High-κ Wide-Gap Layered Dielectric for Two-Dimensional van der Waals Heterostructures

. 2024 Apr 16 ; 18 (15) : 10397-10406. [epub] 20240401

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38557003

van der Waals heterostructures of two-dimensional materials have unveiled frontiers in condensed matter physics, unlocking unexplored possibilities in electronic and photonic device applications. However, the investigation of wide-gap, high-κ layered dielectrics for devices based on van der Waals structures has been relatively limited. In this work, we demonstrate an easily reproducible synthesis method for the rare-earth oxyhalide LaOBr, and we exfoliate it as a 2D layered material with a measured static dielectric constant of 9 and a wide bandgap of 5.3 eV. Furthermore, our research demonstrates that LaOBr can be used as a high-κ dielectric in van der Waals field-effect transistors with high performance and low interface defect concentrations. Additionally, it proves to be an attractive choice for electrical gating in excitonic devices based on 2D materials. Our work demonstrates the versatile realization and functionality of 2D systems with wide-gap and high-κ van der Waals dielectric environments.

Zobrazit více v PubMed

International Roadmap for Devices and Systems (IRDS) 2021 Edition - IEEE IRDS. https://irds.ieee.org/editions/2021, accessed 13.3.2024.

Akinwande D.; et al. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507–518. 10.1038/s41586-019-1573-9. PubMed DOI

Lemme M. C.; Akinwande D.; Huyghebaert C.; Stampfer C. 2D materials for future heterogeneous electronics. Nat. Commun. 2022, 13, 1392.10.1038/s41467-022-29001-4. PubMed DOI PMC

Illarionov Y. Y.; Knobloch T.; Jech M.; Lanza M.; Akinwande D.; Vexler M. I.; Mueller T.; Lemme M. C.; Fiori G.; Schwierz F.; Grasser T. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 2020, 11, 3385.10.1038/s41467-020-16640-8. PubMed DOI PMC

Zou X.; et al. Interface Engineering for High-Performance Top-Gated MoS2 Field-Effect Transistors. Adv. Mater. 2014, 26, 6255–6261. 10.1002/adma.201402008. PubMed DOI

Li T.; et al. A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 2020, 3, 473–478. 10.1038/s41928-020-0444-6. DOI

Huang J.-K.; et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 2022, 605, 262–267. 10.1038/s41586-022-04588-2. PubMed DOI

Yang A. J.; et al. Van der Waals integration of high-κ perovskite oxides and two-dimensional semiconductors. Nat. Electron. 2022, 5, 233–240. 10.1038/s41928-022-00753-7. DOI

Novoselov K. S.; Mishchenko A.; Carvalho A.; Neto A. H. C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac943910.1126/science.aac9439. PubMed DOI

Raja A.; et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 2019, 14, 832–837. 10.1038/s41565-019-0520-0. PubMed DOI

Zhang C.; et al. Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 2023, 22, 832–837. 10.1038/s41563-023-01502-7. PubMed DOI

Chaves A.; et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 2020, 4, 1–21. 10.1038/s41699-020-00162-4. DOI

Robertson J. High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 2006, 69, 327.10.1088/0034-4885/69/2/R02. DOI

Osanloo M. R.; Van de Put M. L.; Saadat A.; Vandenberghe W. G. Identification of two-dimensional layered dielectrics from first principles. Nat. Commun. 2021, 12, 5051.10.1038/s41467-021-25310-2. PubMed DOI PMC

Jiang Z.; et al. Lanthanum Oxyhalide Monolayers: An Exceptional Dielectric Companion to 2-D Semiconductors. IEEE Trans. Electron Devices 2023, 70, 1509–1519. 10.1109/TED.2023.3236903. DOI

Haeuseler H.; Jung M. Single crystal growth and structure of LaOBr and SmOBr. Mater. Res. Bull. 1986, 21, 1291–1294. 10.1016/0025-5408(86)90062-0. DOI

Manzeli S.; Ovchinnikov D.; Pasquier D.; Yazyev O. V.; Kis A. 2D transition metal dichalcogenides. Nature Reviews Materials 2017, 2, 1733.10.1038/natrevmats.2017.33. DOI

Hölsä J.; Koski K.; Makkonen S.; Säilynoja E.; Rahiala H. X-ray powder diffraction and vibrational spectroscopic investigation of the LaO(Cl1–xBrx) solid solutions. J. Alloys Compd. 1997, 249, 217–220. 10.1016/S0925-8388(96)02632-1. DOI

Wang D.; et al. Synthesis and NIR-to-violet, blue, green, red upconversion fluorescence of Er3+:LaOBr. J. Alloys Compd. 2005, 397, 1–4. 10.1016/j.jallcom.2004.09.077. DOI

Franceschi G.; et al. Resolving the intrinsic short-range ordering of K+ ions on cleaved muscovite mica. Nat. Commun. 2023, 14, 208.10.1038/s41467-023-35872-y. PubMed DOI PMC

Kim D.; Park S.; Kim S.; Kang S.-G.; Park J.-C. Blue-Emitting Eu2+-Activated LaOX (X = Cl, Br, and I) Materials: Crystal Field Effect. Inorg. Chem. 2014, 53, 11966–11973. 10.1021/ic5015576. PubMed DOI

Anzai Y.; et al. Broad range thickness identification of hexagonal boron nitride by colors. Appl. Phys. Express 2019, 12, 05500710.7567/1882-0786/ab0e45. DOI

Xu H.; et al. Quantum Capacitance Limited Vertical Scaling of Graphene Field-Effect Transistor. ACS Nano 2011, 5, 2340–2347. 10.1021/nn200026e. PubMed DOI

Hattori Y.; Taniguchi T.; Watanabe K.; Nagashio K. Layer-by-Layer Dielectric Breakdown of Hexagonal Boron Nitride. ACS Nano 2015, 9, 916–921. 10.1021/nn506645q. PubMed DOI

Cheng L.; et al. Sub-10 nm Tunable Hybrid Dielectric Engineering on MoS2 for Two-Dimensional Material-Based Devices. ACS Nano 2017, 11, 10243–10252. 10.1021/acsnano.7b04813. PubMed DOI

Di Bartolomeo A.; Genovese L.; Giubileo F.; Iemmo L.; Luongo G.; Foller T.; Schleberger M. Hysteresis in the transfer characteristics of MoS2 transistors. 2D Mater. 2018, 5, 01501410.1088/2053-1583/aa91a7. DOI

Vu Q. A.; et al. Near-zero hysteresis and near-ideal subthreshold swing in h-BN encapsulated single-layer MoS2 field-effect transistors. 2D Mater. 2018, 5, 03100110.1088/2053-1583/aab672. DOI

Na J.; et al. Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high- k passivation. Nanoscale 2014, 6, 433–441. 10.1039/C3NR04218A. PubMed DOI

Liu W.; et al. High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance in 2013. IEEE International Electron Devices Meeting 2013, 19.4.1–19.4.4. 10.1109/IEDM.2013.6724660. DOI

Chamlagain B.; et al. Thermally oxidized 2D TaS2 as a high-κ gate dielectric for MoS2 field-effect transistors. 2D Mater. 2017, 4, 03100210.1088/2053-1583/aa780e. DOI

Wang Q. H.; Kalantar-Zadeh K.; Kis A.; Coleman J. N.; Strano M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. 10.1038/nnano.2012.193. PubMed DOI

Ciarrocchi A.; Tagarelli F.; Avsar A.; Kis A. Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics. Nat. Rev. Mater. 2022, 7, 449.10.1038/s41578-021-00408-7. DOI

Ross J. S.; et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.10.1038/ncomms2498. PubMed DOI

Rivera P.; et al. Intrinsic donor-bound excitons in ultraclean monolayer semiconductors. Nat. Commun. 2021, 12, 871.10.1038/s41467-021-21158-8. PubMed DOI PMC

Jones A. M.; et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638. 10.1038/nnano.2013.151. PubMed DOI

Arora A.; Nogajewski K.; Molas M.; Koperski M.; Potemski M. Exciton band structure in layered MoSe2 : from a monolayer to the bulk limit. Nanoscale 2015, 7, 20769–20775. 10.1039/C5NR06782K. PubMed DOI

Li Z.; et al. Dielectric Engineering for Manipulating Exciton Transport in Semiconductor Monolayers. Nano Lett. 2021, 21, 8409–8417. 10.1021/acs.nanolett.1c02990. PubMed DOI

Erkensten D.; Brem S.; Perea-Causín R.; Malic E. Microscopic origin of anomalous interlayer exciton transport in van der Waals heterostructures. Phys. Rev. Mater. 2022, 6, 09400610.1103/PhysRevMaterials.6.094006. DOI

Schmid M.; Setvin M.; Diebold U.. Device for suspending a load in a vibration-insulated manner. WO/2018/037102, March 1, 2018.

Giessibl F. J. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 2019, 90, 01110110.1063/1.5052264. PubMed DOI

Setvín M.; et al. Ultrasharp tungsten tips—characterization and nondestructive cleaning. Ultramicroscopy 2012, 113, 152–157. 10.1016/j.ultramic.2011.10.005. DOI

Huber F.; Giessibl F. J. Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures. Rev. Sci. Instrum. 2017, 88, 07370210.1063/1.4993737. PubMed DOI

Sokolović I.; Schmid M.; Diebold U.; Setvin M. Incipient ferroelectricity: A route towards bulk-terminated SrTiO3. Phys. Rev. Mater. 2019, 3, 03440710.1103/PhysRevMaterials.3.034407. DOI

Wang Z.; et al. Surface chemistry on a polarizable surface: Coupling of CO with KTaO3(001). Sci. Adv. 2022, 8, eabq143310.1126/sciadv.abq1433. PubMed DOI PMC

Momma K.; Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. 10.1107/S0021889811038970. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...