Atomic-Scale View at the Segregation of Alkali Metals toward the KTaO3(001) Perovskite Surface
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39656032
PubMed Central
PMC11660036
DOI
10.1021/acsami.4c13795
Knihovny.cz E-zdroje
- Klíčová slova
- KTaO3, ORR, cation segregation, density functional theory, perovskites, photoelectron spectroscopy, scanning probe microscopy, solid oxide fuel cells,
- Publikační typ
- časopisecké články MeSH
Perovskites exhibit outstanding performance in applications such as photocatalysis, electrochemistry, or photovoltaics, yet their practical use is hindered by the instability of these materials under operating conditions, specifically caused by the segregation of alkali cations toward the surface. The problem arises from the bulk strain related to different cation sizes, as well as the inherent electrostatic instability of perovskite surfaces. Here, we focus on atomistic details of the surface-driven process of interlayer switching of alkali atoms at the inorganic perovskite surface. We show that the (001) surface of KTaO3 cleaved at room temperature contains equally populated TaO2 and KO terminations, while the uncompensated polarity of these terminations promotes diffusion of KO from the subsurface toward the topmost surface layer at temperatures as low as 200 °C. This effect is directly probed at the atomic scale by Atomic Force Microscopy and the chemical properties of the resulting surfaces are investigated by the adsorption of CO and H2O. The experiments indicate that KO segregation is associated with the formation of K and O vacancies in the near-surface region, which is further supported by depth-dependent X-ray Photoelectron Spectroscopy measurements and Density Functional Theory calculations. Our study shows that the KO segregation influences the surface reactivity both toward CO and water, which was probed at the atomic scale.
CNR Istituto Officina dei Materiali Trieste 34149 Italy
Department of Surface and Plasma Science Charles University Prague 18000 Czech Republic
Dipartimento di Fisica e Astronomia Università di Bologna Bologna 40126 Italy
International Center for Quantum Materials School of Physics Peking University Beijing 100871 China
Marian Smoluchowski Institute of Physics Jagiellonian University Krakow 30 348 Poland
Zobrazit více v PubMed
Zhao J.-W.; Li Y.; Luan D.; Lou X. W. D. Structural Evolution and Catalytic Mechanisms of Perovskite Oxides in Electrocatalysis. Sci. Adv. 2024, 10 (39), eadq469610.1126/sciadv.adq4696. PubMed DOI PMC
Porotnikova N.; Osinkin D. Segregation and Interdiffusion Processes in Perovskites: A review of recent advances. J. Mater. Chem. A 2024, 12, 2620–2646. 10.1039/D3TA06708D. DOI
Ushikubo T. Recent topics of Research and Development of Catalysis by Niobium and Tantalum Oxides. Catal. Today 2000, 57 (3–4), 331–338. 10.1016/S0920-5861(99)00344-2. DOI
Ushikubo T. Activation of Propane and Butanes over Niobium- and Tantalum-based Oxide Catalysts. Catal. Today 2003, 78 (1–4), 79–84. 10.1016/S0920-5861(02)00346-2. DOI
Grabowska E. Selected Perovskite Oxides: Characterization, Preparation and Photocatalytic Properties-A review. Appl. Catal. B: Environ. 2016, 186, 97–126. 10.1016/j.apcatb.2015.12.035. DOI
Kato H.; Asakura K.; Kudo A. Highly Efficient Water Splitting into H2 and O2 over Lanthanum-doped NaTaO3 Photocatalysts with high Crystallinity and Surface Nanostructure. J. Am. Chem. Soc. 2003, 125 (10), 3082–3089. 10.1021/ja027751g. PubMed DOI
Zhang P.; Zhang J. J.; Gong J. L. Tantalum-based Semiconductors for Solar Water Splitting. Chem. Soc. Rev. 2014, 43 (13), 4395–4422. 10.1039/C3CS60438A. PubMed DOI
Rödel J.; Jo W.; Seifert K. T. P.; Anton E. M.; Granzow T.; Damjanovic D. Perspective on the Development of Lead-free Piezoceramics. J. Am. Ceram. Soc. 2009, 92 (6), 1153–1177. 10.1111/j.1551-2916.2009.03061.x. DOI
Aktas O.; Crossley S.; Carpenter M. A.; Salje E. K. Polar Correlations and Defect-induced Ferroelectricity in Cryogenic KTaO3. Phys. Rev. B 2014, 90 (16), 165309.10.1103/PhysRevB.90.165309. DOI
Toulouse J.; Wang X. M.; Boatner L. A. Elastic Anomalies at the Cubic Tetragonal Transition in KTN. Solid State Commun. 1988, 68 (3), 353–356. 10.1016/0038-1098(88)90775-2. DOI
Kakekhani A.; Ismail-Beigi S.; Altman E. I. Ferroelectrics: A pathway to Switchable Surface Chemistry and Catalysis. Surf. Sci. 2016, 650, 302–316. 10.1016/j.susc.2015.10.055. DOI
Wang M. Y.; Wang B.; Huang F.; Lin Z. Q. Enabling PIEZOpotential in PIEZOelectric Semiconductors for Enhanced Catalytic Activities. Angew. Chem., Int. Ed. 2019, 58 (23), 7526–7536. 10.1002/anie.201811709. PubMed DOI
Efe I.; Spaldin N. A.; Gattinoni C. On the Happiness of Ferroelectric Surfaces and its Role in Water Dissociation: The example of Bismuth Ferrite. J. Chem. Phys. 2021, 154 (2), 024702.10.1063/5.0033897. PubMed DOI
Setvin M.; Reticcioli M.; Poelzleitner F.; Hulva J.; Schmid M.; Boatner L. A.; Franchini C.; Diebold U. Polarity Compensation Mechanisms on the Perovskite Surface KTaO3 (001). Science 2018, 359 (6375), 572–575. 10.1126/science.aar2287. PubMed DOI
Goniakowski J.; Finocchi F.; Noguera C. Polarity of Oxide Surfaces and Nanostructures. Rep. Prog. Phys. 2008, 71 (1), 016501.10.1088/0034-4885/71/1/016501. DOI
Tasker P. W. The Stability of Ionic Crystal Surfaces. J. Phys. C: Solid State Phys. 1979, 12 (22), 4977.10.1088/0022-3719/12/22/036. DOI
Noguera C. Polar Oxide Surfaces. J. Phys.: Condens. Matter 2000, 12 (31), R367–R410. 10.1088/0953-8984/12/31/201. DOI
Hess F.; Yildiz B. Polar or Not Polar? The Interplay between Reconstruction, Sr Enrichment, and reduction at the La0.75Sr0.25MnO3 (001) surface. Phys. Rev. Mater. 2020, 4 (1), 015801.10.1103/PhysRevMaterials.4.015801. DOI
Lee W.; Han J. W.; Chen Y.; Cai Z. H.; Yildiz B. Cation Size Mismatch and Charge Interactions Drive Dopant Segregation at the Surfaces of Manganite Perovskites. J. Am. Chem. Soc. 2013, 135 (21), 7909–7925. 10.1021/ja3125349. PubMed DOI
Koo B.; Kim K.; Kim J. K.; Kwon H.; Han J. W.; Jung W. Sr Segregation in Perovskite Oxides: Why It Happens and How It Exists. Joule 2018, 2 (8), 1476–1499. 10.1016/j.joule.2018.07.016. DOI
Thiesbrummel J.; Shah S.; Gutierrez-Partida E.; Zu F.; Peña-Camargo F.; Zeiske S.; Diekmann J.; Ye F.; Peters K. P.; Brinkmann K. O.; et al. Ion-induced Field Screening as a Dominant Factor in Perovskite Solar Cell Operational Stability. Nat. Energy 2024, 9 (6), 664–676. 10.1038/s41560-024-01487-w. DOI
Shen Z.; Han Q.; Luo X.; Shen Y.; Wang Y.; Yuan Y.; Zhang Y.; Yang Y.; Han L. Efficient and Stable Perovskite Solar Cells with Regulated Depletion Region. Nat. Photonics 2024, 18 (5), 450–457. 10.1038/s41566-024-01383-5. DOI
Cai Z.; Kubicek M.; Fleig J. R.; Yildiz B. Chemical Heterogeneities on La0. 6Sr0. 4CoO3–δ Thin Films- Correlations to Cathode Surface Activity and Stability. Chem. Mater. 2012, 24 (6), 1116–1127. 10.1021/cm203501u. DOI
Molak A.; Pawełczyk M.; Kubacki J.; Szot K. Nano-Scale Chemical and Structural Segregation Induced in Surface Layer of NaNbO3 Crystals with Thermal Treatment at Oxidising Conditions studied by XPS, AFM, XRD, and Electric Properties tests. Phase Transitions 2009, 82 (9), 662–682. 10.1080/01411590903341155. DOI
Szot K.; Pawelczyk M.; Herion J.; Freiburg C.; Albers J.; Waser R.; Hulliger J.; Kwapulinski J.; Dec J. Nature of the Surface Layer in ABO3-type Perovskites at Elevated Temperatures. Appl. Phys. A:Mater. Sci. Process. 1996, 62, 335–343. 10.1007/BF01594231. DOI
Druce J.; Téllez H.; Burriel M.; Sharp M.; Fawcett L.; Cook S.; McPhail D.; Ishihara T.; Brongersma H.; Kilner J. Surface Termination and Subsurface Restructuring of Perovskite-based Solid Oxide Electrode Materials. Energy Environ. Sci. 2014, 7 (11), 3593–3599. 10.1039/C4EE01497A. DOI
Szot K.; Speier W.; Pawelczyk M.; Kwapulinski J.; Hulliger J.; Hesse H.; Breuer U.; Quadakkers W. Chemical Inhomogeneity in the Near-Surface Region of KTaO3 evolving at Elevated Temperatures. J. Phys.: Condens. Matter 2000, 12 (22), 4687.10.1088/0953-8984/12/22/302. DOI
Kaswan J.; Thakur V. N.; Singh S.; Kushwaha P.; Maurya K.; Kumar A.; Shukla A. High Temperature Impedance Spectroscopy study of KTaO3(001) single crystal. J. Alloys Compd. 2021, 863, 158317.10.1016/j.jallcom.2020.158317. DOI
Kalabukhov A. S.; Boikov Y. A.; Serenkov I. T.; Sakharov V. I.; Popok V. N.; Gunnarsson R.; Börjesson J.; Ljustina N.; Olsson E.; Winkler D.; et al. Cationic Disorder and Phase Segregation in LaAlO3/SrTiO3 Heterointerfaces Evidenced byMedium-Energy Ion Spectroscopy. Phys. Rev. Lett. 2009, 103 (14), 146101.10.1103/PhysRevLett.103.146101. PubMed DOI
Treske U.; Heming N.; Knupfer M.; Büchner B.; Koitzsch A.; Di Gennaro E.; Scotti di Uccio U.; Miletto Granozio F.; Krause S. Observation of Strontium Segregation in LaAlO3/SrTiO3 and NdGaO3/SrTiO3 Oxide Heterostructures by X-ray Photoemission Spectroscopy. APL Mater. 2014, 2 (1), 1012108.10.1063/1.4861797. DOI
Oh D.; Gostovic D.; Wachsman E. D. Mechanism of La0.6Sr0.4Co0.2Fe0.8O3 Cathode Degradation. J. Mater. Res. 2012, 27 (15), 1992–1999. 10.1557/jmr.2012.222. DOI
Kwon H.; Lee W.; Han J. W. Suppressing Cation Segregation on Lanthanum-Based Perovskite Oxides to Enhance the Stability of Solid Oxide Fuel Cell Cathodes. RSC Adv. 2016, 6 (74), 69782–69789. 10.1039/C6RA15253H. DOI
Deacon-Smith D. E.; Scanlon D. O.; Catlow C. R. A.; Sokol A. A.; Woodley S. M. Interlayer Cation Exchange Stabilizes Polar Perovskite Surfaces. Adv. Mater. 2014, 26 (42), 7252.10.1002/adma.201401858. PubMed DOI PMC
Shah M. A. K. Y.; Rauf S.; Mushtaq N.; Tayyab Z.; Ali N.; Yousaf M.; Xing Y.; Akbar M.; Lund P. D.; Yang C. P.; et al. Semiconductor Fe-doped SrTiO3-δ Perovskite Electrolyte for Low-Temperature Solid Oxide Fuel Cell (LT-SOFC) operating below 520° C. Int. J. Hydrogen Energy 2020, 45 (28), 14470–14479. 10.1016/j.ijhydene.2020.03.147. DOI
Sander T.; Liu Y.; Pham T. A.; Ammon M.; Devarajulu M.; Maier S. Ultra-High Vacuum Cleaver for the Preparation of Ionic Crystal Surfaces. Rev. Sci. Instrum. 2022, 93 (5), 053703.10.1063/5.0088802. PubMed DOI
Wrana D.; Rodenbücher C.; Krawiec M.; Jany B.; Rysz J.; Ermrich M.; Szot K.; Krok F. Tuning the Surface Structure and Conductivity of Niobium-doped Rutile TiO2 Single Crystals via Thermal Reduction. Phys. Chem. Chem. Phys. 2017, 19 (45), 30339–30350. 10.1039/C7CP03136J. PubMed DOI
Huber F.; Giessibl F. J. Low Noise Current Preamplifier for QPlus Sensor Deflection Signal Detection in Atomic Force Microscopy at Room and Low Temperatures. Rev. Sci. Instrum. 2017, 88 (7), 073702.10.1063/1.4993737. PubMed DOI
Pavelec J.; Hulva J.; Halwidl D.; Bliem R.; Gamba O.; Jakub Z.; Brunbauer F.; Schmid M.; Diebold U.; Parkinson G. S. A Multi-technique Study of CO2 Adsorption on Fe3O4 Magnetite. J. Chem. Phys. 2017, 146 (1), 014701.10.1063/1.4973241. PubMed DOI
Halwidl D.Development of an Effusive Molecular Beam Apparatus, 1st ed.; Springer Fachmedien Wiesbaden, 2016; pp. 25–74.
Wang Z.; Reticcioli M.; Jakub Z.; Sokolovic I.; Meier M.; Boatner L. A.; Schmid M.; Parkinson G. S.; Diebold U.; Franchini C.; et al. Surface Chemistry on a Polarizable Surface: Coupling of CO with KTaO3 (001). Sci. Adv. 2022, 8 (33), eabq143310.1126/sciadv.abq1433. PubMed DOI PMC
Libra J.KolXPD: Spectroscopy Data Measurement and Processing. https://www.kolibrik.net/en/solutions-products/kolxpd. (Accessed 26 November 2024), 2024.
Kresse G.; Furthmuller J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations using a Plane-Wave Basis Set. Phys. Rev. B: Condens. Matter 1996, 54 (16), 11169–11186. 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G.; Furthmuller J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6 (1), 15–50. 10.1016/0927-0256(96)00008-0. DOI
Kresse G.; Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59 (3), 1758–1775. 10.1103/PhysRevB.59.1758. DOI
Sun J. W.; Remsing R. C.; Zhang Y. B.; Sun Z. R.; Ruzsinszky A.; Peng H. W.; Yang Z. H.; Paul A.; Waghmare U.; Wu X. F. Accurate First-Principles Structures and Energies of Diversely Bonded Systems from an Efficient Density Functional. Nat. Chem. 2016, 8 (9), 831–836. 10.1038/nchem.2535. PubMed DOI
Dudarev S. L.; Botton G. A.; Savrasov S. Y.; Humphreys C. J.; Sutton A. P. Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U study. Phys. Rev. B 1998, 57 (3), 1505–1509. 10.1103/PhysRevB.57.1505. DOI
Reticcioli M.; Wang Z.; Schmid M.; Wrana D.; Boatner L. A.; Diebold U.; Setvin M.; Franchini C. Competing Electronic States Emerging on Polar Surfaces. Nat. Commun. 2022, 13 (1), 4311.10.1038/s41467-022-31953-6. PubMed DOI PMC
Momma K.; Izumi F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. J. Appl. Crystallogr. 2011, 44, 1272–1276. 10.1107/S0021889811038970. DOI
Corrias M.; Papa L.; Sokolovic I.; Birschitzky V.; Gorfer A.; Setvin M.; Schmid M.; Diebold U.; Reticcioli M.; Franchini C. Automated Real-Space Lattice Extraction for Atomic Force Microscopy Images. Mach. learn.: Sci. technol. 2023, 4 (1), 015015.10.1088/2632-2153/acb5e0. DOI
Lowe D. G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision 2004, 60 (2), 91–110. 10.1023/B:VISI.0000029664.99615.94. DOI
Gan G.; Ma C.; Wu J.. Data clustering: Theory, algorithms, and applications; SIAM, 2020.
Pedregosa F.; Varoquaux G.; Gramfort A.; Michel V.; Thirion B.; Grisel O.; Blondel M.; Prettenhofer P.; Weiss R.; Dubourg V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
Sokolovic I.; Franceschi G.; Wang Z.; Xu J.; Pavelec J.; Riva M.; Schmid M.; Diebold U.; Setvín M. Quest for a Pristine Unreconstructed SrTiO3 (001) Surface: An Atomically Resolved Study via Noncontact Atomic Force Microscopy. Phys. Rev. B 2021, 103 (24), L241406.10.1103/PhysRevB.103.L241406. DOI
Narangari P. R.; Karuturi S. K.; Wu Y. L.; Wong-Leung J.; Vora K.; Lysevych M.; Wan Y. M.; Tan H. H.; Jagadish C.; Mokkapati S. Ultrathin Ta2O5 Electron-Selective Contacts for High Efficiency InP Solar Cells. Nanoscale 2019, 11 (15), 7497–7505. 10.1039/C8NR09932D. PubMed DOI
Sasahara A.; Kimura K.; Sudrajat H.; Happo N.; Hayashi K.; Onishi H. KTaO3 Wafers Doped with Sr or La Cations for Modeling Water- Splitting Photocatalysts: 3D Atom Imaging around Doping Cations. J. Phys. Chem. C 2022, 126 (46), 19745–19755. 10.1021/acs.jpcc.2c06080. DOI
Kerrec O.; Devilliers D.; Groult H.; Marcus P. Study of Dry and Electrogenerated Ta2O5 and Ta/Ta2O5/Pt Structures by XPS. Mater. Sci. Eng. B 1998, 55 (1–2), 134–142. 10.1016/S0921-5107(98)00177-9. DOI
Zhao X. H.; Selloni A. Structure and Stability of NaTaO3 (001) and KTaO3 (001) Surfaces. Phys. Rev. Mater. 2019, 3 (1), 015801.10.1103/PhysRevMaterials.3.015801. DOI
Lee W.; Han J. W.; Chen Y.; Cai Z.; Yildiz B. Cation Size Mismatch and Charge Interactions Drive Dopant Segregation at the Surfaces of Manganite Perovskites. J. Am. Chem. Soc. 2013, 135 (21), 7909–7925. 10.1021/ja3125349. PubMed DOI
Wrana D.; Rodenbücher C.; Jany B. R.; Kryshtal O.; Cempura G.; Kruk A.; Indyka P.; Szot K.; Krok F. A Bottom-up Process of Self-Formation of Highly Conductive Titanium Oxide (TiO) Nanowires on Reduced SrTiO3. Nanoscale 2019, 11 (1), 89–97. 10.1039/C8NR04545C. PubMed DOI