New approach methodologies to facilitate and improve the hazard assessment of non-genotoxic carcinogens-a PARC project

. 2023 ; 5 () : 1220998. [epub] 20230710

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37492623

Carcinogenic chemicals, or their metabolites, can be classified as genotoxic or non-genotoxic carcinogens (NGTxCs). Genotoxic compounds induce DNA damage, which can be detected by an established in vitro and in vivo battery of genotoxicity assays. For NGTxCs, DNA is not the primary target, and the possible modes of action (MoA) of NGTxCs are much more diverse than those of genotoxic compounds, and there is no specific in vitro assay for detecting NGTxCs. Therefore, the evaluation of the carcinogenic potential is still dependent on long-term studies in rodents. This 2-year bioassay, mainly applied for testing agrochemicals and pharmaceuticals, is time-consuming, costly and requires very high numbers of animals. More importantly, its relevance for human risk assessment is questionable due to the limited predictivity for human cancer risk, especially with regard to NGTxCs. Thus, there is an urgent need for a transition to new approach methodologies (NAMs), integrating human-relevant in vitro assays and in silico tools that better exploit the current knowledge of the multiple processes involved in carcinogenesis into a modern safety assessment toolbox. Here, we describe an integrative project that aims to use a variety of novel approaches to detect the carcinogenic potential of NGTxCs based on different mechanisms and pathways involved in carcinogenesis. The aim of this project is to contribute suitable assays for the safety assessment toolbox for an efficient and improved, internationally recognized hazard assessment of NGTxCs, and ultimately to contribute to reliable mechanism-based next-generation risk assessment for chemical carcinogens.

Zobrazit více v PubMed

Aasen T., Mesnil M., Naus C. C., Lampe P. D., Laird D. W. (2016). Gap junctions and cancer: Communicating for 50 years. Nat. Rev. Cancer 16 (12), 775–788. 10.1038/nrc.2016.105 PubMed DOI PMC

Ahmed D., Eide P. W., Eilertsen I. A., Danielsen S. A., Eknæs M., Hektoen M., et al. (2013). Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2 (9), e71. 10.1038/oncsis.2013.35 PubMed DOI PMC

Arner E. N., Rathmell W. K. (2022). Mutation and tissue lineage lead to organ-specific cancer. Nature 606 (7916), 871–872. 10.1038/d41586-022-01535-z PubMed DOI

Arnold C., Demuth P., Seiwert N., Wittmann S., Boengler K., Rasenberger B., et al. (2022). The mitochondrial disruptor devimistat (CPI-613) synergizes with genotoxic anticancer drugs in colorectal cancer therapy in a bim-dependent manner. Mol. Cancer Ther. 21 (1), 100–112. 10.1158/1535-7163.MCT-21-0393 PubMed DOI

Baderna D., Gadaleta D., Lostaglio E., Selvestrel G., Raitano G., Golbamaki A., et al. (2020). New in silico models to predict in vitro micronucleus induction as marker of genotoxicity. J. Hazard Mater 5 (385), 121638. 10.1016/j.jhazmat.2019.121638 PubMed DOI

Bauer B., Mally A., Liedtke D. (2021). Zebrafish embryos and larvae as alternative animal models for toxicity testing. Int. J. Mol. Sci. 22 (24), 13417. 10.3390/ijms222413417 PubMed DOI PMC

Benfenati E. M. A., Gini G. (2013). “VEGA-QSAR: AI inside a platform for predictive toxicology in CEUR workshop proceedings,” in Proceedings of the workshop "Popularize Artificial Intelligence 2013 Turin, Italy: December 5, 2013.

Benigni R., Bossa C., Jeliazkova N., Netzeva T., Worth A. (2008). The Benigni/Bossa rulebase for mutagenicity and carcinogenicity - a module of Toxtree. EUR 23241 EN - 2008 Brussels, Belgium: European Commission.

Benigni R., Bossa C., Tcheremenskaia O. (2013). Nongenotoxic carcinogenicity of chemicals: Mechanisms of action and early recognition through a new set of structural alerts. Chem. Rev. 113 (5), 2940–2957. 10.1021/cr300206t PubMed DOI

Benoit L., Tomkiewicz C., Delit M., Khider H., Audouze K., Kowandy F., et al. (2023). Cigarette smoke and tumor microenvironment copromote aggressiveness of human breast cancer cells. Toxicol. Sci. 192 (1), 30–42. 10.1093/toxsci/kfad013 PubMed DOI

Bernasconi C., Pelkonen O., Andersson T. B., Strickland J., Wilk-Zasadna I., Asturiol D., et al. (2019). Validation of in vitro methods for human cytochrome P450 enzyme induction: Outcome of a multi-laboratory study. Toxicol Vitro 60, 212–228. 10.1016/j.tiv.2019.05.019 PubMed DOI PMC

Bianchi J. J., Zhao X., Mays J. C., Davoli T. (2020). Not all cancers are created equal: Tissue specificity in cancer genes and pathways. Curr. Opin. Cell. Biol. 63, 135–143. 10.1016/j.ceb.2020.01.005 PubMed DOI PMC

Bissell M. J., Hines W. C. (2011). Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17 (3), 320–329. 10.1038/nm.2328 PubMed DOI PMC

Bonefeld-Jorgensen E. C., Long M., Bossi R., Ayotte P., Asmund G., Krüger T., et al. (2011). Perfluorinated compounds are related to breast cancer risk in Greenlandic inuit: A case control study. Environ. Health 10, 88. 10.1186/1476-069X-10-88 PubMed DOI PMC

Bray F., Ferlay J., Soerjomataram I., Siegel R. L., Torre L. A., Jemal A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68 (6), 394–424. 10.3322/caac.21492 PubMed DOI

Bray M. A., Singh S., Han H., Davis C. T., Borgeson B., Hartland C., et al. (2016). Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc. 11 (9), 1757–1774. 10.1038/nprot.2016.105 PubMed DOI PMC

Colacci A., Corvi R., Ohmori K., Paparella M., Serra S., Da Rocha Carrico I., et al. (2023). The cell transformation assay: A historical assessment of current knowledge of applications in an integrated approach to testing and assessment for non-genotoxic carcinogens. Int. J. Mol. Sci. 24 (6), 5659. 10.3390/ijms24065659 PubMed DOI PMC

Collins A., Møller P., Gajski G., Vodenková S., Abdulwahed A., Anderson D., et al. (2023). Measuring DNA modifications with the comet assay: A compendium of protocols. Nat. Protoc. 18 (3), 929–989. 10.1038/s41596-022-00754-y PubMed DOI PMC

Corvi R., Madia F. (2017). In vitro genotoxicity testing-Can the performance be enhanced? Food Chem. Toxicol. 106 (Pt B), 600–608. 10.1016/j.fct.2016.08.024 PubMed DOI

de Beco S., Gueudry C., Amblard F., Coscoy S. (2009). Endocytosis is required for E-cadherin redistribution at mature adherens junctions. Proc. Natl. Acad. Sci. U. S. A. 106 (17), 7010–7015. 10.1073/pnas.0811253106 PubMed DOI PMC

Desaulniers D., Vasseur P., Jacobs A., Aguila M. C., Ertych N., Jacobs M. N. (2021). Integration of epigenetic mechanisms into non-genotoxic carcinogenicity hazard assessment: Focus on DNA methylation and histone modifications. Int. J. Mol. Sci. 22 (20), 10969. 10.3390/ijms222010969 PubMed DOI PMC

Dharshini L. C. P., Rasmi R. R., Kathirvelan C., Kumar K. M., Saradhadevi K. M., Sakthivel K. M. (2023). Regulatory components of oxidative stress and inflammation and their complex interplay in carcinogenesis. Appl. Biochem. Biotechnol. 195 (5), 2893–2916. 10.1007/s12010-022-04266-z PubMed DOI

Doe J. E., Boobis A. R., Cohen S. M., Dellarco V. L., Fenner-Crisp P. A., Moretto A., et al. (2022). A new approach to the classification of carcinogenicity. Arch. Toxicol. 96 (9), 2419–2428. 10.1007/s00204-022-03324-z PubMed DOI PMC

Doe J. E., Boobis A. R., Dellarco V., Fenner-Crisp P. A., Moretto A., Pastoor T. P., et al. (2019). Chemical carcinogenicity revisited 2: Current knowledge of carcinogenesis shows that categorization as a carcinogen or non-carcinogen is not scientifically credible. Regul. Toxicol. Pharmacol. 103, 124–129. 10.1016/j.yrtph.2019.01.024 PubMed DOI

Dorsam B., Seiwert N., Foersch S., Stroh S., Nagel G., Begaliew D., et al. (2018). PARP-1 protects against colorectal tumor induction, but promotes inflammation-driven colorectal tumor progression. Proc. Natl. Acad. Sci. U. S. A. 115 (17), E4061–E4070. 10.1073/pnas.1712345115 PubMed DOI PMC

Duijndam B., Goudriaan A., van den Hoorn T., van der Stel W., Le Dévédec S., Bouwman P., et al. (2021). Physiologically relevant estrogen receptor alpha pathway reporters for single-cell imaging-based carcinogenic hazard assessment of estrogenic compounds. Toxicol. Sci. 181 (2), 187–198. 10.1093/toxsci/kfab037 PubMed DOI PMC

Duijndam B., Tedeschi M., van der Stel W., van den Hoorn T., van der Burg B., Bouwman P., et al. (2022). Evaluation of an imaging-based in vitro screening platform for estrogenic activity with OECD reference chemicals. Toxicol Vitro 81, 105348. 10.1016/j.tiv.2022.105348 PubMed DOI

Dyba T., Randi G., Bray F., Martos C., Giusti F., Nicholson N., et al. (2021). The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer 157, 308–347. 10.1016/j.ejca.2021.07.039 PubMed DOI PMC

Dydowiczova A., Brózman O., Babica P., Sovadinová I. (2020). Improved multiparametric scrape loading-dye transfer assay for a simultaneous high-throughput analysis of gap junctional intercellular communication, cell density and viability. Sci. Rep. 10 (1), 730. 10.1038/s41598-020-57536-3 PubMed DOI PMC

EC (2020). Chemicals strategy for sustainability. Brussels, Belgium: European Commission.

EC (2023). URLs. Available at: https://commission.europa.eu/resources-partners/europa-web-guide/planning-your-web-presence/define-and-plan/urls-and-redirects/url-structure_en .

EEA (2022). Beating cancer — The role of Europe’s environment. Norway, Europe: EEA.

EFSA (2011). Scientific opinion on genotoxicity testing strategies applicable to food and feed safety assessment. EFSA J. 9, 1–68. 10.2903/j.efsa.2011.2379 DOI

Ellinger-Ziegelbauer H., Stuart B., Wahle B., Bomann W., Ahr H. J. (2005). Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat. Res. 575 (1-2), 61–84. 10.1016/j.mrfmmm.2005.02.004 PubMed DOI

Esquivel-Velazquez M., Ostoa-Saloma P., Palacios-Arreola M. I., Nava-Castro K. E., Castro J. I., Morales-Montor J. (2015). The role of cytokines in breast cancer development and progression. J. Interferon Cytokine Res. 35 (1), 1–16. 10.1089/jir.2014.0026 PubMed DOI PMC

Fetz V., Prochnow H., Brönstrup M., Sasse F. (2016). Target identification by image analysis. Nat. Prod. Rep. 33 (5), 655–667. 10.1039/c5np00113g PubMed DOI

Fjodorova N., Vracko M., Novic M., Roncaglioni A., Benfenati E. (2010). New public QSAR model for carcinogenicity. Chem. Cent. J. 4 (1), S3. 10.1186/1752-153X-4-S1-S3 PubMed DOI PMC

Gabet S., Lemarchand C., Guénel P., Slama R. (2021). Breast cancer risk in association with atmospheric pollution exposure: A meta-analysis of effect estimates followed by a health impact assessment. Environ. Health Perspect. 129 (5), 57012. 10.1289/EHP8419 PubMed DOI PMC

Garcia-Martinez L., Zhang Y., Nakata Y., Chan H. L., Morey L. (2021). Epigenetic mechanisms in breast cancer therapy and resistance. Nat. Commun. 12 (1), 1786. 10.1038/s41467-021-22024-3 PubMed DOI PMC

Golbamaki A., Benfenati E., Golbamaki N., Manganaro A., Merdivan E., Roncaglioni A., et al. (2016). New clues on carcinogenicity-related substructures derived from mining two large datasets of chemical compounds. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 34 (2), 97–113. 10.1080/10590501.2016.1166879 PubMed DOI

Guyton K. Z., Rieswijk L., Wang A., Chiu W. A., Smith M. T. (2018). Key characteristics approach to carcinogenic hazard identification. Chem. Res. Toxicol. 31 (12), 1290–1292. 10.1021/acs.chemrestox.8b00321 PubMed DOI PMC

Hanahan D. (2022). Hallmarks of cancer: New dimensions. Cancer Discov. 12 (1), 31–46. 10.1158/2159-8290.CD-21-1059 PubMed DOI

Hanahan D., Weinberg R. A. (2011). Hallmarks of cancer: The next generation. Cell. 144 (5), 646–674. 10.1016/j.cell.2011.02.013 PubMed DOI

Hanahan D., Weinberg R. A. (2000). The hallmarks of cancer. Cell. 100 (1), 57–70. 10.1016/s0092-8674(00)81683-9 PubMed DOI

Hayes J. D., Dinkova-Kostova A. T., Tew K. D. (2020). Oxidative stress in cancer. Cancer Cell. 38 (2), 167–197. 10.1016/j.ccell.2020.06.001 PubMed DOI PMC

Hernandez L. G., van Steeg H., Luijten M., van Benthem J. (2009). Mechanisms of non-genotoxic carcinogens and importance of a weight of evidence approach. Mutat. Res. 682 (2-3), 94–109. 10.1016/j.mrrev.2009.07.002 PubMed DOI

Heusinkveld H., Braakhuis H., Gommans R., Botham P., Corvaro M., van der Laan J. W., et al. (2020a). Towards a mechanism-based approach for the prediction of nongenotoxic carcinogenic potential of agrochemicals. Crit. Rev. Toxicol. 50 (9), 725–739. 10.1080/10408444.2020.1841732 PubMed DOI

Heusinkveld H. J., Schoonen W. G., Hodemaekers H. M., Nugraha A., Sirks J. J., Veenma V., et al. (2020b). Distinguishing mode of action of compounds inducing craniofacial malformations in zebrafish embryos to support dose-response modeling in combined exposures. Reprod. Toxicol. 96, 114–127. 10.1016/j.reprotox.2020.06.002 PubMed DOI

ICH (2008). Guideline S2 (R1) on genotoxicity testing and data interpretation for pharmaceuticals intended for human use, https://www.ema.europa.eu/en/ich-s2-r1-genotoxicity-testing-data-interpretation-pharmaceuticals-intended-human-use-scientific. PubMed

Jacobs M. N., Colacci A., Corvi R., Vaccari M., Aguila M. C., Corvaro M., et al. (2020). Chemical carcinogen safety testing: OECD expert group international consensus on the development of an integrated approach for the testing and assessment of chemical non-genotoxic carcinogens. Arch. Toxicol. 94 (8), 2899–2923. 10.1007/s00204-020-02784-5 PubMed DOI PMC

Jacobs M. N., Colacci A., Louekari K., Luijten M., Hakkert B. C., Paparella M., et al. (2016). International regulatory needs for development of an IATA for non-genotoxic carcinogenic chemical substances. ALTEX 33 (4), 359–392. 10.14573/altex.1601201 PubMed DOI

Jacobs M. N., Kubickova B., Boshoff E. (2022). Candidate proficiency test chemicals to address industrial chemical applicability domains for in vitro human cytochrome P450 enzyme induction. Front. Toxicol. 4, 880818. 10.3389/ftox.2022.880818 PubMed DOI PMC

Kalluri R., Weinberg R. A. (2009). The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119 (6), 1420–1428. 10.1172/JCI39104 PubMed DOI PMC

Kalyanaraman B., Darley-Usmar V., Davies K. J. A., Dennery P. A., Forman H. J., Grisham M. B., et al. (2012). Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radic. Biol. Med. 52 (1), 1–6. 10.1016/j.freeradbiomed.2011.09.030 PubMed DOI PMC

Kay J. E., Cardona B., Rudel R. A., Vandenberg L. N., Soto A. M., Christiansen S., et al. (2022). Chemical effects on breast development, function, and cancer risk: Existing knowledge and new opportunities. Curr. Environ. Health Rep. 9 (4), 535–562. 10.1007/s40572-022-00376-2 PubMed DOI PMC

Kinner A., Wu W., Staudt C., Iliakis G. (2008). Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res. 36 (17), 5678–5694. 10.1093/nar/gkn550 PubMed DOI PMC

Klaunig J. E. (2018). Oxidative stress and cancer. Curr. Pharm. Des. 24 (40), 4771–4778. 10.2174/1381612825666190215121712 PubMed DOI

Klutzny S., Kornhuber M., Morger A., Schönfelder G., Volkamer A., Oelgeschläger M., et al. (2022). Quantitative high-throughput phenotypic screening for environmental estrogens using the E-Morph Screening Assay in combination with in silico predictions. Environ. Int. 158, 106947. 10.1016/j.envint.2021.106947 PubMed DOI

Kopp B., Khoury L., Audebert M. (2019). Validation of the γH2AX biomarker for genotoxicity assessment: A review. Arch. Toxicol. 93 (8), 2103–2114. 10.1007/s00204-019-02511-9 PubMed DOI

Kornhuber M., Dunst S., Schönfelder G., Oelgeschläger M. (2021). The E-Morph Assay: Identification and characterization of environmental chemicals with estrogenic activity based on quantitative changes in cell-cell contact organization of breast cancer cells. Environ. Int. 149, 106411. 10.1016/j.envint.2021.106411 PubMed DOI

Kortenkamp A. (2006). Breast cancer, oestrogens and environmental pollutants: A re-evaluation from a mixture perspective. Int. J. Androl. 29 (1), 193–198. 10.1111/j.1365-2605.2005.00613.x PubMed DOI

Koual M., Tomkiewicz C., Cano-Sancho G., Antignac J. P., Bats A. S., Coumoul X. (2020). Environmental chemicals, breast cancer progression and drug resistance. Environ. Health 19 (1), 117. 10.1186/s12940-020-00670-2 PubMed DOI PMC

Koual M., Tomkiewicz C., Guerrera I. C., Sherr D., Barouki R., Coumoul X. (2021). Aggressiveness and metastatic potential of breast cancer cells Co-cultured with preadipocytes and exposed to an environmental pollutant dioxin: An in vitro and in vivo zebrafish study. Environ. Health Perspect. 129 (3), 37002. 10.1289/EHP7102 PubMed DOI PMC

Larigot L., Benoit L., Koual M., Tomkiewicz C., Barouki R., Coumoul X. (2022). Aryl hydrocarbon receptor and its diverse ligands and functions: An exposome receptor. Annu. Rev. Pharmacol. Toxicol. 62, 383–404. 10.1146/annurev-pharmtox-052220-115707 PubMed DOI

Larigot L., Juricek L., Dairou J., Coumoul X. (2018). AhR signaling pathways and regulatory functions. Biochim. Open 7, 1–9. 10.1016/j.biopen.2018.05.001 PubMed DOI PMC

Leuthold D., Klüver N., Altenburger R., Busch W. (2019). Can environmentally relevant neuroactive chemicals specifically Be detected with the locomotor response test in zebrafish embryos? Environ. Sci. Technol. 53 (1), 482–493. 10.1021/acs.est.8b04327 PubMed DOI

Li S., Xia M. (2019). Review of high-content screening applications in toxicology. Arch. Toxicol. 93 (12), 3387–3396. 10.1007/s00204-019-02593-5 PubMed DOI PMC

Lyden D., Ghajar C. M., Correia A. L., Aguirre-Ghiso J. A., Cai S., Rescigno M., et al. (2022). Metastasis. Cancer Cell. 40 (8), 787–791. 10.1016/j.ccell.2022.07.010 PubMed DOI PMC

Madia F., Pillo G., Worth A., Corvi R., Prieto P. (2021). Integration of data across toxicity endpoints for improved safety assessment of chemicals: The example of carcinogenicity assessment. Arch. Toxicol. 95 (6), 1971–1993. 10.1007/s00204-021-03035-x PubMed DOI PMC

Madia F., Worth A., Whelan M., Corvi R. (2019). Carcinogenicity assessment: Addressing the challenges of cancer and chemicals in the environment. Environ. Int. 128, 417–429. 10.1016/j.envint.2019.04.067 PubMed DOI PMC

Marion M. J., Hantz O., Durantel D. (2010). The HepaRG cell line: Biological properties and relevance as a tool for cell biology, drug metabolism, and virology studies. Methods Mol. Biol. 640, 261–272. 10.1007/978-1-60761-688-7_13 PubMed DOI

Martínez-Reyes I., Chandel N. S. (2021). Cancer metabolism: Looking forward. Nat. Rev. Cancer 21 (10), 669–680. 10.1038/s41568-021-00378-6 PubMed DOI

Marx-Stoelting P., Rivière G., Luijten M., Aiello-Holden K., Bandow N., Baken K., et al. (2023). A walk in the PARC: Developing and implementing 21st century chemical risk assessment in Europe. Arch. Toxicol. 97 (3), 893–908. 10.1007/s00204-022-03435-7 PubMed DOI PMC

Mimmler M., Peter S., Kraus A., Stroh S., Nikolova T., Seiwert N., et al. (2016). DNA damage response curtails detrimental replication stress and chromosomal instability induced by the dietary carcinogen PhIP. Nucleic Acids Res. 44 (21), 10259–10276. 10.1093/nar/gkw791 PubMed DOI PMC

Muruzabal D., Sanz-Serrano J., Sauvaigo S., Gützkow K. B., López de Cerain A., Vettorazzi A., et al. (2020). Novel approach for the detection of alkylated bases using the enzyme-modified comet assay. Toxicol. Lett. 330, 108–117. 10.1016/j.toxlet.2020.04.021 PubMed DOI

Muruzabal D., Sanz-Serrano J., Sauvaigo S., Treillard B., Olsen A. K., López de Cerain A., et al. (2021). Validation of the in vitro comet assay for DNA cross-links and altered bases detection. Arch. Toxicol. 95 (8), 2825–2838. 10.1007/s00204-021-03102-3 PubMed DOI PMC

Nielsen M. S., Axelsen L. N., Sorgen P. L., Verma V., Delmar M., Holstein-Rathlou N. H. (2012). Gap junctions. Compr. Physiol. 2 (3), 1981–2035. 10.1002/cphy.c110051 PubMed DOI PMC

OECD (2018a). TG451 Carcinogenicity studies. Paris, France: OECD.

OECD (2018b). TG453 combined chronic toxicity/carcinogenicity studies. Paris, France: OECD.

OECD (2022a). TG470 mammalian erythrocyte pig-a gene mutation assay. Paris, France: OECD.

OECD (2016b). TG474 mammalian erythrocyte micronucleus test. Paris, France: OECD.

OECD (2016a). TG475 mammalian bone marrow chromosomal aberration test. Paris, France: OECD.

OECD (2022b). TG488 transgenic rodent somatic and germ cell gene mutation assays. Paris, France: OECD.

OECD (2016c). TG489 in vivo mammalian alkaline comet assay. Paris, France: OECD.

Oku Y., Madia F., Lau P., Paparella M., McGovern T., Luijten M., et al. (2022). Analyses of transcriptomics cell signalling for pre-screening applications in the integrated approach for testing and assessment of non-genotoxic carcinogens. Int. J. Mol. Sci. 23 (21), 12718. 10.3390/ijms232112718 PubMed DOI PMC

Palla V. V., Karaolanis G., Katafigiotis I., Anastasiou I., Patapis P., Dimitroulis D., et al. (2017). gamma-H2AX: Can it be established as a classical cancer prognostic factor? Tumour Biol. 39 (3), 1010428317695931. 10.1177/1010428317695931 PubMed DOI

Peters A., Nawrot T. S., Baccarelli A. A. (2021). Hallmarks of environmental insults. Cell. 184 (6), 1455–1468. 10.1016/j.cell.2021.01.043 PubMed DOI PMC

Roig A. I., Eskiocak U., Hight S. K., Kim S. B., Delgado O., Souza R. F., et al. (2010). Immortalized epithelial cells derived from human colon biopsies express stem cell markers and differentiate in vitro . Gastroenterology 138 (3), 1012–1021.e1-5. 10.1053/j.gastro.2009.11.052 PubMed DOI

Roncaglioni A., Piclin N., Pintore M., Benfenati E. (2008). Binary classification models for endocrine disrupter effects mediated through the estrogen receptor. Sar. QSAR Environ. Res. 19 (7-8), 697–733. 10.1080/10629360802550606 PubMed DOI

Ruscitto F., Roda N., Priami C., Migliaccio E., Pelicci P. G. (2022). Beyond genetics: Metastasis as an adaptive response in breast cancer. Int. J. Mol. Sci. 23 (11), 6271. 10.3390/ijms23116271 PubMed DOI PMC

Salic A., Mitchison T. J. (2008). A chemical method for fast and sensitive detection of DNA synthesis in vivo . Proc. Natl. Acad. Sci. U. S. A. 105 (7), 2415–2420. 10.1073/pnas.0712168105 PubMed DOI PMC

Seiwert N., Neitzel C., Stroh S., Frisan T., Audebert M., Toulany M., et al. (2017). AKT2 suppresses pro-survival autophagy triggered by DNA double-strand breaks in colorectal cancer cells. Cell. Death Dis. 8 (8), e3019. 10.1038/cddis.2017.418 PubMed DOI PMC

Seiwert N., Wecklein S., Demuth P., Hasselwander S., Kemper T. A., Schwerdtle T., et al. (2020). Heme oxygenase 1 protects human colonocytes against ROS formation, oxidative DNA damage and cytotoxicity induced by heme iron, but not inorganic iron. Cell. Death Dis. 11 (9), 787. 10.1038/s41419-020-02950-8 PubMed DOI PMC

Sies H., Jones D. P. (2020). Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell. Biol. 21 (7), 363–383. 10.1038/s41580-020-0230-3 PubMed DOI

Sistare F. D., Morton D., Alden C., Christensen J., Keller D., Jonghe S. D., et al. (2011). An analysis of pharmaceutical experience with decades of rat carcinogenicity testing: Support for a proposal to modify current regulatory guidelines. Toxicol. Pathol. 39 (4), 716–744. 10.1177/0192623311406935 PubMed DOI

Smith M. T., Guyton K. Z., Gibbons C. F., Fritz J. M., Portier C. J., Rusyn I., et al. (2016). Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ. Health Perspect. 124 (6), 713–721. 10.1289/ehp.1509912 PubMed DOI PMC

Smith M. T., Guyton K. Z., Kleinstreuer N., Borrel A., Cardenas A., Chiu W. A., et al. (2020). The key characteristics of carcinogens: Relationship to the hallmarks of cancer, relevant biomarkers, and assays to measure them. Cancer Epidemiol. Biomarkers Prev. 29 (10), 1887–1903. 10.1158/1055-9965.EPI-19-1346 PubMed DOI PMC

Sovadinova I., Upham B. L., Trosko J. E., Babica P. (2021). Applicability of scrape loading-dye transfer assay for non-genotoxic carcinogen testing. Int. J. Mol. Sci. 22 (16), 8977. 10.3390/ijms22168977 PubMed DOI PMC

Stampar M., Breznik B., Filipič M., Žegura B. (2020). Characterization of in vitro 3D cell model developed from human hepatocellular carcinoma (HepG2) cell line. Cells 9 (12), 2557. 10.3390/cells9122557 PubMed DOI PMC

Stampar M., Žabkar S., Filipič M., Žegura B. (2022). HepG2 spheroids as a biosensor-like cell-based system for (geno)toxicity assessment. Chemosphere 291 (Pt 1), 132805. 10.1016/j.chemosphere.2021.132805 PubMed DOI

Toma C., Manganaro A., Raitano G., Marzo M., Gadaleta D., Baderna D., et al. (2020). QSAR models for human carcinogenicity: An assessment based on oral and inhalation slope factors. Molecules 26 (1), 127. 10.3390/molecules26010127 PubMed DOI PMC

Trosko J. E., Chang C. C., Upham B. L., Tai M. H. (2004). Ignored hallmarks of carcinogenesis: Stem cells and cell-cell communication. Ann. N. Y. Acad. Sci. 1028, 192–201. 10.1196/annals.1322.023 PubMed DOI

Uzbas F., Opperer F., Sönmezer C., Shaposhnikov D., Sass S., Krendl C., et al. (2019). BART-seq: Cost-effective massively parallelized targeted sequencing for genomics, transcriptomics, and single-cell analysis. Genome Biol. 20 (1), 155. 10.1186/s13059-019-1748-6 PubMed DOI PMC

Van Bossuyt M., Raitano G., Honma M., Van Hoeck E., Vanhaecke T., Rogiers V., et al. (2020). New QSAR models to predict chromosome damaging potential based on the in vivo micronucleus test. Toxicol. Lett. 329, 80–84. 10.1016/j.toxlet.2020.04.016 PubMed DOI

Van Der Ven L. T. M., Van Ommeren P., Zwart E. P., Gremmer E. R., Hodemaekers H. M., Heusinkveld H. J., et al. (2022). Dose addition in the induction of craniofacial malformations in zebrafish embryos exposed to a complex mixture of food-relevant chemicals with dissimilar modes of action. Environ. Health Perspect. 130 (4), 47003. 10.1289/EHP9888 PubMed DOI PMC

Vang Mouritzen M., Jenssen H. (2018). Optimized scratch assay for in vitro testing of cell migration with an automated optical camera. J. Vis. Exp. 138, 57691. 10.3791/57691 PubMed DOI PMC

Veltman C. H. J., Pennings J. L. A., van de Water B., Luijten M. (2023). An adverse outcome pathway network for chemically induced oxidative stress leading to (Non)genotoxic carcinogenesis. Chem. Res. Toxicol. 36, 805–817. 10.1021/acs.chemrestox.2c00396 PubMed DOI PMC

Vieira-da-Silva B., Castanho M. (2023). Resazurin reduction-based assays revisited: Guidelines for accurate reporting of relative differences on metabolic status. Molecules 28 (5), 2283. 10.3390/molecules28052283 PubMed DOI PMC

Vigano E. L., Colombo E., Raitano G., Manganaro A., Sommovigo A., Dorne J. L. C., et al. (2022). Virtual extensive read-across: A new open-access software for chemical read-across and its application to the carcinogenicity assessment of botanicals. Molecules 27 (19), 6605. 10.3390/molecules27196605 PubMed DOI PMC

Weinberg F., Ramnath N., Nagrath D. (2019). Reactive oxygen species in the tumor microenvironment: An Overview. Cancers (Basel) 11 (8), 1191. 10.3390/cancers11081191 PubMed DOI PMC

Yan L., Messner C. J., Zhang X., Suter-Dick L. (2021). Assessment of fibrotic pathways induced by environmental chemicals using 3D-human liver microtissue model. Environ. Res. 194, 110679. 10.1016/j.envres.2020.110679 PubMed DOI

Zefferino R., Piccoli C., Gioia S. D., Capitanio N., Conese M. (2019). Gap junction intercellular communication in the carcinogenesis hallmarks: Is this a phenomenon or epiphenomenon? Cells 8 (8), 896. 10.3390/cells8080896 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace