Disparate phenotypic effects from the knockdown of various Trypanosoma brucei cytochrome c oxidase subunits
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22569586
DOI
10.1016/j.molbiopara.2012.04.013
PII: S0166-6851(12)00106-5
Knihovny.cz E-zdroje
- MeSH
- fenotyp * MeSH
- genový knockdown MeSH
- kvarterní struktura proteinů MeSH
- mitochondriální protonové ATPasy metabolismus MeSH
- mitochondrie enzymologie MeSH
- oxidace-redukce MeSH
- podjednotky proteinů genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- respirační komplex III genetika metabolismus MeSH
- respirační komplex IV genetika metabolismus MeSH
- RNA interference MeSH
- spotřeba kyslíku MeSH
- stabilita enzymů MeSH
- Trypanosoma brucei brucei enzymologie genetika růst a vývoj MeSH
- zdroje energie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální protonové ATPasy MeSH
- podjednotky proteinů MeSH
- protozoální proteiny MeSH
- respirační komplex III MeSH
- respirační komplex IV MeSH
The Trypanosoma brucei cytochrome c oxidase (respiratory complex IV) is a very divergent complex containing a surprisingly high number of trypanosomatid-specific subunits with unknown function. To gain insight into the functional organization of this large protein complex, the expression of three novel subunits (TbCOX VII, TbCOX X and TbCOX 6080) were down-regulated by RNA interference. We demonstrate that all three subunits are important for the proper function of complex IV and the growth of the procyclic stage of T. brucei. These phenotypes were manifested by the structural instability of the complex when these indispensible subunits were repressed. Furthermore, the impairment of cytochrome c oxidase resulted in other severe mitochondrial phenotypes, such as a decreased mitochondrial membrane potential, reduced ATP production via oxidative phoshorylation and redirection of oxygen consumption to the trypanosome-specific alternative oxidase, TAO. Interestingly, the inspected subunits revealed some disparate phenotypes, particularly regarding the activity of cytochrome c reductase (respiratory complex III). While the activity of complex III was down-regulated in RNAi induced cells for TbCOX X and TbCOX 6080, the TbCOX VII silenced cell line actually exhibited higher levels of complex III activity and elevated levels of ROS formation. This result suggests that the examined subunits may have different functional roles within complex IV of T. brucei, perhaps involving the ability to communicate between sequential enzymes in the respiratory chain. In summary, by characterizing the function of three hypothetical components of complex IV, we are able to assign these proteins as genuine and indispensable subunits of the procyclic T. brucei cytochrome c oxidase, an essential component of the respiratory chain in these evolutionary ancestral and medically important parasites.
Citace poskytuje Crossref.org