High-κ Wide-Gap Layered Dielectric for Two-Dimensional van der Waals Heterostructures
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38557003
PubMed Central
PMC11025129
DOI
10.1021/acsnano.3c10411
Knihovny.cz E-zdroje
- Klíčová slova
- crystal synthesis, dielectric, excitons, field-effect transistors, heterostructures, high-k, two-dimensional materials,
- Publikační typ
- časopisecké články MeSH
van der Waals heterostructures of two-dimensional materials have unveiled frontiers in condensed matter physics, unlocking unexplored possibilities in electronic and photonic device applications. However, the investigation of wide-gap, high-κ layered dielectrics for devices based on van der Waals structures has been relatively limited. In this work, we demonstrate an easily reproducible synthesis method for the rare-earth oxyhalide LaOBr, and we exfoliate it as a 2D layered material with a measured static dielectric constant of 9 and a wide bandgap of 5.3 eV. Furthermore, our research demonstrates that LaOBr can be used as a high-κ dielectric in van der Waals field-effect transistors with high performance and low interface defect concentrations. Additionally, it proves to be an attractive choice for electrical gating in excitonic devices based on 2D materials. Our work demonstrates the versatile realization and functionality of 2D systems with wide-gap and high-κ van der Waals dielectric environments.
Institute of Applied Physics TU Wien Wiedner Hauptstraße 8 10 1040 Vienna Austria
Institute of Microelectronics TU Wien Gußhausstraße 27 29 1040 Vienna Austria
Zobrazit více v PubMed
International Roadmap for Devices and Systems (IRDS) 2021 Edition - IEEE IRDS. https://irds.ieee.org/editions/2021, accessed 13.3.2024.
Akinwande D.; et al. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518. 10.1038/s41586-019-1573-9. PubMed DOI
Lemme M. C.; Akinwande D.; Huyghebaert C.; Stampfer C. 2D materials for future heterogeneous electronics. Nat. Commun. 2022, 13, 1392.10.1038/s41467-022-29001-4. PubMed DOI PMC
Illarionov Y. Y.; Knobloch T.; Jech M.; Lanza M.; Akinwande D.; Vexler M. I.; Mueller T.; Lemme M. C.; Fiori G.; Schwierz F.; Grasser T. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 2020, 11, 3385.10.1038/s41467-020-16640-8. PubMed DOI PMC
Zou X.; et al. Interface Engineering for High-Performance Top-Gated MoS2 Field-Effect Transistors. Adv. Mater. 2014, 26, 6255–6261. 10.1002/adma.201402008. PubMed DOI
Li T.; et al. A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 2020, 3, 473–478. 10.1038/s41928-020-0444-6. DOI
Huang J.-K.; et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 2022, 605, 262–267. 10.1038/s41586-022-04588-2. PubMed DOI
Yang A. J.; et al. Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 2022, 5, 233–240. 10.1038/s41928-022-00753-7. DOI
Novoselov K. S.; Mishchenko A.; Carvalho A.; Neto A. H. C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac943910.1126/science.aac9439. PubMed DOI
Raja A.; et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 2019, 14, 832–837. 10.1038/s41565-019-0520-0. PubMed DOI
Zhang C.; et al. Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 2023, 22, 832–837. 10.1038/s41563-023-01502-7. PubMed DOI
Chaves A.; et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 2020, 4, 1–21. 10.1038/s41699-020-00162-4. DOI
Robertson J. High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 2006, 69, 327.10.1088/0034-4885/69/2/R02. DOI
Osanloo M. R.; Van de Put M. L.; Saadat A.; Vandenberghe W. G. Identification of two-dimensional layered dielectrics from first principles. Nat. Commun. 2021, 12, 5051.10.1038/s41467-021-25310-2. PubMed DOI PMC
Jiang Z.; et al. Lanthanum Oxyhalide Monolayers: An Exceptional Dielectric Companion to 2-D Semiconductors. IEEE Trans. Electron Devices 2023, 70, 1509–1519. 10.1109/TED.2023.3236903. DOI
Haeuseler H.; Jung M. Single crystal growth and structure of LaOBr and SmOBr. Mater. Res. Bull. 1986, 21, 1291–1294. 10.1016/0025-5408(86)90062-0. DOI
Manzeli S.; Ovchinnikov D.; Pasquier D.; Yazyev O. V.; Kis A. 2D transition metal dichalcogenides. Nature Reviews Materials 2017, 2, 1733.10.1038/natrevmats.2017.33. DOI
Hölsä J.; Koski K.; Makkonen S.; Säilynoja E.; Rahiala H. X-ray powder diffraction and vibrational spectroscopic investigation of the LaO(Cl1–xBrx) solid solutions. J. Alloys Compd. 1997, 249, 217–220. 10.1016/S0925-8388(96)02632-1. DOI
Wang D.; et al. Synthesis and NIR-to-violet, blue, green, red upconversion fluorescence of Er3+:LaOBr. J. Alloys Compd. 2005, 397, 1–4. 10.1016/j.jallcom.2004.09.077. DOI
Franceschi G.; et al. Resolving the intrinsic short-range ordering of K+ ions on cleaved muscovite mica. Nat. Commun. 2023, 14, 208.10.1038/s41467-023-35872-y. PubMed DOI PMC
Kim D.; Park S.; Kim S.; Kang S.-G.; Park J.-C. Blue-Emitting Eu2+-Activated LaOX (X = Cl, Br, and I) Materials: Crystal Field Effect. Inorg. Chem. 2014, 53, 11966–11973. 10.1021/ic5015576. PubMed DOI
Anzai Y.; et al. Broad range thickness identification of hexagonal boron nitride by colors. Appl. Phys. Express 2019, 12, 05500710.7567/1882-0786/ab0e45. DOI
Xu H.; et al. Quantum Capacitance Limited Vertical Scaling of Graphene Field-Effect Transistor. ACS Nano 2011, 5, 2340–2347. 10.1021/nn200026e. PubMed DOI
Hattori Y.; Taniguchi T.; Watanabe K.; Nagashio K. Layer-by-Layer Dielectric Breakdown of Hexagonal Boron Nitride. ACS Nano 2015, 9, 916–921. 10.1021/nn506645q. PubMed DOI
Cheng L.; et al. Sub-10 nm Tunable Hybrid Dielectric Engineering on MoS2 for Two-Dimensional Material-Based Devices. ACS Nano 2017, 11, 10243–10252. 10.1021/acsnano.7b04813. PubMed DOI
Di Bartolomeo A.; Genovese L.; Giubileo F.; Iemmo L.; Luongo G.; Foller T.; Schleberger M. Hysteresis in the transfer characteristics of MoS2 transistors. 2D Mater. 2018, 5, 01501410.1088/2053-1583/aa91a7. DOI
Vu Q. A.; et al. Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors. 2D Mater. 2018, 5, 03100110.1088/2053-1583/aab672. DOI
Na J.; et al. Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high- k passivation. Nanoscale 2014, 6, 433–441. 10.1039/C3NR04218A. PubMed DOI
Liu W.; et al. High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance in 2013. IEEE International Electron Devices Meeting 2013, 19.4.1–19.4.4. 10.1109/IEDM.2013.6724660. DOI
Chamlagain B.; et al. Thermally oxidized 2D TaS2 as a high-κ gate dielectric for MoS2 field-effect transistors. 2D Mater. 2017, 4, 03100210.1088/2053-1583/aa780e. DOI
Wang Q. H.; Kalantar-Zadeh K.; Kis A.; Coleman J. N.; Strano M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. 10.1038/nnano.2012.193. PubMed DOI
Ciarrocchi A.; Tagarelli F.; Avsar A.; Kis A. Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nat. Rev. Mater. 2022, 7, 449.10.1038/s41578-021-00408-7. DOI
Ross J. S.; et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.10.1038/ncomms2498. PubMed DOI
Rivera P.; et al. Intrinsic donor-bound excitons in ultraclean monolayer semiconductors. Nat. Commun. 2021, 12, 871.10.1038/s41467-021-21158-8. PubMed DOI PMC
Jones A. M.; et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638. 10.1038/nnano.2013.151. PubMed DOI
Arora A.; Nogajewski K.; Molas M.; Koperski M.; Potemski M. Exciton band structure in layered MoSe2 : from a monolayer to the bulk limit. Nanoscale 2015, 7, 20769–20775. 10.1039/C5NR06782K. PubMed DOI
Li Z.; et al. Dielectric Engineering for Manipulating Exciton Transport in Semiconductor Monolayers. Nano Lett. 2021, 21, 8409–8417. 10.1021/acs.nanolett.1c02990. PubMed DOI
Erkensten D.; Brem S.; Perea-Causín R.; Malic E. Microscopic origin of anomalous interlayer exciton transport in van der Waals heterostructures. Phys. Rev. Mater. 2022, 6, 09400610.1103/PhysRevMaterials.6.094006. DOI
Schmid M.; Setvin M.; Diebold U.. Device for suspending a load in a vibration-insulated manner. WO/2018/037102, March 1, 2018.
Giessibl F. J. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 2019, 90, 01110110.1063/1.5052264. PubMed DOI
Setvín M.; et al. Ultrasharp tungsten tips—characterization and nondestructive cleaning. Ultramicroscopy 2012, 113, 152–157. 10.1016/j.ultramic.2011.10.005. DOI
Huber F.; Giessibl F. J. Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures. Rev. Sci. Instrum. 2017, 88, 07370210.1063/1.4993737. PubMed DOI
Sokolović I.; Schmid M.; Diebold U.; Setvin M. Incipient ferroelectricity: A route towards bulk-terminated SrTiO3. Phys. Rev. Mater. 2019, 3, 03440710.1103/PhysRevMaterials.3.034407. DOI
Wang Z.; et al. Surface chemistry on a polarizable surface: Coupling of CO with KTaO3(001). Sci. Adv. 2022, 8, eabq143310.1126/sciadv.abq1433. PubMed DOI PMC
Momma K.; Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. 10.1107/S0021889811038970. DOI