Resolving the intrinsic short-range ordering of K+ ions on cleaved muscovite mica

. 2023 Jan 13 ; 14 (1) : 208. [epub] 20230113

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36639388

Grantová podpora
P 32148 Austrian Science Fund FWF - Austria

Odkazy

PubMed 36639388
PubMed Central PMC9839703
DOI 10.1038/s41467-023-35872-y
PII: 10.1038/s41467-023-35872-y
Knihovny.cz E-zdroje

Muscovite mica, KAl2(Si3Al)O10(OH)2, is a common layered phyllosilicate with perfect cleavage planes. The atomically flat surfaces obtained through cleaving lend themselves to scanning probe techniques with atomic resolution and are ideal to model minerals and clays. Despite the importance of the cleaved mica surfaces, several questions remain unresolved. It is established that K+ ions decorate the cleaved surface, but their intrinsic ordering - unaffected by the interaction with the environment - is not known. This work presents clear images of the K+ distribution of cleaved mica obtained with low-temperature non-contact atomic force microscopy (AFM) under ultra-high vacuum (UHV) conditions. The data unveil the presence of short-range ordering, contrasting previous assumptions of random or fully ordered distributions. Density functional theory (DFT) calculations and Monte Carlo simulations show that the substitutional subsurface Al3+ ions have an important role for the surface K+ ion arrangement.

Zobrazit více v PubMed

Burzo, E. in Landolt-Börnstein New Series III/27 I 5α (ed. Wijn, H. P. J.) 108–291 (Springer, 2007).

Christenson HK, Thomson NH. The nature of the air-cleaved mica surface. Surf. Sci. Rep. 2016;71:367–390. doi: 10.1016/j.surfrep.2016.03.001. DOI

De Poel W, et al. Muscovite mica: flatter than a pancake. Surf. Sci. 2014;619:19–24. doi: 10.1016/j.susc.2013.10.008. DOI

Hansma HG. Possible origin of life between mica sheets. J. Theor. Biol. 2010;266:175–188. doi: 10.1016/j.jtbi.2010.06.016. PubMed DOI

Main, K. H. S. et al. Atomic force microscopy—a tool for structural and translational DNA research. APL Bioeng. 5, 031504 (2021). PubMed PMC

Meroni A, et al. The incorporation of ribonucleotides induces structural and conformational changes in DNA. Biophys. J. 2017;113:1373–1382. doi: 10.1016/j.bpj.2017.07.013. PubMed DOI PMC

Hansma G, et al. Plasmid DNA under liquid with the atomic force microscope. Science. 1992;256:1180. doi: 10.1126/science.256.5060.1180. PubMed DOI

Adapa S, Swamy DR, Kancharla S, Pradhan S, Malani A. Role of mono- and divalent surface cations on the structure and adsorption behavior of water on mica surface. Langmuir. 2018;34:14472–14488. doi: 10.1021/acs.langmuir.8b01128. PubMed DOI

Ou X, Wang X, Lin Z, Li J. Heterogeneous condensation of water on the mica (001) surface: a molecular dynamics simulation work. J. Phys. Chem. C. 2017;121:6813–6819. doi: 10.1021/acs.jpcc.7b00855. DOI

Lee SS, Fenter P, Nagy KL, Sturchio NC. Monovalent ion adsorption at the muscovite (001)-solution interface: relationships among ion coverage and speciation, interfacial water structure, and substrate relaxation. Langmuir. 2012;28:8637–8650. doi: 10.1021/la300032h. PubMed DOI

Ichii T, et al. Solvation structure on water-in-salt/mica interfaces and its molality dependence investigated by atomic force microscopy. Jpn. J. Appl. Phys. 2020;59:SN1003. doi: 10.35848/1347-4065/ab80a6. DOI

Lata NN, et al. Multivalent surface cations enhance heterogeneous freezing of water on muscovite mica. J. Phys. Chem. Lett. 2020;11:52. doi: 10.1021/acs.jpclett.0c02121. PubMed DOI

Soni A, Patey GN. Unraveling the mechanism of ice nucleation by mica (001) surfaces. J. Phys. Chem. C. 2021;125:26927–26941. doi: 10.1021/acs.jpcc.1c08269. DOI

Fukuma, T., Ueda, Y., Yoshioka, S. & Asakawa, H. Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 104, 016101 (2010). PubMed

Kimura, K. et al. Visualizing water molecule distribution by atomic force microscopy. J. Chem. Phys. 132, 194705 (2010). PubMed

Martin-Jimenez D, Chacon E, Tarazona P, Garcia R. Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface. Nat. Commun. 2016;7:12164. doi: 10.1038/ncomms12164. PubMed DOI PMC

Kobayashi K, et al. Visualization of hydration layers on muscovite mica in aqueous solution by frequency-modulation atomic force microscopy. J. Chem. Phys. 2013;138:184704. doi: 10.1063/1.4803742. PubMed DOI

Gaines GL. The ion-exchange properties of muscovite mica. J. Phys. Chem. 1957;61:1408–1413. doi: 10.1021/j150556a033. DOI

de Poel W, et al. Metal ion-exchange on the muscovite mica surface. Surf. Sci. 2017;665:56–61. doi: 10.1016/j.susc.2017.08.013. DOI

Xu L, Salmeron M. An XPS and scanning polarization force microscopy study of the exchange and mobility of surface ions on mica. Langmuir. 1998;14:5841–5843. doi: 10.1021/la980529y. DOI

Prakash A, Pfaendtner J, Chun J, Mundy CJ. Quantifying the molecular-scale aqueous response to the mica surface. J. Phys. Chem. C. 2017;121:18496–18504. doi: 10.1021/acs.jpcc.7b03229. DOI

Zou YC, et al. Ion exchange in atomically thin clays and micas. Nat. Mater. 2021;20:1677–1682. doi: 10.1038/s41563-021-01072-6. PubMed DOI

Lee SS, Fenter P, Nagy KL, Sturchio NC. Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface. Nat. Commun. 2017;8:15826. doi: 10.1038/ncomms15826. PubMed DOI PMC

Ricci M, Spijker P, Voïtchovsky K. Water-induced correlation between single ions imaged at the solid-liquid interface. Nat. Commun. 2014;5:4400. doi: 10.1038/ncomms5400. PubMed DOI

Martin-Jimenez D, Garcia R. Identification of single adsorbed cations on mica-liquid interfaces by 3D force microscopy. J. Phys. Chem. Lett. 2017;8:5707–5711. doi: 10.1021/acs.jpclett.7b02671. PubMed DOI

Arai T, Sato K, Iida A, Tomitori M. Quasi-stabilized hydration layers on muscovite mica under a thin water film grown from humid air. Sci. Rep. 2017;7:4054. doi: 10.1038/s41598-017-04376-3. PubMed DOI PMC

Miranda PB, Xu L, Shen YR, Salmeron M. Icelike water monolayer adsorbed on mica at room temperature. Phys. Rev. Lett. 1998;81:5876–5879. doi: 10.1103/PhysRevLett.81.5876. DOI

Jin S, et al. Use of ion exchange to regulate the heterogeneous ice nucleation efficiency of mica. J. Am. Chem. Soc. 2020;142:17956–17965. doi: 10.1021/jacs.0c00920. PubMed DOI

Kuwahara Y. Muscovite surface structure imaged by fluid contact mode AFM. Phys. Chem. Miner. 1999;26:198–205. doi: 10.1007/s002690050177. DOI

Kuwahara Y. Comparison of the surface structure of the tetrahedral sheets of muscovite and phlogopite by AFM. Phys. Chem. Miner. 2001;28:1–8. doi: 10.1007/s002690000126. DOI

Loh S-H, Jarvis SP. Visualization of ion distribution at the mica-electrolyte interface. Langmuir. 2010;26:9176–9178. doi: 10.1021/la1011378. PubMed DOI

Bilotto P, Imre AM, Dworschak D, Mears LLE, Valtiner M. Visualization of ion|surface binding and in situ evaluation of surface interaction free energies via competitive adsorption isotherms. ACS Phys. Chem. Au. 2021;1:45–53. doi: 10.1021/acsphyschemau.1c00012. PubMed DOI PMC

Bampoulis P, Sotthewes K, Siekman MH, Zandvliet HJW, Poelsema B. Graphene visualizes the ion distribution on air-cleaved mica. Sci. Rep. 2017;7:43451. doi: 10.1038/srep43451. PubMed DOI PMC

Pürckhauer K, et al. Imaging in biologically-relevant environments with AFM using stiff qPlus sensors. Sci. Rep. 2018;8:9330. doi: 10.1038/s41598-018-27608-6. PubMed DOI PMC

Bhattacharyya KG. XPS study of mica surfaces. J. Electron Spectros. Relat. Phenom. 1993;63:289–306. doi: 10.1016/0368-2048(93)87010-W. DOI

Herrero CP, Sanz J, Serratosa JM. The electrostatic energy of micas as a function of Si, Al tetrahedral ordering. J. Phys. C: Solid State Phys. 1986;19:4169–4181. doi: 10.1088/0022-3719/19/22/006. DOI

Lipsicas M, et al. Silicon and aluminium site distributions in 2:1 layered silicate clays. Nature. 1984;309:604–607. doi: 10.1038/309604a0. DOI

Ostendorf F, et al. How flat is an air-cleaved mica surface? Nanotechnology. 2008;19:305705. doi: 10.1088/0957-4484/19/30/305705. PubMed DOI

Müller K, Chang CC. Electric dipoles on clean mica surfaces. Surf. Sci. 1969;14:39–51. doi: 10.1016/0039-6028(69)90044-2. DOI

Majzik Z, et al. Simultaneous current, force and dissipation measurements on the Si(111) 7×7 surface with an optimized qPlus AFM/STM technique. Beilstein J. Nanotechnol. 2012;3:249–259. doi: 10.3762/bjnano.3.28. PubMed DOI PMC

Giessibl FJ. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 2019;90:011101. doi: 10.1063/1.5052264. PubMed DOI

Obreimoff JW. The splitting strength of mica. Proc. R. Soc. Lond. A. 1930;127:290–297. doi: 10.1098/rspa.1930.0058. DOI

Metsik MS, Golub LM. Electrical relaxation and exoelectron emission on the fresh mica surface. J. Appl. Phys. 1975;46:1983–1986. doi: 10.1063/1.321878. DOI

Sokolović I, Schmid M, Diebold U, Setvin M. Incipient ferroelectricity: a route towards bulk-terminated SrTiO3. Phys. Rev. Mater. 2019;3:034407. doi: 10.1103/PhysRevMaterials.3.034407. DOI

Sokolović I, et al. Quest for a pristine unreconstructed SrTiO3(001) surface: an atomically resolved study via noncontact atomic force microscopy. Phys. Rev. B. 2021;103:1–7. doi: 10.1103/PhysRevB.103.L241406. DOI

Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI

Furness JW, Kaplan AD, Ning J, Perdew JP, Sun J. Accurate and numerically efficient r2SCAN meta-generalized gradient approximation. J. Phys. Chem. Lett. 2020;11:8208–8215. doi: 10.1021/acs.jpclett.0c02405. PubMed DOI

Feibelman PJ. K+-Hydration in a low-energy two-dimensional wetting layer on the basal surface of muscovite. J. Chem. Phys. 2013;139:074705. doi: 10.1063/1.4818587. PubMed DOI

Vatti AK, Todorova M, Neugebauer J. Ab initio determined phase diagram of clean and solvated muscovite mica surfaces. Langmuir. 2016;32:1027–1033. doi: 10.1021/acs.langmuir.5b04087. PubMed DOI

Bailey SW. Review of cation ordering in micas. Clays Clay Min. 1984;32:81–92. doi: 10.1346/CCMN.1984.0320201. DOI

Herrero CP, Sanz J, Serratosat JM. Si, Al distribution in micas; analysis by high-resolution 29Si NMR spectroscopy. J. Phys. C: Solid State Phys. 1985;18:13–22. doi: 10.1088/0022-3719/18/1/009. DOI

Loewenstein W. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral. 1954;39:92–96.

Ricci M, Spijker P, Voïtchovsky K. Water-induced correlation between single ions imaged at the solid-liquid interface, SI. Nat. Commun. 2014;5:1–8. doi: 10.1038/ncomms5400. PubMed DOI

Stöger B, et al. Point defects at cleaved Srn+1RunO3n+1(001) surfaces. Phys. Rev. B. 2014;90:165438. doi: 10.1103/PhysRevB.90.165438. DOI

Davidson AT, Vickers AF. The optical properties of mica in the vacuum ultraviolet. J. Phys. C: Solid State Phys. 1972;5:879. doi: 10.1088/0022-3719/5/8/014. DOI

Huber F, Giessibl FJ. Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures. Rev. Sci. Instrum. 2017;88:073702. doi: 10.1063/1.4993737. PubMed DOI

Setvín M, et al. Ultrasharp tungsten tips—characterization and nondestructive cleaning. Ultramicroscopy. 2012;113:152–157. doi: 10.1016/j.ultramic.2011.10.005. DOI

Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science. 2009;325:1110–1114. doi: 10.1126/science.1176210. PubMed DOI

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI

Vaughan MT, Guggenheim S. Elasticity of muscovite and its relationship to crystal structure. J. Geophys. Res. Solid Earth. 1986;91:4657–4664. doi: 10.1029/JB091iB05p04657. DOI

Heyden A, Bell AT, Keil FJ. Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 2005;123:224101. doi: 10.1063/1.2104507. PubMed DOI

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J. Chem. Phys. 2004;21:1087. doi: 10.1063/1.1699114. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

High-κ Wide-Gap Layered Dielectric for Two-Dimensional van der Waals Heterostructures

. 2024 Apr 16 ; 18 (15) : 10397-10406. [epub] 20240401

Interaction of surface cations of cleaved mica with water in vapor and liquid forms

. 2024 Feb 06 ; 249 (0) : 84-97. [epub] 20240206

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...