Surface chemistry on a polarizable surface: Coupling of CO with KTaO3(001)
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P 32148
Austrian Science Fund FWF - Austria
PubMed
35984882
PubMed Central
PMC9390988
DOI
10.1126/sciadv.abq1433
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Polarizable materials attract attention in catalysis because they have a free parameter for tuning chemical reactivity. Their surfaces entangle the dielectric polarization with surface polarity, excess charge, and orbital hybridization. How this affects individual adsorbed molecules is shown for the incipient ferroelectric perovskite KTaO3. This intrinsically polar material cleaves along (001) into KO- and TaO2-terminated surface domains. At TaO2 terraces, the polarity-compensating excess electrons form a two-dimensional electron gas and can also localize by coupling to ferroelectric distortions. TaO2 terraces host two distinct types of CO molecules, adsorbed at equivalent lattice sites but charged differently as seen in atomic force microscopy/scanning tunneling microscopy. Temperature-programmed desorption shows substantially stronger binding of the charged CO; in density functional theory calculations, the excess charge favors a bipolaronic configuration coupled to the CO. These results pinpoint how adsorption states couple to ferroelectric polarization.
Dipartimento di Fisica e Astronomia Universita di Bologna 40127 Bologna Italy
Institute of Applied Physics TU Wien Vienna Austria
Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
Zobrazit více v PubMed
Schaak R. E., Mallouk T. E., Perovskites by design: A toolbox of solid-state reactions. Chem. Mater. 14, 1455–1471 (2002).
Cohen R. E., Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).
Hwang J., Rao R. R., Giordano L., Katayama Y., Yu Y., Shao-Horn Y., Perovskites in catalysis and electrocatalysis. Science 358, 751–756 (2017). PubMed
Garrity K., Kolpak A. M., Ismail-Beigi S., Altman E. I., Chemistry of ferroelectric surfaces. Adv. Mater. 22, 2969–2973 (2010). PubMed
Garrity K., Kakekhani A., Kolpak A., Ismail-Beigi S., Ferroelectric surface chemistry: First-principles study of the PbTiO3 surface. Phys. Rev. B 88, 045401 (2013).
Kolpak A. M., Grinberg I., Rappe A. M., Polarization effects on the surface chemistry of PbTiO3-supported Pt films. Phys. Rev. Lett. 98, 166101 (2007). PubMed
Levchenko S. V., Rappe A. M., Influence of ferroelectric polarization on the equilibrium stoichiometry of lithium niobate (0001) surfaces. Phys. Rev. Lett. 100, 256101 (2008). PubMed
Shaik S., Mandal D., Ramanan R., Oriented electric fields as future smart reagents in chemistry. Nat. Chem. 8, 1091–1098 (2016). PubMed
Wang X., Rohrer G. S., Li H., Piezotronic modulations in electro- and photochemical catalysis. MRS Bull. 43, 946–951 (2018).
Chen F., Huang H., Guo L., Zhang Y., Ma T., The role of polarization in photocatalysis. Angew. Chem. Int. Ed. 58, 10061–10073 (2019). PubMed
Wang M., Wang B., Huang F., Lin Z., Enabling PIEZOpotential in PIEZOelectric semiconductors for enhanced catalytic activities. Angew. Chem. Int. Ed. 58, 7526–7536 (2019). PubMed
Li L., Salvador P. A., Rohrer G. S., Photocatalysts with internal electric fields. Nanoscale 6, 24–42 (2014). PubMed
Giocondi J. L., Rohrer G. S., Spatial separation of photochemical oxidation and reduction reactions on the surface of ferroelectric BaTiO3. J. Phys. Chem. B 105, 8275–8277 (2001).
Giocondi J. L., Rohrer G. S., Spatially selective photochemical reduction of silver on the surface of ferroelectric barium titanate. Chem. Mater. 13, 241–242 (2001).
Tasker P. W., The stability of ionic crystal surfaces. J. Phys. C 12, 4977–4984 (1979).
Noguera C., Polar oxide surfaces. J. Phys. Cond. Matter 12, R367–R410 (2000).
Xu X., Xiao L., Jia Y., Wu Z., Wang F., Wang Y., Haugen N. O., Huang H., Pyro-catalytic hydrogen evolution by Ba0.7Sr0.3TiO3 nanoparticles: Harvesting cold–hot alternation energy near room-temperature. Energ. Environ. Sci. 11, 2198–2207 (2018).
Nakagawa N., Hwang H. Y., Muller D. A., Why some interfaces cannot be sharp. Nat. Mater. 5, 204–209 (2006).
Kakekhani A., Ismail-Beigi S., Altman E. I., Ferroelectrics: A pathway to switchable surface chemistry and catalysis. Surf. Sci. 650, 302–316 (2016).
Setvin M., Reticcioli M., Poelzleitner F., Hulva J., Schmid M., Boatner L. A., Franchini C., Diebold U., Polarity compensation mechanisms on the perovskite surface KTaO3(001). Science 359, 572–575 (2018). PubMed
Sokolović I., Schmid M., Diebold U., Setvin M., Incipient ferroelectricity: A route towards bulk-terminated SrTiO3. Phys. Rev. Mater. 3, 034407 (2019).
Kawasaki M., Takahashi K., Maeda T., Tsuchiya R., Shinohara M., Ishiyama O., Yonezawa T., Yoshimoto M., Koinuma H., Atomic control of the SrTiO3 crystal surface. Science 266, 1540–1542 (1994). PubMed
Santander-Syro A. F., Copie O., Kondo T., Fortuna F., Pailhès S., Weht R., Qiu X. G., Bertran F., Nicolaou A., Taleb-Ibrahimi A., Le Fèvre P., Herranz G., Bibes M., Reyren N., Apertet Y., Lecoeur P., Barthélémy A., Rozenberg M. J., Two-dimensional electron gas with universal subbands at the surface of SrTiO3. Nature 469, 189–193 (2011). PubMed
M. Reticcioli, Z. Wang, M. Schmid, D. Wrana, L. A. Boatner, U. Diebold, M. Setvin, C. Franchini, Competing electronic states emerging on polar surfaces. arXiv:2207.00516 [cond-mat.mtrl-sci] (2022). PubMed PMC
Franchini C., Reticcioli M., Setvin M., Diebold U., Polarons in materials. Nat. Rev. Mater. 6, 560–586 (2021).
Suntivich J., May K. J., Gasteiger H. A., Goodenough J. B., Shao-Horn Y., A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011). PubMed
Redhead P. A., Thermal desorption of gases. Vacuum 12, 203–211 (1962).
Campbell C. T., Sellers J. R. V., Enthalpies and entropies of adsorption on well-defined oxide surfaces: Experimental measurements. Chem. Rev. 113, 4106–4135 (2013). PubMed
Tait S. L., Dohnalek Z., Campbell C. T., Kay B. D., n -alkanes on MgO(100). I. Coverage-dependent desorption kinetics of n -butane. J. Chem. Phys. 122, 164707 (2005). PubMed
de Jong A. M., Niemantsverdriet J. W., Thermal desorption analysis: Comparative test of ten commonly applied procedures. Surf. Sci. 233, 355–365 (1990).
Yun Y., Kampschulte L., Li M., Liao D., Altman E. I., Effect of ferroelectric poling on the adsorption of 2-propanol on LiNbO3(0001). J. Phys. Chem. C 111, 13951–13956 (2007).
Yun Y., Altman E., Using ferroelectric poling to change adsorption on oxide surfaces. J. Am. Chem. Soc. 129, 15684–15689 (2007). PubMed
Li D., Zhao M. H., Garra J., Kolpak A. M., Rappe A. M., Bonnell D. A., Vohs J. M., Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces. Nat. Mater. 7, 473–477 (2008). PubMed
Cheng Z., Wyrick J., Luo M., Sun D., Kim D., Zhu Y., Lu W., Kim K., Einstein T. L., Bartels L., Adsorbates in a box: Titration of substrate electronic states. Phys. Rev. Lett. 105, 066104 (2010). PubMed
Hadjiivanov K. I., Vayssilov G. N., Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv. Catal. 47, 307–511 (2002).
Pacchioni G., Cogliandro G., Bagus P. S., Characterization of oxide surfaces by infrared spectroscopy of adsorbed carbon monoxide: A theoretical investigation of the frequency shift of CO on MgO and NiO. Surf. Sci. 255, 344–354 (1991).
Föhlisch A., Nyberg M., Bennich P., The bonding of CO to metal surfaces. J. Chem. Phys. 112, 1946–1958 (2000).
Reticcioli M., Sokolović I., Schmid M., Diebold U., Setvin M., Franchini C., Interplay between adsorbates and polarons: CO on rutile TiO2(110). Phys. Rev. Lett. 122, 016805 (2019). PubMed
Setvin M., Buchhol M., Hou W., Zhang C., Stöger B., Hulva J., Simschitz T., Shi X., Pavelec J., Parkinson G. S., Xu M., Wang Y., Schmid M., Wöll C., Selloni A., Diebold U., A multitechnique study of CO adsorption on the TiO2 anatase (101) surface. J. Phys. Chem. C 119, 21044–21052 (2015).
Eyring H., The activated complex and the absolute rate of chemical reactions. Chem. Rev. 17, 98 (1935).
Medford A. J., Vojvodic A., Hummelshøj J. S., Voss J., Abild-Pedersen F., Studt F., Bligaard T., Nilsson A., Nørskov J. K., From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catalysis 328, 36–42 (2015).
Kakekhani A., Ismail-Beigi S., Ferroelectric-based catalysis: Switchable surface chemistry. ACS Catal. 5, 4537–4545 (2015).
Tian Y., Wei L., Zhang Q., Huang H., Zhang Y., Zhou H., Ma F., Gu L., Meng S., Chen L. Q., Nan C. W., Zhang J., Water printing of ferroelectric polarization. Nat. Commun. 9, 3809 (2018). PubMed PMC
Wang R. V., Fong D. D., Jiang F., Highland M. J., Fuoss P. H., Thompson C., Kolpak A. M., Eastman J. A., Streiffer S. K., Rappe A. M., Stephenson G. B., Reversible chemical switching of a ferroelectric film. Phys. Rev. Lett. 102, 047601 (2009). PubMed
Huber F., Giessibl F. J., Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures. Rev. Sci. Instrum. 88, 073702 (2017). PubMed
Setvín M., Javorský J., Turčinková D., Matolínová I., Sobotík P., Kocán P., Ošt’ádal I., Ultrasharp tungsten tips—characterization and nondestructive cleaning. Ultramicroscopy 113, 152–157 (2012).
Sader J. E., Jarvis S. P., Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004).
Lantzh M. A., Hugr J., Hoffmannp R., Van Schendel P. J. A., Kappenbergers P., Martina S., Baratoff A., H. J. Güntherodt, Quantitative measurement of short-range chemical bonding forces. Science 291, 2580–2583 (2001). PubMed
Pavelec J., Hulva J., Halwidl D., Bliem R., Gamba O., Jakub Z., Brunbauer F., Schmid M., Diebold U., Parkinson G. S., A multi-technique study of CO2 adsorption on Fe3O4 magnetite. J. Chem. Phys. 146, 014701 (2017). PubMed
D. Halwidl, Development of an Effusive Molecular Beam Apparatus (Springer Spektrum, 2016).
Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).
Kresse G., Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Sun J., Remsing R. C., Zhang Y., Sun Z., Ruzsinszky A., Peng H., Yang Z., Paul A., Waghmare U., Wu X., Klein M. L., Perdew J. P., Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat. Chem. 8, 831–836 (2016). PubMed
Peng H., Yang Z.-H., Perdew J. P., Sun J., Versatile van der waals density functional based on a meta-generalized gradient approximation. Phys. Rev. X 6, 041005 (2016).
Dudarev S. L., Botton G. A., Savrasov S. Y., Humphreys C. J., Sutton A. P., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).
Momma K., Izumi F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).
Atomic-Scale View at the Segregation of Alkali Metals toward the KTaO3(001) Perovskite Surface
High-κ Wide-Gap Layered Dielectric for Two-Dimensional van der Waals Heterostructures