• This record comes from PubMed

Childhood-onset type 1 diabetes and subsequent adult psychiatric disorders: a nationwide cohort and genome-wide Mendelian randomization study

. 2024 ; 2 (9) : 1062-1070. [epub] 20240717

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media print-electronic

Document type Journal Article

Grant support
225790 Wellcome Trust - United Kingdom
MC_UU_00002/7 Medical Research Council - United Kingdom

Childhood-onset type 1 diabetes (T1D) is associated with substantial psychiatric morbidity in later life, but it remains unknown whether these associations are due to common underlying biological mechanisms or the impacts of living with the condition and its treatment. Here, using Czech national register data, we identified children with T1D aged ≤14 years between 1994 and 2007 and estimated the risk of psychiatric disorders up to 24 years later. We found that children diagnosed with T1D had an elevated risk of developing substance use, mood, anxiety and personality disorders, and behavioral syndromes. Conversely, we found that children with T1D had a lower risk of developing psychotic disorders. In Mendelian randomization analysis, we found an association with schizophrenia, which, however, did not persist following multiple testing adjustment. The combined observational and Mendelian randomization evidence suggests that T1D diagnosis in childhood predisposes to far-reaching, extensive psychiatric morbidity, which is unlikely to be explicable by common underlying biological mechanisms. The findings of this study highlight that monitoring and addressing the mental health needs of children with T1D is imperative, whereas glucose dysregulation and/or inflammation implicated in schizophrenia pathogenesis warrants future research.

See more in PubMed

Katsarou, A. et al. Type 1 diabetes mellitus. Nat. Rev. Dis. Primers3, 17016 (2017). 10.1038/nrdp.2017.16 PubMed DOI

Gregory, G. A. et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study. Lancet Diabetes Endocrinol.10, 741–760 (2022). 10.1016/S2213-8587(22)00218-2 PubMed DOI

Heald, A. H. et al. Estimating life years lost to diabetes: outcomes from analysis of National Diabetes Audit and Office of National Statistics data. Cardiovasc. Endocrinol. Metab.9, 183–185 (2020). 10.1097/XCE.0000000000000210 PubMed DOI PMC

Sussman, M., Benner, J., Haller, M. J., Rewers, M. & Griffiths, R. Estimated lifetime economic burden of type 1 diabetes. Diabetes Technol. Ther.22, 121–130 (2020). 10.1089/dia.2019.0398 PubMed DOI

Butwicka, A., Frisen, L., Almqvist, C., Zethelius, B. & Lichtenstein, P. Risks of psychiatric disorders and suicide attempts in children and adolescents with type 1 diabetes: a population-based cohort study. Diabetes Care38, 453–459 (2015). 10.2337/dc14-0262 PubMed DOI PMC

Dybdal, D. et al. Increasing risk of psychiatric morbidity after childhood onset type 1 diabetes: a population-based cohort study. Diabetologia61, 831–838 (2018). 10.1007/s00125-017-4517-7 PubMed DOI

Liu, S. et al. Association and familial coaggregation of childhood-onset type 1 diabetes with depression, anxiety, and stress-related disorders: a population-based cohort study. Diabetes Care45, 1987–1993 (2022). 10.2337/dc21-1347 PubMed DOI PMC

Delamater, A. M. et al. ISPAD Clinical Practice Consensus Guidelines 2018: psychological care of children and adolescents with type 1 diabetes. Pediatr. Diabetes19 (Suppl. 27), 237–249 (2018). 10.1111/pedi.12736 PubMed DOI

Reynolds, K. A. & Helgeson, V. S. Children with diabetes compared to peers: depressed? Distressed? A meta-analytic review. Ann. Behav. Med.42, 29–41 (2011). 10.1007/s12160-011-9262-4 PubMed DOI PMC

Zheng, X. P. & Chen, S. H. Psycho-behavioral changes in children with type 1 diabetes mellitus. World J. Pediatr.9, 261–265 (2013). 10.1007/s12519-013-0428-y PubMed DOI

Hagger, V., Hendrieckx, C., Sturt, J., Skinner, T. C. & Speight, J. Diabetes distress among adolescents with type 1 diabetes: a systematic review. Curr. Diabetes Rep.16, 9 (2016).10.1007/s11892-015-0694-2 PubMed DOI

Whittemore, R., Jaser, S., Chao, A., Jang, M. & Grey, M. Psychological experience of parents of children with type 1 diabetes: a systematic mixed-studies review. Diabetes Educ.38, 562–579 (2012). 10.1177/0145721712445216 PubMed DOI PMC

Mergenthaler, P., Lindauer, U., Dienel, G. A. & Meisel, A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci.36, 587–597 (2013). 10.1016/j.tins.2013.07.001 PubMed DOI PMC

Mauras, N. et al. Impact of type 1 diabetes in the developing brain in children: a longitudinal study. Diabetes Care44, 983–992 (2021). 10.2337/dc20-2125 PubMed DOI PMC

Solmi, M. et al. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol. Psychiatry27, 281–295 (2022). 10.1038/s41380-021-01161-7 PubMed DOI PMC

Chubak, J. et al. Informative presence in electronic health record data: a challenge in implementing study exclusion criteria. Epidemiology34, 29–32 (2023). 10.1097/EDE.0000000000001542 PubMed DOI PMC

VanderWeele, T. J. & Ding, P. Sensitivity analysis in observational research: introducing the E-value. Ann. Intern. Med.167, 268–274 (2017). 10.7326/M16-2607 PubMed DOI

Schneeweiss, S. Sensitivity analysis and external adjustment for unmeasured confounders in epidemiologic database studies of therapeutics. Pharmacoepidemiol. Drug Saf.15, 291–303 (2006). 10.1002/pds.1200 PubMed DOI

Thomas, N. J. et al. Frequency and phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically stratified survival analysis from UK Biobank. Lancet Diabetes Endocrinol.6, 122–129 (2018). 10.1016/S2213-8587(17)30362-5 PubMed DOI PMC

Insel, R. A. et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care38, 1964–1974 (2015). 10.2337/dc15-1419 PubMed DOI PMC

Atkinson, M. A. & Eisenbarth, G. S. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet358, 221–229 (2001). 10.1016/S0140-6736(01)05415-0 PubMed DOI

Atkinson, M. A., Eisenbarth, G. S. & Michels, A. W. Type 1 diabetes. Lancet383, 69–82 (2014). 10.1016/S0140-6736(13)60591-7 PubMed DOI PMC

Frank, M. R. Psychological issues in the care of children and adolescents with type 1 diabetes. Paediatr. Child Health10, 18–20 (2005). PubMed PMC

Law, G. U., Walsh, J., Queralt, V. & Nouwen, A. Adolescent and parent diabetes distress in type 1 diabetes: the role of self-efficacy, perceived consequences, family responsibility and adolescent-parent discrepancies. J. Psychosom. Res.74, 334–339 (2013). 10.1016/j.jpsychores.2012.12.009 PubMed DOI

Kiriella, D. A. et al. Unraveling the concepts of distress, burnout, and depression in type 1 diabetes: a scoping review. eClinicalMedicine40, 101118 (2021). 10.1016/j.eclinm.2021.101118 PubMed DOI PMC

Fioretti, C. & Mugnaini, C. Living with type 1 diabetes mellitus in emerging adulthood: a qualitative study. Br. J. Health Psychol.27, 1226–1240 (2022). 10.1111/bjhp.12596 PubMed DOI

Arnett, J. J., Zukauskiene, R. & Sugimura, K. The new life stage of emerging adulthood at ages 18–29 years: implications for mental health. Lancet Psychiatry1, 569–576 (2014). 10.1016/S2215-0366(14)00080-7 PubMed DOI

Quality Standard [QS125]: Diabetes in Children and Young People. Quality Statement 6:Access to Mental Health Professionals with an Understanding of Type 1 or Type 2 Diabetes (National Institute for Health and Care Excellence, 2022).

Juvonen, H. et al. Incidence of schizophrenia in a nationwide cohort of patients with type 1 diabetes mellitus. Arch. Gen. Psychiatry64, 894–899 (2007). 10.1001/archpsyc.64.8.894 PubMed DOI

Figlewicz, D. P., Evans, S. B., Murphy, J., Hoen, M. & Baskin, D. G. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res.964, 107–115 (2003). 10.1016/S0006-8993(02)04087-8 PubMed DOI

Unger, J. W., Livingston, J. N. & Moss, A. M. Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog. Neurobiol.36, 343–362 (1991). 10.1016/0301-0082(91)90015-S PubMed DOI

Aylward, A., Chiou, J., Okino, M. L., Kadakia, N. & Gaulton, K. J. Shared genetic risk contributes to type 1 and type 2 diabetes etiology. Hum. Mol. Genet.10.1093/hmg/ddy314 (2018). 10.1093/hmg/ddy314 PubMed DOI

Perry, B. I. et al. Longitudinal trends in childhood insulin levels and body mass index and associations with risks of psychosis and depression in young adults. JAMA Psychiatry78, 416–425 (2021). 10.1001/jamapsychiatry.2020.4180 PubMed DOI PMC

Perry, B. I. et al. The potential shared role of inflammation in insulin resistance and schizophrenia: a bidirectional two-sample Mendelian randomization study. PLoS Med.18, e1003455 (2021). 10.1371/journal.pmed.1003455 PubMed DOI PMC

Bryndová, L. et al. Czechia: health system review 2023. Health Systems in Transition Vol. 25, No. 1 (European Observatory on Health Systems and Policies, 2023). PubMed

Dalsgaard, S. et al. Incidence rates and cumulative incidences of the full spectrum of diagnosed mental disorders in childhood and adolescence. JAMA Psychiatry77, 155–164 (2020). 10.1001/jamapsychiatry.2019.3523 PubMed DOI PMC

Šumník, Z., Prázný, M., Pelikánová, T. & Škrha, J. Standard of care for type 1 diabetes (Czech Diabetes Society). Diabetologie, Metabolismus, Endokrinologie, Výživa25, 47–56 (2022).

R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2024).

Mathur, M. B., Ding, P., Riddell, C. A. & VanderWeele, T. J. Web site and R package for computing E-values. Epidemiology29, e45–e47 (2018). 10.1097/EDE.0000000000000864 PubMed DOI PMC

Wasserstein, R. L. & Lazar, N. A. The ASA statement on p-values: context, process, and purpose. Am. Stat.70, 129–133 (2016).10.1080/00031305.2016.1154108 DOI

Inshaw, J. R. J., Cutler, A. J., Crouch, D. J. M., Wicker, L. S. & Todd, J. A. Genetic variants predisposing most strongly to type 1 diabetes diagnosed under age 7 years lie near candidate genes that function in the immune system and in pancreatic beta-cells. Diabetes Care43, 169–177 (2020). 10.2337/dc19-0803 PubMed DOI PMC

Machiela, M. J. & Chanock, S. J. LDlink: a web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics31, 3555–3557 (2015). 10.1093/bioinformatics/btv402 PubMed DOI PMC

Pierce, B. L., Ahsan, H. & Vanderweele, T. J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol.40, 740–752 (2011). 10.1093/ije/dyq151 PubMed DOI PMC

Bender, R. & Lange, S. Adjusting for multiple testing—when and how? J. Clin. Epidemiol.54, 343–349 (2001). 10.1016/S0895-4356(00)00314-0 PubMed DOI

Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat.6, 65–70 (1979).

Burgess, S. Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int. J. Epidemiol.43, 922–929 (2014). 10.1093/ije/dyu005 PubMed DOI PMC

Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet.50, 693–698 (2018). 10.1038/s41588-018-0099-7 PubMed DOI PMC

Bowden, J. et al. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int. J. Epidemiol.45, 1961–1974 (2016). PubMed PMC

Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife7, e34408 (2018). 10.7554/eLife.34408 PubMed DOI PMC

Yavorska, O. O. & Burgess, S. MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data. Int. J. Epidemiol.46, 1734–1739 (2017). 10.1093/ije/dyx034 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...