Novel structural arrangement of nematode cystathionine β-synthases: characterization of Caenorhabditis elegans CBS-1

. 2012 Apr 15 ; 443 (2) : 535-47.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22240119

Grantová podpora
070255/Z/03/Z Wellcome Trust - United Kingdom

CBSs (cystathionine β-synthases) are eukaryotic PLP (pyridoxal 5 *-phosphate)-dependent proteins that maintain cellular homocysteine homoeostasis and produce cystathionine and hydrogen sulfide. In the present study, we describe a novel structural arrangement of the CBS enzyme encoded by the cbs-1 gene of the nematode Caenorhabditis elegans. The CBS-1 protein contains a unique tandem repeat of two evolutionarily conserved catalytic regions in a single polypeptide chain. These repeats include a catalytically active C-terminal module containing a PLP-binding site and a less conserved N-terminal module that is unable to bind the PLP cofactor and cannot catalyse CBS reactions, as demonstrated by analysis of truncated variants and active-site mutant proteins. In contrast with other metazoan enzymes, CBS-1 lacks the haem and regulatory Bateman domain essential for activation by AdoMet (S-adenosylmethionine) and only forms monomers. We determined the tissue and subcellular distribution of CBS-1 and showed that cbs-1 knockdown by RNA interference leads to delayed development and to an approximately 10-fold elevation of homocysteine concentrations in nematode extracts. The present study provides the first insight into the metabolism of sulfur amino acids and hydrogen sulfide in C. elegans and shows that nematode CBSs possess a structural feature that is unique among CBS proteins.

Zobrazit více v PubMed

Finkelstein J. D. The metabolism of homocysteine: pathways and regulation. Eur. J. Pediatr. 1998;157:S40–S44. PubMed

Taoka S., Ohja S., Shan X., Kruger W. D., Banerjee R. Evidence for heme-mediated redox regulation of human cystathionine beta-synthase activity. J. Biol. Chem. 1998;273:25179–25184. PubMed

Banerjee R., Zou C. G. Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein. Arch. Biochem. Biophys. 2005;433:144–156. PubMed

Cherney M. M., Pazicni S., Frank N., Marvin K. A., Kraus J. P., Burstyn J. N. Ferrous human cystathionine beta-synthase loses activity during enzyme assay due to a ligand switch process. Biochemistry. 2007;46:13199–13210. PubMed

Smith A. T., Majtan T., Freeman K. M., Su Y., Kraus J. P., Burstyn J. N. Cobalt cystathionine beta-synthase: a cobalt-substituted heme protein with a unique thiolate ligation motif. Inorg. Chem. 2011;50:4417–4427. PubMed PMC

Mehta P. K., Christen P. The molecular evolution of pyridoxal-5′phosphate-dependent enzymes. Adv. Enzymol. Relat. Areas Mol. Biol. 2000;74:129–184. PubMed

Kery V., Poneleit L., Kraus J. P. Trypsin cleavage of human cystathionine beta-synthase into an evolutionarily conserved active core: structural and functional consequences. Arch. Biochem. Biophys. 1998;355:222–232. PubMed

Taoka S., Widjaja L., Banerjee R. Assignment of enzymatic functions to specific regions of the PLP-dependent heme protein cystathionine beta-synthase. Biochemistry. 1999;38:13155–13161. PubMed

Skovby F., Kraus J. P., Rosenberg L. E. Biosynthesis and proteolytic activation of cystathionine beta-synthase in rat liver. J. Biol. Chem. 1984;259:588–593. PubMed

Zou C. G., Banerjee R. Tumor necrosis factor-α-induced targeted proteolysis of cystathionine beta-synthase modulates redox homeostasis. J. Biol. Chem. 2003;278:16802–16808. PubMed

Jhee K. H., McPhie P., Miles E. W. Yeast cystathionine beta-synthase is a pyridoxal phosphate enzyme but, unlike the human enzyme, is not a heme protein. J. Biol. Chem. 2000;275:11541–11544. PubMed

Nozaki T., Shigeta Y., Saito-Nakano Y., Imada M., Kruger W. D. Characterization of transsulfuration and cysteine biosynthetic pathways in the protozoan hemoflagellate, Trypanosoma cruzi. Isolation and molecular characterization of cystathionine beta-synthase and serine acetyltransferase from Trypanosoma. J. Biol. Chem. 2001;276:6516–6523. PubMed

Koutmos M., Kabil O., Smith J. L., Banerjee R. Structural basis for substrate activation and regulation by cystathionine beta-synthase (CBS) domains in cystathionine beta-synthase. Proc. Natl. Acad. Sci. U.S.A. 2010;107:20958–20963. PubMed PMC

Jhee K. H., McPhie P., Miles E. W. Domain architecture of the heme-independent yeast cystathionine beta-synthase provides insights into mechanisms of catalysis and regulation. Biochemistry. 2000;39:10548–10556. PubMed

Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77:71–94. PubMed PMC

Meier M., Janosik M., Kery V., Kraus J. P., Burkhard P. Structure of human cystathionine beta-synthase: a unique pyridoxal 5′-phosphate-dependent heme protein. EMBO J. 2001;20:3910–3916. PubMed PMC

Wiederstein M., Sippl M. J. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:W407–W410. PubMed PMC

Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723. PubMed

Neron B., Menager H., Maufrais C., Joly N., Maupetit J., Letort S., Carrere S., Tuffery P., Letondal C. Mobyle: a new full web bioinformatics framework. Bioinformatics. 2009;25:3005–3011. PubMed PMC

Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 2003;31:3497–3500. PubMed PMC

Guindon S., Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003;52:696–704. PubMed

Huson D. H., Richter D. C., Rausch C., Dezulian T., Franz M., Rupp R. Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinf. 2007;8:460. PubMed PMC

Boulin T., Etchberger J. F., Hobert O. Reporter gene fusions. WormBook. 2006. pp. 1–23. doi/10.1895/wormbook.1.106.1. The C. elegans Research Community, ed. PubMed PMC

Frank N., Kent J. O., Meier M., Kraus J. P. Purification and characterization of the wild type and truncated human cystathionine beta-synthase enzymes expressed in E. coli. Arch. Biochem. Biophys. 2008;470:64–72. PubMed PMC

Janosik M., Meier M., Kery V., Oliveriusova J., Burkhard P., Kraus J. P. Crystallization and preliminary X-ray diffraction analysis of the active core of human recombinant cystathionine beta-synthase: an enzyme involved in vascular disease. Acta Crystallogr. Sect. D Biol. Crystallogr. 2001;57:289–291. PubMed

Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. PubMed

Wittig I., Braun H. P., Schagger H. Blue native PAGE. Nat. Protoc. 2006;1:418–428. PubMed

Hnizda A., Spiwok V., Jurga V., Kozich V., Kodicek M., Kraus J. P. Cross-talk between the catalytic core and the regulatory domain in cystathionine beta-synthase: study by differential covalent labeling and computational modeling. Biochemistry. 2010;49:10526–10534. PubMed PMC

Maclean K. N., Sikora J., Kozich V., Jiang H., Greiner L. S., Kraus E., Krijt J., Crnic L. S., Allen R. H., Stabler S. P., et al. Cystathionine beta-synthase null homocystinuric mice fail to exhibit altered hemostasis or lowering of plasma homocysteine in response to betaine treatment. Mol. Genet. Metab. 2010;101:163–171. PubMed PMC

Krijt J., Kopecka J., Hnizda A., Moat S., Kluijtmans L. A., Mayne P., Kozich V. Determination of cystathionine beta-synthase activity in human plasma by LC–MS/MS: potential use in diagnosis of CBS deficiency. J. Inherited Metab. Dis. 2011;34:49–55. PubMed PMC

Mello C., Fire A. DNA transformation. Methods Cell Biol. 1995;48:451–482. PubMed

Janosik M., Oliveriusova J., Janosikova B., Sokolova J., Kraus E., Kraus J. P., Kozich V. Impaired heme binding and aggregation of mutant cystathionine beta-synthase subunits in homocystinuria. Am. J. Hum. Genet. 2001;68:1506–1513. PubMed PMC

Schrimpf S. P., Weiss M., Reiter L., Ahrens C. H., Jovanovic M., Malmstrom J., Brunner E., Mohanty S., Lercher M. J., Hunziker P. E., et al. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes. PLoS Biol. 2009;7:e48. PubMed PMC

McKay S. J., Johnsen R., Khattra J., Asano J., Baillie D. L., Chan S., Dube N., Fang L., Goszczynski B., Ha E., et al. Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb. Symp. Quant. Biol. 2003;68:159–169. PubMed

Rege V. D., Kredich N. M., Tai C. H., Karsten W. E., Schnackerz K. D., Cook P. F. A change in the internal aldimine lysine (K42) in O-acetylserine sulfhydrylase to alanine indicates its importance in transimination and as a general base catalyst. Biochemistry. 1996;35:13485–13493. PubMed

Belew M. S., Quazi F. I., Willmore W. G., Aitken S. M. Kinetic characterization of recombinant human cystathionine beta-synthase purified from E. coli. Protein Expression Purif. 2009;64:139–145. PubMed

Aringer M., Cheng A., Nelson J. W., Chen M., Sudarshan C., Zhou Y. J., O'Shea J. J. Janus kinases and their role in growth and disease. Life Sci. 1999;64:2173–2186. PubMed

Kabil O., Zhou Y., Banerjee R. Human cystathionine beta-synthase is a target for sumoylation. Biochemistry. 2006;45:13528–13536. PubMed

Boutell J. M., Wood J. D., Harper P. S., Jones A. L. Huntingtin interacts with cystathionine beta-synthase. Hum. Mol. Genet. 1998;7:371–378. PubMed

Zahler A. M. Alternative splicing in C. elegans. WormBook. 2005. pp. 1–13. doi/10.1895/wormbook.1.31.1. The C. elegans Research Community, ed. PubMed PMC

McGhee J. D. The C. elegans intestine. WormBook. 2007. pp. 1–36. doi/10.1895/wormbook.1.133.1. The C. elegans Research Community, ed. PubMed PMC

Finkelstein J. D. Pathways and regulation of homocysteine metabolism in mammals. Semin. Thromb. Hemostasis. 2000;26:219–225. PubMed

Page A. P., Johnstone I. L. The cuticle. WormBook. 2007. pp. 1–15. doi/10.1895/wormbook.1.138.1. The C. elegans Research Community, ed. PubMed PMC

Kimura H. Hydrogen sulfide: its production, release and functions. Amino Acids. 2011;41:113–121. PubMed

Budde M. W., Roth M. B. Hydrogen sulfide increases hypoxia-inducible factor-1 activity independently of von Hippel–Lindau tumor suppressor-1 in C. elegans. Mol. Biol. Cell. 2010;21:212–217. PubMed PMC

Abe K., Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 1996;16:1066–1071. PubMed PMC

Kuwabara P. E., O'Neil N. The use of functional genomics in C. elegans for studying human development and disease. J. Inherited Metab. Dis. 2001;24:127–138. PubMed

Chandler R. J., Aswani V., Tsai M. S., Falk M., Wehrli N., Stabler S., Allen R., Sedensky M., Kazazian H. H., Venditti C. P. Propionyl-CoA and adenosylcobalamin metabolism in Caenorhabditis elegans: evidence for a role of methylmalonyl-CoA epimerase in intermediary metabolism. Mol. Genet. Metab. 2006;89:64–73. PubMed PMC

Calvo A. C., Pey A. L., Ying M., Loer C. M., Martinez A. Anabolic function of phenylalanine hydroxylase in Caenorhabditis elegans. FASEB J. 2008;22:3046–3058. PubMed

Fisher A. L., Page K. E., Lithgow G. J., Nash L. The Caenorhabditis elegans K10C2.4 gene encodes a member of the fumarylacetoacetate hydrolase family: a Caenorhabditis elegans model of type I tyrosinemia. J. Biol. Chem. 2008;283:9127–9135. PubMed PMC

Link E. M., Hardiman G., Sluder A. E., Johnson C. D., Liu L. X. Therapeutic target discovery using Caenorhabditis elegans. Pharmacogenomics. 2000;1:203–217. PubMed

Kaletta T., Hengartner M. O. Finding function in novel targets: C. elegans as a model organism. Nat. Rev. 2006;5:387–398. PubMed

Kraus J. P., Janosik M., Kozich V., Mandell R., Shih V., Sperandeo M. P., Sebastio G., de Franchis R., Andria G., Kluijtmans L. A., et al. Cystathionine beta-synthase mutations in homocystinuria. Hum. Mutat. 1999;13:362–375. PubMed

Kraus J. P., Kožich V. Cystathionine-β-synthase and its deficiency. In: Carmel R., Jacobsen D. W., editors. Homocysteine in Health and Disease. Cambridge: Cambridge University Press; 2001. pp. 223–243.

Hermann G. J., Schroeder L. K., Hieb C. A., Kershner A. M., Rabbitts B. M., Fonarev P., Grant B. D., Priess J. R. Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol. Biol. Cell. 2005;16:3273–3288. PubMed PMC

Khare S., Gomez T., Linster C. L., Clarke S. G. Defective responses to oxidative stress in protein l-isoaspartyl repair-deficient Caenorhabditis elegans. Mech. Ageing Dev. 2009;130:670–680. PubMed PMC

Maclean K. N., Sikora J., Kozich V., Jiang H., Greiner L. S., Kraus E., Krijt J., Overdier K. H., Collard R., Brodsky G. L., et al. A novel transgenic mouse model of CBS-deficient homocystinuria does not incur hepatic steatosis or fibrosis and exhibits a hypercoagulative phenotype that is ameliorated by betaine treatment. Mol. Genet. Metab. 2010;101:153–162. PubMed PMC

Singh S., Padovani D., Leslie R. A., Chiku T., Banerjee R. Relative contributions of cystathionine beta-synthase and gamma-cystathionase to H2S biogenesis via alternative trans-sulfuration reactions. J. Biol. Chem. 2009;284:22457–22466. PubMed PMC

Budde M. W., Roth M. B. The response of Caenorhabditis elegans to hydrogen sulfide and hydrogen cyanide. Genetics. 2011;189:521–532. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...