Novel structural arrangement of nematode cystathionine β-synthases: characterization of Caenorhabditis elegans CBS-1
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
070255/Z/03/Z
Wellcome Trust - United Kingdom
PubMed
22240119
PubMed Central
PMC3316156
DOI
10.1042/bj20111478
PII: BJ20111478
Knihovny.cz E-zdroje
- MeSH
- biokatalýza MeSH
- Caenorhabditis elegans enzymologie MeSH
- cystathionin-beta-synthasa chemie genetika metabolismus MeSH
- cytoplazma enzymologie MeSH
- homeostáza MeSH
- homocystein metabolismus MeSH
- konzervovaná sekvence MeSH
- kvarterní struktura proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- orgánová specificita MeSH
- sekvence aminokyselin MeSH
- sekvenční seřazení MeSH
- terciární struktura proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cystathionin-beta-synthasa MeSH
- homocystein MeSH
CBSs (cystathionine β-synthases) are eukaryotic PLP (pyridoxal 5 *-phosphate)-dependent proteins that maintain cellular homocysteine homoeostasis and produce cystathionine and hydrogen sulfide. In the present study, we describe a novel structural arrangement of the CBS enzyme encoded by the cbs-1 gene of the nematode Caenorhabditis elegans. The CBS-1 protein contains a unique tandem repeat of two evolutionarily conserved catalytic regions in a single polypeptide chain. These repeats include a catalytically active C-terminal module containing a PLP-binding site and a less conserved N-terminal module that is unable to bind the PLP cofactor and cannot catalyse CBS reactions, as demonstrated by analysis of truncated variants and active-site mutant proteins. In contrast with other metazoan enzymes, CBS-1 lacks the haem and regulatory Bateman domain essential for activation by AdoMet (S-adenosylmethionine) and only forms monomers. We determined the tissue and subcellular distribution of CBS-1 and showed that cbs-1 knockdown by RNA interference leads to delayed development and to an approximately 10-fold elevation of homocysteine concentrations in nematode extracts. The present study provides the first insight into the metabolism of sulfur amino acids and hydrogen sulfide in C. elegans and shows that nematode CBSs possess a structural feature that is unique among CBS proteins.
Zobrazit více v PubMed
Finkelstein J. D. The metabolism of homocysteine: pathways and regulation. Eur. J. Pediatr. 1998;157:S40–S44. PubMed
Taoka S., Ohja S., Shan X., Kruger W. D., Banerjee R. Evidence for heme-mediated redox regulation of human cystathionine beta-synthase activity. J. Biol. Chem. 1998;273:25179–25184. PubMed
Banerjee R., Zou C. G. Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein. Arch. Biochem. Biophys. 2005;433:144–156. PubMed
Cherney M. M., Pazicni S., Frank N., Marvin K. A., Kraus J. P., Burstyn J. N. Ferrous human cystathionine beta-synthase loses activity during enzyme assay due to a ligand switch process. Biochemistry. 2007;46:13199–13210. PubMed
Smith A. T., Majtan T., Freeman K. M., Su Y., Kraus J. P., Burstyn J. N. Cobalt cystathionine beta-synthase: a cobalt-substituted heme protein with a unique thiolate ligation motif. Inorg. Chem. 2011;50:4417–4427. PubMed PMC
Mehta P. K., Christen P. The molecular evolution of pyridoxal-5′phosphate-dependent enzymes. Adv. Enzymol. Relat. Areas Mol. Biol. 2000;74:129–184. PubMed
Kery V., Poneleit L., Kraus J. P. Trypsin cleavage of human cystathionine beta-synthase into an evolutionarily conserved active core: structural and functional consequences. Arch. Biochem. Biophys. 1998;355:222–232. PubMed
Taoka S., Widjaja L., Banerjee R. Assignment of enzymatic functions to specific regions of the PLP-dependent heme protein cystathionine beta-synthase. Biochemistry. 1999;38:13155–13161. PubMed
Skovby F., Kraus J. P., Rosenberg L. E. Biosynthesis and proteolytic activation of cystathionine beta-synthase in rat liver. J. Biol. Chem. 1984;259:588–593. PubMed
Zou C. G., Banerjee R. Tumor necrosis factor-α-induced targeted proteolysis of cystathionine beta-synthase modulates redox homeostasis. J. Biol. Chem. 2003;278:16802–16808. PubMed
Jhee K. H., McPhie P., Miles E. W. Yeast cystathionine beta-synthase is a pyridoxal phosphate enzyme but, unlike the human enzyme, is not a heme protein. J. Biol. Chem. 2000;275:11541–11544. PubMed
Nozaki T., Shigeta Y., Saito-Nakano Y., Imada M., Kruger W. D. Characterization of transsulfuration and cysteine biosynthetic pathways in the protozoan hemoflagellate, Trypanosoma cruzi. Isolation and molecular characterization of cystathionine beta-synthase and serine acetyltransferase from Trypanosoma. J. Biol. Chem. 2001;276:6516–6523. PubMed
Koutmos M., Kabil O., Smith J. L., Banerjee R. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine beta-synthase. Proc. Natl. Acad. Sci. U.S.A. 2010;107:20958–20963. PubMed PMC
Jhee K. H., McPhie P., Miles E. W. Domain architecture of the heme-independent yeast cystathionine beta-synthase provides insights into mechanisms of catalysis and regulation. Biochemistry. 2000;39:10548–10556. PubMed
Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94. PubMed PMC
Meier M., Janosik M., Kery V., Kraus J. P., Burkhard P. Structure of human cystathionine beta-synthase: a unique pyridoxal 5′-phosphate-dependent heme protein. EMBO J. 2001;20:3910–3916. PubMed PMC
Wiederstein M., Sippl M. J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–W410. PubMed PMC
Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723. PubMed
Neron B., Menager H., Maufrais C., Joly N., Maupetit J., Letort S., Carrere S., Tuffery P., Letondal C. Mobyle: a new full web bioinformatics framework. Bioinformatics. 2009;25:3005–3011. PubMed PMC
Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 2003;31:3497–3500. PubMed PMC
Guindon S., Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003;52:696–704. PubMed
Huson D. H., Richter D. C., Rausch C., Dezulian T., Franz M., Rupp R. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinf. 2007;8:460. PubMed PMC
Boulin T., Etchberger J. F., Hobert O. Reporter gene fusions. WormBook. 2006. pp. 1–23. doi/10.1895/wormbook.1.106.1. The C. elegans Research Community, ed. PubMed PMC
Frank N., Kent J. O., Meier M., Kraus J. P. Purification and characterization of the wild type and truncated human cystathionine beta-synthase enzymes expressed in E. coli. Arch. Biochem. Biophys. 2008;470:64–72. PubMed PMC
Janosik M., Meier M., Kery V., Oliveriusova J., Burkhard P., Kraus J. P. Crystallization and preliminary X-ray diffraction analysis of the active core of human recombinant cystathionine beta-synthase: an enzyme involved in vascular disease. Acta Crystallogr. Sect. D Biol. Crystallogr. 2001;57:289–291. PubMed
Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. PubMed
Wittig I., Braun H. P., Schagger H. Blue native PAGE. Nat. Protoc. 2006;1:418–428. PubMed
Hnizda A., Spiwok V., Jurga V., Kozich V., Kodicek M., Kraus J. P. Cross-talk between the catalytic core and the regulatory domain in cystathionine beta-synthase: study by differential covalent labeling and computational modeling. Biochemistry. 2010;49:10526–10534. PubMed PMC
Maclean K. N., Sikora J., Kozich V., Jiang H., Greiner L. S., Kraus E., Krijt J., Crnic L. S., Allen R. H., Stabler S. P., et al. Cystathionine beta-synthase null homocystinuric mice fail to exhibit altered hemostasis or lowering of plasma homocysteine in response to betaine treatment. Mol. Genet. Metab. 2010;101:163–171. PubMed PMC
Krijt J., Kopecka J., Hnizda A., Moat S., Kluijtmans L. A., Mayne P., Kozich V. Determination of cystathionine beta-synthase activity in human plasma by LC–MS/MS: potential use in diagnosis of CBS deficiency. J. Inherited Metab. Dis. 2011;34:49–55. PubMed PMC
Mello C., Fire A. DNA transformation. Methods Cell Biol. 1995;48:451–482. PubMed
Janosik M., Oliveriusova J., Janosikova B., Sokolova J., Kraus E., Kraus J. P., Kozich V. Impaired heme binding and aggregation of mutant cystathionine beta-synthase subunits in homocystinuria. Am. J. Hum. Genet. 2001;68:1506–1513. PubMed PMC
Schrimpf S. P., Weiss M., Reiter L., Ahrens C. H., Jovanovic M., Malmstrom J., Brunner E., Mohanty S., Lercher M. J., Hunziker P. E., et al. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes. PLoS Biol. 2009;7:e48. PubMed PMC
McKay S. J., Johnsen R., Khattra J., Asano J., Baillie D. L., Chan S., Dube N., Fang L., Goszczynski B., Ha E., et al. Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb. Symp. Quant. Biol. 2003;68:159–169. PubMed
Rege V. D., Kredich N. M., Tai C. H., Karsten W. E., Schnackerz K. D., Cook P. F. A change in the internal aldimine lysine (K42) in O-acetylserine sulfhydrylase to alanine indicates its importance in transimination and as a general base catalyst. Biochemistry. 1996;35:13485–13493. PubMed
Belew M. S., Quazi F. I., Willmore W. G., Aitken S. M. Kinetic characterization of recombinant human cystathionine beta-synthase purified from E. coli. Protein Expression Purif. 2009;64:139–145. PubMed
Aringer M., Cheng A., Nelson J. W., Chen M., Sudarshan C., Zhou Y. J., O'Shea J. J. Janus kinases and their role in growth and disease. Life Sci. 1999;64:2173–2186. PubMed
Kabil O., Zhou Y., Banerjee R. Human cystathionine beta-synthase is a target for sumoylation. Biochemistry. 2006;45:13528–13536. PubMed
Boutell J. M., Wood J. D., Harper P. S., Jones A. L. Huntingtin interacts with cystathionine beta-synthase. Hum. Mol. Genet. 1998;7:371–378. PubMed
Zahler A. M. Alternative splicing in C. elegans. WormBook. 2005. pp. 1–13. doi/10.1895/wormbook.1.31.1. The C. elegans Research Community, ed. PubMed PMC
McGhee J. D. The C. elegans intestine. WormBook. 2007. pp. 1–36. doi/10.1895/wormbook.1.133.1. The C. elegans Research Community, ed. PubMed PMC
Finkelstein J. D. Pathways and regulation of homocysteine metabolism in mammals. Semin. Thromb. Hemostasis. 2000;26:219–225. PubMed
Page A. P., Johnstone I. L. The cuticle. WormBook. 2007. pp. 1–15. doi/10.1895/wormbook.1.138.1. The C. elegans Research Community, ed. PubMed PMC
Kimura H. Hydrogen sulfide: its production, release and functions. Amino Acids. 2011;41:113–121. PubMed
Budde M. W., Roth M. B. Hydrogen sulfide increases hypoxia-inducible factor-1 activity independently of von Hippel–Lindau tumor suppressor-1 in C. elegans. Mol. Biol. Cell. 2010;21:212–217. PubMed PMC
Abe K., Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 1996;16:1066–1071. PubMed PMC
Kuwabara P. E., O'Neil N. The use of functional genomics in C. elegans for studying human development and disease. J. Inherited Metab. Dis. 2001;24:127–138. PubMed
Chandler R. J., Aswani V., Tsai M. S., Falk M., Wehrli N., Stabler S., Allen R., Sedensky M., Kazazian H. H., Venditti C. P. Propionyl-CoA and adenosylcobalamin metabolism in Caenorhabditis elegans: evidence for a role of methylmalonyl-CoA epimerase in intermediary metabolism. Mol. Genet. Metab. 2006;89:64–73. PubMed PMC
Calvo A. C., Pey A. L., Ying M., Loer C. M., Martinez A. Anabolic function of phenylalanine hydroxylase in Caenorhabditis elegans. FASEB J. 2008;22:3046–3058. PubMed
Fisher A. L., Page K. E., Lithgow G. J., Nash L. The Caenorhabditis elegans K10C2.4 gene encodes a member of the fumarylacetoacetate hydrolase family: a Caenorhabditis elegans model of type I tyrosinemia. J. Biol. Chem. 2008;283:9127–9135. PubMed PMC
Link E. M., Hardiman G., Sluder A. E., Johnson C. D., Liu L. X. Therapeutic target discovery using Caenorhabditis elegans. Pharmacogenomics. 2000;1:203–217. PubMed
Kaletta T., Hengartner M. O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. 2006;5:387–398. PubMed
Kraus J. P., Janosik M., Kozich V., Mandell R., Shih V., Sperandeo M. P., Sebastio G., de Franchis R., Andria G., Kluijtmans L. A., et al. Cystathionine beta-synthase mutations in homocystinuria. Hum. Mutat. 1999;13:362–375. PubMed
Kraus J. P., Kožich V. Cystathionine-β-synthase and its deficiency. In: Carmel R., Jacobsen D. W., editors. Homocysteine in Health and Disease. Cambridge: Cambridge University Press; 2001. pp. 223–243.
Hermann G. J., Schroeder L. K., Hieb C. A., Kershner A. M., Rabbitts B. M., Fonarev P., Grant B. D., Priess J. R. Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol. Biol. Cell. 2005;16:3273–3288. PubMed PMC
Khare S., Gomez T., Linster C. L., Clarke S. G. Defective responses to oxidative stress in protein l-isoaspartyl repair-deficient Caenorhabditis elegans. Mech. Ageing Dev. 2009;130:670–680. PubMed PMC
Maclean K. N., Sikora J., Kozich V., Jiang H., Greiner L. S., Kraus E., Krijt J., Overdier K. H., Collard R., Brodsky G. L., et al. A novel transgenic mouse model of CBS-deficient homocystinuria does not incur hepatic steatosis or fibrosis and exhibits a hypercoagulative phenotype that is ameliorated by betaine treatment. Mol. Genet. Metab. 2010;101:153–162. PubMed PMC
Singh S., Padovani D., Leslie R. A., Chiku T., Banerjee R. Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J. Biol. Chem. 2009;284:22457–22466. PubMed PMC
Budde M. W., Roth M. B. The response of Caenorhabditis elegans to hydrogen sulfide and hydrogen cyanide. Genetics. 2011;189:521–532. PubMed PMC