Resolving the intrinsic short-range ordering of K+ ions on cleaved muscovite mica
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P 32148
Austrian Science Fund FWF - Austria
PubMed
36639388
PubMed Central
PMC9839703
DOI
10.1038/s41467-023-35872-y
PII: 10.1038/s41467-023-35872-y
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Muscovite mica, KAl2(Si3Al)O10(OH)2, is a common layered phyllosilicate with perfect cleavage planes. The atomically flat surfaces obtained through cleaving lend themselves to scanning probe techniques with atomic resolution and are ideal to model minerals and clays. Despite the importance of the cleaved mica surfaces, several questions remain unresolved. It is established that K+ ions decorate the cleaved surface, but their intrinsic ordering - unaffected by the interaction with the environment - is not known. This work presents clear images of the K+ distribution of cleaved mica obtained with low-temperature non-contact atomic force microscopy (AFM) under ultra-high vacuum (UHV) conditions. The data unveil the presence of short-range ordering, contrasting previous assumptions of random or fully ordered distributions. Density functional theory (DFT) calculations and Monte Carlo simulations show that the substitutional subsurface Al3+ ions have an important role for the surface K+ ion arrangement.
Zobrazit více v PubMed
Burzo, E. in Landolt-Börnstein New Series III/27 I 5α (ed. Wijn, H. P. J.) 108–291 (Springer, 2007).
Christenson HK, Thomson NH. The nature of the air-cleaved mica surface. Surf. Sci. Rep. 2016;71:367–390. doi: 10.1016/j.surfrep.2016.03.001. DOI
De Poel W, et al. Muscovite mica: flatter than a pancake. Surf. Sci. 2014;619:19–24. doi: 10.1016/j.susc.2013.10.008. DOI
Hansma HG. Possible origin of life between mica sheets. J. Theor. Biol. 2010;266:175–188. doi: 10.1016/j.jtbi.2010.06.016. PubMed DOI
Main, K. H. S. et al. Atomic force microscopy—a tool for structural and translational DNA research. APL Bioeng. 5, 031504 (2021). PubMed PMC
Meroni A, et al. The incorporation of ribonucleotides induces structural and conformational changes in DNA. Biophys. J. 2017;113:1373–1382. doi: 10.1016/j.bpj.2017.07.013. PubMed DOI PMC
Hansma G, et al. Plasmid DNA under liquid with the atomic force microscope. Science. 1992;256:1180. doi: 10.1126/science.256.5060.1180. PubMed DOI
Adapa S, Swamy DR, Kancharla S, Pradhan S, Malani A. Role of mono- and divalent surface cations on the structure and adsorption behavior of water on mica surface. Langmuir. 2018;34:14472–14488. doi: 10.1021/acs.langmuir.8b01128. PubMed DOI
Ou X, Wang X, Lin Z, Li J. Heterogeneous condensation of water on the mica (001) surface: a molecular dynamics simulation work. J. Phys. Chem. C. 2017;121:6813–6819. doi: 10.1021/acs.jpcc.7b00855. DOI
Lee SS, Fenter P, Nagy KL, Sturchio NC. Monovalent ion adsorption at the muscovite (001)-solution interface: relationships among ion coverage and speciation, interfacial water structure, and substrate relaxation. Langmuir. 2012;28:8637–8650. doi: 10.1021/la300032h. PubMed DOI
Ichii T, et al. Solvation structure on water-in-salt/mica interfaces and its molality dependence investigated by atomic force microscopy. Jpn. J. Appl. Phys. 2020;59:SN1003. doi: 10.35848/1347-4065/ab80a6. DOI
Lata NN, et al. Multivalent surface cations enhance heterogeneous freezing of water on muscovite mica. J. Phys. Chem. Lett. 2020;11:52. doi: 10.1021/acs.jpclett.0c02121. PubMed DOI
Soni A, Patey GN. Unraveling the mechanism of ice nucleation by mica (001) surfaces. J. Phys. Chem. C. 2021;125:26927–26941. doi: 10.1021/acs.jpcc.1c08269. DOI
Fukuma, T., Ueda, Y., Yoshioka, S. & Asakawa, H. Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 104, 016101 (2010). PubMed
Kimura, K. et al. Visualizing water molecule distribution by atomic force microscopy. J. Chem. Phys. 132, 194705 (2010). PubMed
Martin-Jimenez D, Chacon E, Tarazona P, Garcia R. Atomically resolved three-dimensional structures of electrolyte aqueous solutions near a solid surface. Nat. Commun. 2016;7:12164. doi: 10.1038/ncomms12164. PubMed DOI PMC
Kobayashi K, et al. Visualization of hydration layers on muscovite mica in aqueous solution by frequency-modulation atomic force microscopy. J. Chem. Phys. 2013;138:184704. doi: 10.1063/1.4803742. PubMed DOI
Gaines GL. The ion-exchange properties of muscovite mica. J. Phys. Chem. 1957;61:1408–1413. doi: 10.1021/j150556a033. DOI
de Poel W, et al. Metal ion-exchange on the muscovite mica surface. Surf. Sci. 2017;665:56–61. doi: 10.1016/j.susc.2017.08.013. DOI
Xu L, Salmeron M. An XPS and scanning polarization force microscopy study of the exchange and mobility of surface ions on mica. Langmuir. 1998;14:5841–5843. doi: 10.1021/la980529y. DOI
Prakash A, Pfaendtner J, Chun J, Mundy CJ. Quantifying the molecular-scale aqueous response to the mica surface. J. Phys. Chem. C. 2017;121:18496–18504. doi: 10.1021/acs.jpcc.7b03229. DOI
Zou YC, et al. Ion exchange in atomically thin clays and micas. Nat. Mater. 2021;20:1677–1682. doi: 10.1038/s41563-021-01072-6. PubMed DOI
Lee SS, Fenter P, Nagy KL, Sturchio NC. Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface. Nat. Commun. 2017;8:15826. doi: 10.1038/ncomms15826. PubMed DOI PMC
Ricci M, Spijker P, Voïtchovsky K. Water-induced correlation between single ions imaged at the solid-liquid interface. Nat. Commun. 2014;5:4400. doi: 10.1038/ncomms5400. PubMed DOI
Martin-Jimenez D, Garcia R. Identification of single adsorbed cations on mica-liquid interfaces by 3D force microscopy. J. Phys. Chem. Lett. 2017;8:5707–5711. doi: 10.1021/acs.jpclett.7b02671. PubMed DOI
Arai T, Sato K, Iida A, Tomitori M. Quasi-stabilized hydration layers on muscovite mica under a thin water film grown from humid air. Sci. Rep. 2017;7:4054. doi: 10.1038/s41598-017-04376-3. PubMed DOI PMC
Miranda PB, Xu L, Shen YR, Salmeron M. Icelike water monolayer adsorbed on mica at room temperature. Phys. Rev. Lett. 1998;81:5876–5879. doi: 10.1103/PhysRevLett.81.5876. DOI
Jin S, et al. Use of ion exchange to regulate the heterogeneous ice nucleation efficiency of mica. J. Am. Chem. Soc. 2020;142:17956–17965. doi: 10.1021/jacs.0c00920. PubMed DOI
Kuwahara Y. Muscovite surface structure imaged by fluid contact mode AFM. Phys. Chem. Miner. 1999;26:198–205. doi: 10.1007/s002690050177. DOI
Kuwahara Y. Comparison of the surface structure of the tetrahedral sheets of muscovite and phlogopite by AFM. Phys. Chem. Miner. 2001;28:1–8. doi: 10.1007/s002690000126. DOI
Loh S-H, Jarvis SP. Visualization of ion distribution at the mica-electrolyte interface. Langmuir. 2010;26:9176–9178. doi: 10.1021/la1011378. PubMed DOI
Bilotto P, Imre AM, Dworschak D, Mears LLE, Valtiner M. Visualization of ion|surface binding and in situ evaluation of surface interaction free energies via competitive adsorption isotherms. ACS Phys. Chem. Au. 2021;1:45–53. doi: 10.1021/acsphyschemau.1c00012. PubMed DOI PMC
Bampoulis P, Sotthewes K, Siekman MH, Zandvliet HJW, Poelsema B. Graphene visualizes the ion distribution on air-cleaved mica. Sci. Rep. 2017;7:43451. doi: 10.1038/srep43451. PubMed DOI PMC
Pürckhauer K, et al. Imaging in biologically-relevant environments with AFM using stiff qPlus sensors. Sci. Rep. 2018;8:9330. doi: 10.1038/s41598-018-27608-6. PubMed DOI PMC
Bhattacharyya KG. XPS study of mica surfaces. J. Electron Spectros. Relat. Phenom. 1993;63:289–306. doi: 10.1016/0368-2048(93)87010-W. DOI
Herrero CP, Sanz J, Serratosa JM. The electrostatic energy of micas as a function of Si, Al tetrahedral ordering. J. Phys. C: Solid State Phys. 1986;19:4169–4181. doi: 10.1088/0022-3719/19/22/006. DOI
Lipsicas M, et al. Silicon and aluminium site distributions in 2:1 layered silicate clays. Nature. 1984;309:604–607. doi: 10.1038/309604a0. DOI
Ostendorf F, et al. How flat is an air-cleaved mica surface? Nanotechnology. 2008;19:305705. doi: 10.1088/0957-4484/19/30/305705. PubMed DOI
Müller K, Chang CC. Electric dipoles on clean mica surfaces. Surf. Sci. 1969;14:39–51. doi: 10.1016/0039-6028(69)90044-2. DOI
Majzik Z, et al. Simultaneous current, force and dissipation measurements on the Si(111) 7×7 surface with an optimized qPlus AFM/STM technique. Beilstein J. Nanotechnol. 2012;3:249–259. doi: 10.3762/bjnano.3.28. PubMed DOI PMC
Giessibl FJ. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 2019;90:011101. doi: 10.1063/1.5052264. PubMed DOI
Obreimoff JW. The splitting strength of mica. Proc. R. Soc. Lond. A. 1930;127:290–297. doi: 10.1098/rspa.1930.0058. DOI
Metsik MS, Golub LM. Electrical relaxation and exoelectron emission on the fresh mica surface. J. Appl. Phys. 1975;46:1983–1986. doi: 10.1063/1.321878. DOI
Sokolović I, Schmid M, Diebold U, Setvin M. Incipient ferroelectricity: a route towards bulk-terminated SrTiO3. Phys. Rev. Mater. 2019;3:034407. doi: 10.1103/PhysRevMaterials.3.034407. DOI
Sokolović I, et al. Quest for a pristine unreconstructed SrTiO3(001) surface: an atomically resolved study via noncontact atomic force microscopy. Phys. Rev. B. 2021;103:1–7. doi: 10.1103/PhysRevB.103.L241406. DOI
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 1993;47:558. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI
Furness JW, Kaplan AD, Ning J, Perdew JP, Sun J. Accurate and numerically efficient r2SCAN meta-generalized gradient approximation. J. Phys. Chem. Lett. 2020;11:8208–8215. doi: 10.1021/acs.jpclett.0c02405. PubMed DOI
Feibelman PJ. K+-Hydration in a low-energy two-dimensional wetting layer on the basal surface of muscovite. J. Chem. Phys. 2013;139:074705. doi: 10.1063/1.4818587. PubMed DOI
Vatti AK, Todorova M, Neugebauer J. Ab initio determined phase diagram of clean and solvated muscovite mica surfaces. Langmuir. 2016;32:1027–1033. doi: 10.1021/acs.langmuir.5b04087. PubMed DOI
Bailey SW. Review of cation ordering in micas. Clays Clay Min. 1984;32:81–92. doi: 10.1346/CCMN.1984.0320201. DOI
Herrero CP, Sanz J, Serratosat JM. Si, Al distribution in micas; analysis by high-resolution 29Si NMR spectroscopy. J. Phys. C: Solid State Phys. 1985;18:13–22. doi: 10.1088/0022-3719/18/1/009. DOI
Loewenstein W. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral. 1954;39:92–96.
Ricci M, Spijker P, Voïtchovsky K. Water-induced correlation between single ions imaged at the solid-liquid interface, SI. Nat. Commun. 2014;5:1–8. doi: 10.1038/ncomms5400. PubMed DOI
Stöger B, et al. Point defects at cleaved Srn+1RunO3n+1(001) surfaces. Phys. Rev. B. 2014;90:165438. doi: 10.1103/PhysRevB.90.165438. DOI
Davidson AT, Vickers AF. The optical properties of mica in the vacuum ultraviolet. J. Phys. C: Solid State Phys. 1972;5:879. doi: 10.1088/0022-3719/5/8/014. DOI
Huber F, Giessibl FJ. Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures. Rev. Sci. Instrum. 2017;88:073702. doi: 10.1063/1.4993737. PubMed DOI
Setvín M, et al. Ultrasharp tungsten tips—characterization and nondestructive cleaning. Ultramicroscopy. 2012;113:152–157. doi: 10.1016/j.ultramic.2011.10.005. DOI
Gross L, Mohn F, Moll N, Liljeroth P, Meyer G. The chemical structure of a molecule resolved by atomic force microscopy. Science. 2009;325:1110–1114. doi: 10.1126/science.1176210. PubMed DOI
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI
Vaughan MT, Guggenheim S. Elasticity of muscovite and its relationship to crystal structure. J. Geophys. Res. Solid Earth. 1986;91:4657–4664. doi: 10.1029/JB091iB05p04657. DOI
Heyden A, Bell AT, Keil FJ. Efficient methods for finding transition states in chemical reactions: comparison of improved dimer method and partitioned rational function optimization method. J. Chem. Phys. 2005;123:224101. doi: 10.1063/1.2104507. PubMed DOI
Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing machines. J. Chem. Phys. 2004;21:1087. doi: 10.1063/1.1699114. DOI
High-κ Wide-Gap Layered Dielectric for Two-Dimensional van der Waals Heterostructures
Interaction of surface cations of cleaved mica with water in vapor and liquid forms