Synthesis of phosphonate derivatives of 2'-deoxy-2'-fluorotetradialdose d-nucleosides and tetradialdose d-nucleosides
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33879930
PubMed Central
PMC8049856
DOI
10.1016/j.tet.2021.132159
PII: S0040-4020(21)00345-8
Knihovny.cz E-zdroje
- Klíčová slova
- 2′-Fluoronucleoside, Nucleoside phosphonate, Prodrug, Tetradialdose d-nucleoside, Triphosphate,
- Publikační typ
- časopisecké články MeSH
Analogs of nucleosides and nucleotides represent a promising pool of potential therapeutics. This work describes a new synthetic route leading to 2'-deoxy-2'-fluorotetradialdose D-nucleoside phosphonates. Moreover, a new universal synthetic route leading to tetradialdose d-nucleosides bearing purine nucleobases is also described. All new compounds were tested as triphosphate analogs for inhibitory potency against a variety of viral polymerases. The fluorinated nucleosides were transformed to phosphoramidate prodrugs and evaluated in cell cultures against various viruses including influenza and SARS-CoV-2.
Zobrazit více v PubMed
De Clercq E. A 40-year journey in search of selective antiviral chemotherapy. Annu. Rev. Pharmacol. Toxicol. 2011;51:1–24. PubMed
Polakova I., Budesinsky M., Tocik Z., Rosenberg I. Tetrofuranose nucleoside phosphonic acids: synthesis and properties. Collect. Czech Chem. Commun. 2011;76(5):503–536.
Králíková Š., Buděšínký M., Masojídková M., Rosenberg I. Nucleoside 5′-C-phosphonates: reactivity of the α-hydroxyphosphonate moiety. Tetrahedron. 2006;62(20):4917–4932.
Simak O., Pachl P., Fabry M., Budesinsky M., Jandusik T., Hnizda A., Sklenickova R., Petrova M., Veverka V., Rezacova P., Brynda J., Rosenberg I. Conformationally constrained nucleoside phosphonic acids - potent inhibitors of human mitochondrial and cytosolic 5[prime or minute](3[prime or minute])-nucleotidases. Org. Biomol. Chem. 2014;12(40):7971–7982. PubMed
Kim C.U., Luh B.Y., Martin J.C. Regiospecific and highly stereoselective electrophilic addition to furanoid glycals: synthesis of phosphonate nucleotide analogs with potent activity against HIV. J. Org. Chem. 1991;56(8):2642–2647.
De S., De Jonghe S., Herdewijn P. Synthesis of a 3’-Fluoro-3’-deoxytetrose adenine phosphonate. J. Org. Chem. 2017;82(18):9464–9478. (Ahead of Print) PubMed
Li Q., Groaz E., Herdewijn P. Synthesis of tetradialdose phosphonate nucleosides as mimics of l-nucleotides. Tetrahedron. 2019;75(37):130497.
Boojamra C.G., Mackman R.L., Markevitch D.Y., Prasad V., Ray A.S., Douglas J., Grant D., Kim C.U., Cihlar T. Synthesis and anti-HIV activity of GS-9148 (2′-Fd4AP), a novel nucleoside phosphonate HIV reverse transcriptase inhibitor. Bioorg. Med. Chem. Lett. 2008;18(3):1120–1123. PubMed
Gentile I., Borgia F., Buonomo A.R., Castaldo G., Borgia G. A novel promising therapeutic option against hepatitis C virus: an oral nucleotide NS5B polymerase inhibitor sofosbuvir. Curr. Med. Chem. 2013;20(30):3733–3742. PubMed
Ren H., An H., Hatala P.J., Stevens W.C., Jr., Tao J., He B. Versatile synthesis and biological evaluation of novel 3’-fluorinated purine nucleosides. Beilstein J. Org. Chem. 2015;11:2509–2520. PubMed PMC
Sivets G.G., Amblard F., Schinazi R.F. Synthesis of 2-fluoro-substituted and 2,6-modified purine 2′,3′-dideoxy-2′,3′-difluoro-d-arabinofuranosyl nucleosides from d-xylose. Tetrahedron. 2019;75(13):2037–2046. PubMed PMC
Käppi R., Kazimierczuk Z., Seela F., Lönnberg H. Kinetics and mechanism for acid-catalyzed hydrolysis of regioisomeric 2′-deoxyribonucleosides of 8-azaadenine and substituted benzotriazoles. Nucleos Nucleot. 1991;10(1–3):571–572.
Dyatkina N.B., Theil F., von Janta-Lipinski M. Stereocontrolled synthesis of the four stereoisomeric diphosphorylphosphonates of carbocyclic 2′,3′-dideoxy-2′,3′-didehydro-5′-noradenosine. Tetrahedron. 1995;51(3):761–772.
Koh Y.-h., Shim J.H., Wu J.Z., Zhong W., Hong Z., Girardet J.-L. Design, synthesis, and antiviral activity of adenosine 5‘-phosphonate analogues as chain terminators against hepatitis C virus. J. Med. Chem. 2005;48(8):2867–2875. PubMed
Klejch T., Keough D.T., Chavchich M., Travis J., Skácel J., Pohl R., Janeba Z., Edstein M.D., Avery V.M., Guddat L.W., Hocková D. Sulfide, sulfoxide and sulfone bridged acyclic nucleoside phosphonates as inhibitors of the Plasmodium falciparum and human 6-oxopurine phosphoribosyltransferases: synthesis and evaluation. Eur. J. Med. Chem. 2019;183:111667. PubMed
Mackman R.L., Ray A.S., Hui H.C., Zhang L., Birkus G., Boojamra C.G., Desai M.C., Douglas J.L., Gao Y., Grant D., Laflamme G., Lin K.-Y., Markevitch D.Y., Mishra R., McDermott M., Pakdaman R., Petrakovsky O.V., Vela J.E., Cihlar T. Discovery of GS-9131: design, synthesis and optimization of amidate prodrugs of the novel nucleoside phosphonate HIV reverse transcriptase (RT) inhibitor GS-9148. Bioorg. Med. Chem. 2010;18(10):3606–3617. PubMed
Birkus G., Kutty N., Frey C.R., Shribata R., Chou T., Wagner C., McDermott M., Cihlar T. Role of cathepsin A and lysosomes in the intracellular activation of novel antipapillomavirus agent GS-9191. Antimicrob. Agents Chemother. 2011;55(5):2166. PubMed PMC
Hercík K., Kozak J., Šála M., Dejmek M., Hřebabecký H., Zborníková E., Smola M., Ruzek D., Nencka R., Boura E. Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase. Antivir. Res. 2017;137:131–133. PubMed
Cho A., Zhang L., Xu J., Lee R., Butler T., Metobo S., Aktoudianakis V., Lew W., Ye H., Clarke M., Doerffler E., Byun D., Wang T., Babusis D., Carey A.C., German P., Sauer D., Zhong W., Rossi S., Fenaux M., McHutchison J.G., Perry J., Feng J., Ray A.S., Kim C.U. Discovery of the first C-nucleoside HCV polymerase inhibitor (GS-6620) with demonstrated antiviral response in HCV infected patients. J. Med. Chem. 2014;57(5):1812–1825. PubMed
Mejdrová I., Chalupská D., Kögler M., Šála M., Plačková P., Baumlová A., Hřebabecký H., Procházková E., Dejmek M., Guillon R., Strunin D., Weber J., Lee G., Birkus G., Mertlíková-Kaiserová H., Boura E., Nencka R. Highly selective phosphatidylinositol 4-kinase IIIβ inhibitors and structural insight into their mode of action. J. Med. Chem. 2015;58(9):3767–3793. PubMed