguila M. C., Corvaro M., et al. (2020). Chemical carcinogen safety testing: OECD expert group international consensus on the development of an integrated approach for the testing and assessment of chemical non-genotoxic carcinogens. Arch. Toxicol. 94 (8), 2899–2923. 10.1007/s00204-020-02784-5 PubMed DOI PMC
Jacobs M. N., Colacci A., Louekari K., Luijten M., Hakkert B. C., Paparella M., et al. (2016). International regulatory needs for development of an IATA for non-genotoxic carcinogenic chemical substances. ALTEX 33 (4), 359–392. 10.14573/altex.1601201 PubMed DOI
Jacobs M. N., Kubickova B., Boshoff E. (2022). Candidate proficiency test chemicals to address industrial chemical applicability domains for in vitro human cytochrome P450 enzyme induction. Front. Toxicol. 4, 880818. 10.3389/ftox.2022.880818 PubMed DOI PMC
Kalluri R., Weinberg R. A. (2009). The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119 (6), 1420–1428. 10.1172/JCI39104 PubMed DOI PMC
Kalyanaraman B., Darley-Usmar V., Davies K. J. A., Dennery P. A., Forman H. J., Grisham M. B., et al. (2012). Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radic. Biol. Med. 52 (1), 1–6. 10.1016/j.freeradbiomed.2011.09.030 PubMed DOI PMC
Kay J. E., Cardona B., Rudel R. A., Vandenberg L. N., Soto A. M., Christiansen S., et al. (2022). Chemical effects on breast development, function, and cancer risk: Existing knowledge and new opportunities. Curr. Environ. Health Rep. 9 (4), 535–562. 10.1007/s40572-022-00376-2 PubMed DOI PMC
Kinner A., Wu W., Staudt C., Iliakis G. (2008). Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 36 (17), 5678–5694. 10.1093/nar/gkn550 PubMed DOI PMC
Klaunig J. E. (2018). Oxidative stress and cancer. Curr. Pharm. Des. 24 (40), 4771–4778. 10.2174/1381612825666190215121712 PubMed DOI
Klutzny S., Kornhuber M., Morger A., Schönfelder G., Volkamer A., Oelgeschläger M., et al. (2022). Quantitative high-throughput phenotypic screening for environmental estrogens using the E-Morph Screening Assay in combination with in silico predictions. Environ. Int. 158, 106947. 10.1016/j.envint.2021.106947 PubMed DOI
Kopp B., Khoury L., Audebert M. (2019). Validation of the γH2AX biomarker for genotoxicity assessment: A review. Arch. Toxicol. 93 (8), 2103–2114. 10.1007/s00204-019-02511-9 PubMed DOI
Kornhuber M., Dunst S., Schönfelder G., Oelgeschläger M. (2021). The E-Morph Assay: Identification and characterization of environmental chemicals with estrogenic activity based on quantitative changes in cell-cell contact organization of breast cancer cells. Environ. Int. 149, 106411. 10.1016/j.envint.2021.106411 PubMed DOI
Kortenkamp A. (2006). Breast cancer, oestrogens and environmental pollutants: A re-evaluation from a mixture perspective. Int. J. Androl. 29 (1), 193–198. 10.1111/j.1365-2605.2005.00613.x PubMed DOI
Koual M., Tomkiewicz C., Cano-Sancho G., Antignac J. P., Bats A. S., Coumoul X. (2020). Environmental chemicals, breast cancer progression and drug resistance. Environ. Health 19 (1), 117. 10.1186/s12940-020-00670-2 PubMed DOI PMC
Koual M., Tomkiewicz C., Guerrera I. C., Sherr D., Barouki R., Coumoul X. (2021). Aggressiveness and metastatic potential of breast cancer cells Co-cultured with preadipocytes and exposed to an environmental pollutant dioxin: An in vitro and in vivo zebrafish study. Environ. Health Perspect. 129 (3), 37002. 10.1289/EHP7102 PubMed DOI PMC
Larigot L., Benoit L., Koual M., Tomkiewicz C., Barouki R., Coumoul X. (2022). Aryl hydrocarbon receptor and its diverse ligands and functions: An exposome receptor. Annu. Rev. Pharmacol. Toxicol. 62, 383–404. 10.1146/annurev-pharmtox-052220-115707 PubMed DOI
Larigot L., Juricek L., Dairou J., Coumoul X. (2018). AhR signaling pathways and regulatory functions. Biochim. Open 7, 1–9. 10.1016/j.biopen.2018.05.001 PubMed DOI PMC
Leuthold D., Klüver N., Altenburger R., Busch W. (2019). Can environmentally relevant neuroactive chemicals specifically Be detected with the locomotor response test in zebrafish embryos? Environ. Sci. Technol. 53 (1), 482–493. 10.1021/acs.est.8b04327 PubMed DOI
Li S., Xia M. (2019). Review of high-content screening applications in toxicology. Arch. Toxicol. 93 (12), 3387–3396. 10.1007/s00204-019-02593-5 PubMed DOI PMC
Lyden D., Ghajar C. M., Correia A. L., Aguirre-Ghiso J. A., Cai S., Rescigno M., et al. (2022). Metastasis. Cancer Cell. 40 (8), 787–791. 10.1016/j.ccell.2022.07.010 PubMed DOI PMC
Madia F., Pillo G., Worth A., Corvi R., Prieto P. (2021). Integration of data across toxicity endpoints for improved safety assessment of chemicals: The example of carcinogenicity assessment. Arch. Toxicol. 95 (6), 1971–1993. 10.1007/s00204-021-03035-x PubMed DOI PMC
Madia F., Worth A., Whelan M., Corvi R. (2019). Carcinogenicity assessment: Addressing the challenges of cancer and chemicals in the environment. Environ. Int. 128, 417–429. 10.1016/j.envint.2019.04.067 PubMed DOI PMC
Marion M. J., Hantz O., Durantel D. (2010). The HepaRG cell line: Biological properties and relevance as a tool for cell biology, drug metabolism, and virology studies. Methods Mol. Biol. 640, 261–272. 10.1007/978-1-60761-688-7_13 PubMed DOI
Martínez-Reyes I., Chandel N. S. (2021). Cancer metabolism: Looking forward. Nat. Rev. Cancer 21 (10), 669–680. 10.1038/s41568-021-00378-6 PubMed DOI
Marx-Stoelting P., Rivière G., Luijten M., Aiello-Holden K., Bandow N., Baken K., et al. (2023). A walk in the PARC: Developing and implementing 21st century chemical risk assessment in Europe. Arch. Toxicol. 97 (3), 893–908. 10.1007/s00204-022-03435-7 PubMed DOI PMC
Mimmler M., Peter S., Kraus A., Stroh S., Nikolova T., Seiwert N., et al. (2016). DNA damage response curtails detrimental replication stress and chromosomal instability induced by the dietary carcinogen PhIP. Nucleic Acids Res. 44 (21), 10259–10276. 10.1093/nar/gkw791 PubMed DOI PMC
Muruzabal D., Sanz-Serrano J., Sauvaigo S., Gützkow K. B., López de Cerain A., Vettorazzi A., et al. (2020). Novel approach for the detection of alkylated bases using the enzyme-modified comet assay. Toxicol. Lett. 330, 108–117. 10.1016/j.toxlet.2020.04.021 PubMed DOI
Muruzabal D., Sanz-Serrano J., Sauvaigo S., Treillard B., Olsen A. K., López de Cerain A., et al. (2021). Validation of the in vitro comet assay for DNA cross-links and altered bases detection. Arch. Toxicol. 95 (8), 2825–2838. 10.1007/s00204-021-03102-3 PubMed DOI PMC
Nielsen M. S., Axelsen L. N., Sorgen P. L., Verma V., Delmar M., Holstein-Rathlou N. H. (2012). Gap junctions. Compr. Physiol. 2 (3), 1981–2035. 10.1002/cphy.c110051 PubMed DOI PMC
OECD (2018a). TG451 Carcinogenicity studies. Paris, France: OECD.
OECD (2018b). TG453 combined chronic toxicity/carcinogenicity studies. Paris, France: OECD.
OECD (2022a). TG470 mammalian erythrocyte pig-a gene mutation assay. Paris, France: OECD.
OECD (2016b). TG474 mammalian erythrocyte micronucleus test. Paris, France: OECD.
OECD (2016a). TG475 mammalian bone marrow chromosomal aberration test. Paris, France: OECD.
OECD (2022b). TG488 transgenic rodent somatic and germ cell gene mutation assays. Paris, France: OECD.
OECD (2016c). TG489 in vivo mammalian alkaline comet assay. Paris, France: OECD.
Oku Y., Madia F., Lau P., Paparella M., McGovern T., Luijten M., et al. (2022). Analyses of transcriptomics cell signalling for pre-screening applications in the integrated approach for testing and assessment of non-genotoxic carcinogens. Int. J. Mol. Sci. 23 (21), 12718. 10.3390/ijms232112718 PubMed DOI PMC
Palla V. V., Karaolanis G., Katafigiotis I., Anastasiou I., Patapis P., Dimitroulis D., et al. (2017). gamma-H2AX: Can it be established as a classical cancer prognostic factor? Tumour Biol. 39 (3), 1010428317695931. 10.1177/1010428317695931 PubMed DOI
Peters A., Nawrot T. S., Baccarelli A. A. (2021). Hallmarks of environmental insults. Cell. 184 (6), 1455–1468. 10.1016/j.cell.2021.01.043 PubMed DOI PMC
Roig A. I., Eskiocak U., Hight S. K., Kim S. B., Delgado O., Souza R. F., et al. (2010). Immortalized epithelial cells derived from human colon biopsies express stem cell markers and differentiate in vitro . Gastroenterology 138 (3), 1012–1021.e1-5. 10.1053/j.gastro.2009.11.052 PubMed DOI
Roncaglioni A., Piclin N., Pintore M., Benfenati E. (2008). Binary classification models for endocrine disrupter effects mediated through the estrogen receptor. Sar. QSAR Environ. Res. 19 (7-8), 697–733. 10.1080/10629360802550606 PubMed DOI
Ruscitto F., Roda N., Priami C., Migliaccio E., Pelicci P. G. (2022). Beyond genetics: Metastasis as an adaptive response in breast cancer. Int. J. Mol. Sci. 23 (11), 6271. 10.3390/ijms23116271 PubMed DOI PMC
Salic A., Mitchison T. J. (2008). A chemical method for fast and sensitive detection of DNA synthesis in vivo . Proc. Natl. Acad. Sci. U. S. A. 105 (7), 2415–2420. 10.1073/pnas.0712168105 PubMed DOI PMC
Seiwert N., Neitzel C., Stroh S., Frisan T., Audebert M., Toulany M., et al. (2017). AKT2 suppresses pro-survival autophagy triggered by DNA double-strand breaks in colorectal cancer cells. Cell. Death Dis. 8 (8), e3019. 10.1038/cddis.2017.418 PubMed DOI PMC
Seiwert N., Wecklein S., Demuth P., Hasselwander S., Kemper T. A., Schwerdtle T., et al. (2020). Heme oxygenase 1 protects human colonocytes against ROS formation, oxidative DNA damage and cytotoxicity induced by heme iron, but not inorganic iron. Cell. Death Dis. 11 (9), 787. 10.1038/s41419-020-02950-8 PubMed DOI PMC
Sies H., Jones D. P. (2020). Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell. Biol. 21 (7), 363–383. 10.1038/s41580-020-0230-3 PubMed DOI
Sistare F. D., Morton D., Alden C., Christensen J., Keller D., Jonghe S. D., et al. (2011). An analysis of pharmaceutical experience with decades of rat carcinogenicity testing: Support for a proposal to modify current regulatory guidelines. Toxicol. Pathol. 39 (4), 716–744. 10.1177/0192623311406935 PubMed DOI
Smith M. T., Guyton K. Z., Gibbons C. F., Fritz J. M., Portier C. J., Rusyn I., et al. (2016). Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ. Health Perspect. 124 (6), 713–721. 10.1289/ehp.1509912 PubMed DOI PMC
Smith M. T., Guyton K. Z., Kleinstreuer N., Borrel A., Cardenas A., Chiu W. A., et al. (2020). The key characteristics of carcinogens: Relationship to the hallmarks of cancer, relevant biomarkers, and assays to measure them. Cancer Epidemiol. Biomarkers Prev. 29 (10), 1887–1903. 10.1158/1055-9965.EPI-19-1346 PubMed DOI PMC
Sovadinova I., Upham B. L., Trosko J. E., Babica P. (2021). Applicability of scrape loading-dye transfer assay for non-genotoxic carcinogen testing. Int. J. Mol. Sci. 22 (16), 8977. 10.3390/ijms22168977 PubMed DOI PMC
Stampar M., Breznik B., Filipič M., Žegura B. (2020). Characterization of in vitro 3D cell model developed from human hepatocellular carcinoma (HepG2) cell line. Cells 9 (12), 2557. 10.3390/cells9122557 PubMed DOI PMC
Stampar M., Žabkar S., Filipič M., Žegura B. (2022). HepG2 spheroids as a biosensor-like cell-based system for (geno)toxicity assessment. Chemosphere 291 (Pt 1), 132805. 10.1016/j.chemosphere.2021.132805 PubMed DOI
Toma C., Manganaro A., Raitano G., Marzo M., Gadaleta D., Baderna D., et al. (2020). QSAR models for human carcinogenicity: An assessment based on oral and inhalation slope factors. Molecules 26 (1), 127. 10.3390/molecules26010127 PubMed DOI PMC
Trosko J. E., Chang C. C., Upham B. L., Tai M. H. (2004). Ignored hallmarks of carcinogenesis: Stem cells and cell-cell communication. Ann. N. Y. Acad. Sci. 1028, 192–201. 10.1196/annals.1322.023 PubMed DOI
Uzbas F., Opperer F., Sönmezer C., Shaposhnikov D., Sass S., Krendl C., et al. (2019). BART-seq: Cost-effective massively parallelized targeted sequencing for genomics, transcriptomics, and single-cell analysis. Genome Biol. 20 (1), 155. 10.1186/s13059-019-1748-6 PubMed DOI PMC
Van Bossuyt M., Raitano G., Honma M., Van Hoeck E., Vanhaecke T., Rogiers V., et al. (2020). New QSAR models to predict chromosome damaging potential based on the in vivo micronucleus test. Toxicol. Lett. 329, 80–84. 10.1016/j.toxlet.2020.04.016 PubMed DOI
Van Der Ven L. T. M., Van Ommeren P., Zwart E. P., Gremmer E. R., Hodemaekers H. M., Heusinkveld H. J., et al. (2022). Dose addition in the induction of craniofacial malformations in zebrafish embryos exposed to a complex mixture of food-relevant chemicals with dissimilar modes of action. Environ. Health Perspect. 130 (4), 47003. 10.1289/EHP9888 PubMed DOI PMC
Vang Mouritzen M., Jenssen H. (2018). Optimized scratch assay for in vitro testing of cell migration with an automated optical camera. J. Vis. Exp. 138, 57691. 10.3791/57691 PubMed DOI PMC
Veltman C. H. J., Pennings J. L. A., van de Water B., Luijten M. (2023). An adverse outcome pathway network for chemically induced oxidative stress leading to (Non)genotoxic carcinogenesis. Chem. Res. Toxicol. 36, 805–817. 10.1021/acs.chemrestox.2c00396 PubMed DOI PMC
Vieira-da-Silva B., Castanho M. (2023). Resazurin reduction-based assays revisited: Guidelines for accurate reporting of relative differences on metabolic status. Molecules 28 (5), 2283. 10.3390/molecules28052283 PubMed DOI PMC
Vigano E. L., Colombo E., Raitano G., Manganaro A., Sommovigo A., Dorne J. L. C., et al. (2022). Virtual extensive read-across: A new open-access software for chemical read-across and its application to the carcinogenicity assessment of botanicals. Molecules 27 (19), 6605. 10.3390/molecules27196605 PubMed DOI PMC
Weinberg F., Ramnath N., Nagrath D. (2019). Reactive oxygen species in the tumor microenvironment: An Overview. Cancers (Basel) 11 (8), 1191. 10.3390/cancers11081191 PubMed DOI PMC
Yan L., Messner C. J., Zhang X., Suter-Dick L. (2021). Assessment of fibrotic pathways induced by environmental chemicals using 3D-human liver microtissue model. Environ. Res. 194, 110679. 10.1016/j.envres.2020.110679 PubMed DOI
Zefferino R., Piccoli C., Gioia S. D., Capitanio N., Conese M. (2019). Gap junction intercellular communication in the carcinogenesis hallmarks: Is this a phenomenon or epiphenomenon? Cells 8 (8), 896. 10.3390/cells8080896 PubMed DOI PMC