Diadenosine Tetraphosphate (Ap4 A) Serves as a 5' RNA Cap in Mammalian Cells
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
101041374
HORIZON EUROPE European Research Council
- Keywords
- Ap4A, Ap4A-RNA, Diadenosine Tetraphosphate, RNA Cap, RNA Modification,
- MeSH
- Dinucleoside Phosphates * metabolism MeSH
- Phosphoric Monoester Hydrolases MeSH
- Rats MeSH
- Humans MeSH
- Nudix Hydrolases MeSH
- RNA Caps * MeSH
- Mammals metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- diadenosine tetraphosphate MeSH Browser
- Dinucleoside Phosphates * MeSH
- Phosphoric Monoester Hydrolases MeSH
- Nudix Hydrolases MeSH
- NUDT2 protein, human MeSH Browser
- RNA Caps * MeSH
The recent expansion of the field of RNA chemical modifications has changed our understanding of post-transcriptional gene regulation. Apart from internal nucleobase modifications, 7-methylguanosine was long thought to be the only eukaryotic RNA cap. However, the discovery of non-canonical RNA caps in eukaryotes revealed a new niche of previously undetected RNA chemical modifications. We are the first to report the existence of a new non-canonical RNA cap, diadenosine tetraphosphate (Ap4 A), in human and rat cell lines. Ap4 A is the most abundant dinucleoside polyphosphate in eukaryotic cells and can be incorporated into RNA by RNA polymerases as a non-canonical initiating nucleotide (NCIN). Using liquid chromatography-mass spectrometry (LC-MS), we show that the amount of capped Ap4 A-RNA is independent of the cellular concentration of Ap4 A. A decapping enzyme screen identifies two enzymes cleaving Ap4 A-RNA,NUDT2 and DXO, both of which also cleave other substrate RNAs in vitro. We further assess the translatability and immunogenicity of Ap4 A-RNA and show that although it is not translated, Ap4 A-RNA is recognized as self by the cell and does not elicit an immune response, making it a natural component of the transcriptome. Our findings open a previously unexplored area of eukaryotic RNA regulation.
See more in PubMed
A. G. McLennan, Pharmacol. Ther. 2000, 87, 73-89.
M. Wright, N. Boonyalai, J. A. Tanner, A. D. Hindley, A. D. Miller, FEBS J. 2006, 273, 3534-3544;
C. V. Dang, J. A. Traugh, J. Biol. Chem. 1989, 264, 5861-5865;
R. T. Guo, Y. E. Chong, M. Guo, X. L. Yang, J. Biol. Chem. 2009, 284, 28968-28976;
O. Goerlich, R. Foeckler, E. Holler, Eur. J. Biochem. 1982, 126, 135-142;
H. Belrhali, A. Yaremchuk, M. Tukalo, C. Berthet-Colominas, B. Rasmussen, P. Bösecke, O. Diat, S. Cusack, Structure 1995, 3, 341-352.
K. H. Götz, M. Mex, K. Stuber, F. Offensperger, M. Scheffner, A. Marx, Cell Chem. Biol. 2019, 26, 1535-1543.e1535.
A. G. McLennan, Cell. Mol. Life Sci. 2006, 63, 123-143.
M. Frese, P. Saumer, Y. Yuan, D. Herzog, D. Höpfner, A. Itzen, A. Marx, Angew. Chem. Int. Ed. 2023, 62, e202213279.
L. Krüger, C. J. Albrecht, H. K. Schammann, F. M. Stumpf, M. L. Niedermeier, Y. Yuan, K. Stuber, J. Wimmer, F. Stengel, M. Scheffner, A. Marx, Nat. Commun. 2021, 12, 5808.
J. Yu, Z. Liu, Y. Liang, F. Luo, J. Zhang, C. Tian, A. Motzik, M. Zheng, J. Kang, G. Zhong, C. Liu, P. Fang, M. Guo, E. Razin, J. Wang, Nat. Commun. 2019, 10, 4664.
N. Yannay-Cohen, I. Carmi-Levy, G. Kay, C. M. Yang, J. M. Han, D. M. Kemeny, S. Kim, H. Nechushtan, E. Razin, Mol. Cell 2009, 34, 603-611.
Y. Ofir-Birin, P. Fang, S. P. Bennett, H.-M. Zhang, J. Wang, I. Rachmin, R. Shapiro, J. Song, A. Dagan, J. Pozo, S. Kim, A. G. Marshall, P. Schimmel, X.-L. Yang, H. Nechushtan, E. Razin, M. Guo, Mol. Cell 2013, 49, 30-42.
O. Hudeček, R. Benoni, P. E. Reyes-Gutierrez, M. Culka, H. Šanderová, M. Hubálek, L. Rulíšek, J. Cvačka, L. Krásný, H. Cahová, Nat. Commun. 2020, 11, 1052.
R. Benoni, M. Culka, O. Hudeček, L. Gahurova, H. Cahová, ACS Chem. Biol. 2020, 15, 1765-1772.
D. J. Luciano, R. Levenson-Palmer, J. G. Belasco, Mol. Cell 2019, 75, 957-966.e958.
A. S. Marriott, O. Vasieva, Y. Fang, N. A. Copeland, A. G. McLennan, N. J. Jones, PLoS One 2016, 11, e0154674.
M.-B. Mititelu, O. Hudeček, A. Gozdek, R. Benoni, O. Nešuta, S. Krasnodębski, J. Kufel, H. Cahová, RSC Chem. Biol. 2023, 4, 223-228.
J. Carreras-Puigvert, M. Zitnik, A.-S. Jemth, M. Carter, J. E. Unterlass, B. Hallström, O. Loseva, Z. Karem, J. M. Calderón-Montaño, C. Lindskog, P.-H. Edqvist, D. J. Matuszewski, H. Ait Blal, R. P. A. Berntsson, M. Häggblad, U. Martens, M. Studham, B. Lundgren, C. Wählby, E. L. L. Sonnhammer, E. Lundberg, P. Stenmark, B. Zupan, T. Helleday, Nat. Commun. 2017, 8, 1541.
B. T. Laudenbach, K. Krey, Q. Emslander, L. L. Andersen, A. Reim, P. Scaturro, S. Mundigl, C. Dächert, K. Manske, M. Moser, J. Ludwig, D. Wohlleber, A. Kröger, M. Binder, A. Pichlmair, Nat. Commun. 2021, 12, 6918.
X. Jiao, S. K. Doamekpor, J. G. Bird, B. E. Nickels, L. Tong, R. P. Hart, M. Kiledjian, Cell 2017, 168, 1015-1027.e1010;
B. Benoni, R. Benoni, J. Trylcova, K. Grab, J. Pačes, J. Weber, D. Stanek, J. Kowalska, L. Bednarova, Z. Keckesova, L. Gahurova, H. Cahova, bioRxiv preprint 2022, 2022.2011.2010.515957.
A. Batool, S. Aashaq, K. I. Andrabi, J. Cell. Biochem. 2019, 120, 14201-14212.
P. J. Sikorski, M. Warminski, D. Kubacka, T. Ratajczak, D. Nowis, J. Kowalska, J. Jemielity, Nucleic Acids Res. 2020, 48, 1607-1626.
C. B. Ferreira, R. P. Sumner, M. T. Rodriguez-Plata, J. Rasaiyaah, R. S. Milne, A. J. Thrasher, W. Qasim, G. J. Towers, Mol. Ther.-Methods Clin. Dev. 2020, 17, 209-219.
J. J. D. Ho, S. Lee, Trends Biochem. Sci. 2016, 41, 821-823.
V. Hornung, J. Ellegast, S. Kim, K. Brzozka, A. Jung, H. Kato, H. Poeck, S. Akira, K.-K. Conzelmann, M. Schlee, S. Endres, G. Hartmann, Science 2006, 314, 994-997.
The Mysterious World of Non-Canonical Caps - What We Know and Why We Need New Sequencing Techniques
HIV-1 Infection Reduces NAD Capping of Host Cell snRNA and snoRNA