Cross-talk between the catalytic core and the regulatory domain in cystathionine β-synthase: study by differential covalent labeling and computational modeling
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
070255/Z/03/Z
Wellcome Trust - United Kingdom
HL065217
NHLBI NIH HHS - United States
PubMed
21062078
PubMed Central
PMC3146298
DOI
10.1021/bi101384m
Knihovny.cz E-zdroje
- MeSH
- alosterické místo MeSH
- cystathionin-beta-synthasa antagonisté a inhibitory chemie metabolismus MeSH
- hydrofobní a hydrofilní interakce MeSH
- interakce mezi receptory a ligandy fyziologie MeSH
- katalytická doména fyziologie MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- terciární struktura proteinů fyziologie MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- srovnávací studie MeSH
- Názvy látek
- cystathionin-beta-synthasa MeSH
Cystathionine β-synthase (CBS) is a modular enzyme which catalyzes condensation of serine with homocysteine. Cross-talk between the catalytic core and the C-terminal regulatory domain modulates the enzyme activity. The regulatory domain imposes an autoinhibition action that is alleviated by S-adenosyl-l-methionine (AdoMet) binding, by deletion of the C-terminal regulatory module, or by thermal activation. The atomic mechanisms of the CBS allostery have not yet been sufficiently explained. Using pulse proteolysis in urea gradient and proteolytic kinetics with thermolysin under native conditions, we demonstrated that autoinhibition is associated with changes in conformational stability and with sterical hindrance of the catalytic core. To determine the contact area between the catalytic core and the autoinhibitory module of the CBS protein, we compared side-chain reactivity of the truncated CBS lacking the regulatory domain (45CBS) and of the full-length enzyme (wtCBS) using covalent labeling by six different modification agents and subsequent mass spectrometry. Fifty modification sites were identified in 45CBS, and four of them were not labeled in wtCBS. One differentially reactive site (cluster W408/W409/W410) is a part of the linker between the domains. The other three residues (K172 and/or K177, R336, and K384) are located in the same region of the 45CBS crystal structure; computational modeling showed that these amino acid side chains potentially form a regulatory interface in CBS protein. Subtle differences at CBS surface indicate that enzyme activity is not regulated by conformational conversions but more likely by different allosteric mechanisms.
Zobrazit více v PubMed
Mudd S. H.; Finkelstein J. D.; Irreverre F.; Laster L. (1965) Threonine dehydratase activity in humans lacking cystathionine synthase. Biochem. Biophys. Res. Commun. 19, 665–670. PubMed
Oliveriusova J.; Kery V.; Maclean K. N.; Kraus J. P. (2002) Deletion mutagenesis of human cystathionine beta-synthase. Impact on activity, oligomeric status, and S-adenosylmethionine regulation. J. Biol. Chem. 277, 48386–48394. PubMed
Janosik M.; Kery V.; Gaustadnes M.; Maclean K. N.; Kraus J. P. (2001) Regulation of human cystathionine beta-synthase by S-adenosyl-l-methionine: evidence for two catalytically active conformations involving an autoinhibitory domain in the C-terminal region. Biochemistry 40, 10625–10633. PubMed
Kery V.; Poneleit L.; Kraus J. P. (1998) Trypsin cleavage of human cystathionine beta-synthase into an evolutionarily conserved active core: structural and functional consequences. Arch. Biochem. Biophys. 355, 222–232. PubMed
Frank N.; Kery V.; Maclean K. N.; Kraus J. P. (2006) Solvent-accessible cysteines in human cystathionine beta-synthase: crucial role of cysteine 431 in S-adenosyl-l-methionine binding. Biochemistry 45, 11021–11029. PubMed
Skovby F.; Kraus J. P.; Rosenberg L. E. (1984) Biosynthesis and proteolytic activation of cystathionine beta-synthase in rat liver. J. Biol. Chem. 259, 588–593. PubMed
Zou C. G.; Banerjee R. (2003) Tumor necrosis factor-alpha-induced targeted proteolysis of cystathionine beta-synthase modulates redox homeostasis. J. Biol. Chem. 278, 16802–16808. PubMed
Meier M.; Janosik M.; Kery V.; Kraus J. P.; Burkhard P. (2001) Structure of human cystathionine beta-synthase: a unique pyridoxal 5′-phosphate-dependent heme protein. EMBO J. 20, 3910–3916. PubMed PMC
Taoka S.; Lepore B. W.; Kabil O.; Ojha S.; Ringe D.; Banerjee R. (2002) Human cystathionine beta-synthase is a heme sensor protein. Evidence that the redox sensor is heme and not the vicinal cysteines in the CXXC motif seen in the crystal structure of the truncated enzyme. Biochemistry 41, 10454–10461. PubMed
Sen S.; Yu J.; Yamanishi M.; Schellhorn D.; Banerjee R. (2005) Mapping peptides correlated with transmission of intrasteric inhibition and allosteric activation in human cystathionine beta-synthase. Biochemistry 44, 14210–14216. PubMed
Suckau D.; Mak M.; Przybylski M. (1992) Protein surface topology-probing by selective chemical modification and mass spectrometric peptide mapping. Proc. Natl. Acad. Sci. U.S.A. 89, 5630–5634. PubMed PMC
Mendoza V. L.; Vachet R. W. (2009) Probing protein structure by amino acid-specific covalent labeling and mass spectrometry. Mass Spectrom. Rev. 28, 785–815. PubMed PMC
Janosik M.; Meier M.; Kery V.; Oliveriusova J.; Burkhard P.; Kraus J. P. (2001) Crystallization and preliminary X-ray diffraction analysis of the active core of human recombinant cystathionine beta-synthase: an enzyme involved in vascular disease. Acta Crystallogr., Sect. D: Biol. Crystallogr. 57, 289–291. PubMed
Frank N.; Kent J. O.; Meier M.; Kraus J. P. (2008) Purification and characterization of the wild type and truncated human cystathionine beta-synthase enzymes expressed in E. coli. Arch. Biochem. Biophys. 470, 64–72. PubMed PMC
Park C.; Marqusee S. (2005) Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding. Nat. Methods 2, 207–212. PubMed
Prudova A.; Bauman Z.; Braun A.; Vitvitsky V.; Lu S. C.; Banerjee R. (2006) S-adenosylmethionine stabilizes cystathionine beta-synthase and modulates redox capacity. Proc. Natl. Acad. Sci. U.S.A. 103, 6489–6494. PubMed PMC
Park C.; Marqusee S. (2004) Probing the high energy states in proteins by proteolysis. J. Mol. Biol. 343, 1467–1476. PubMed
Hnizda A.; Santrucek J.; Sanda M.; Strohalm M.; Kodicek M. (2008) Reactivity of histidine and lysine side-chains with diethylpyrocarbonate—a method to identify surface exposed residues in proteins. J. Biochem. Biophys. Methods 70, 1091–1097. PubMed
Hirasawa M.; Kleis-SanFrancisco S.; Proske P. A.; Knaff D. B. (1995) The effect of N-bromosuccinimide on ferredoxin:NADP+ oxidoreductase. Arch. Biochem. Biophys. 320, 280–288. PubMed
Hubalek F.; Pohl J.; Edmondson D. E. (2003) Structural comparison of human monoamine oxidases A and B: mass spectrometry monitoring of cysteine reactivities. J. Biol. Chem. 278, 28612–28618. PubMed
Wells I.; Marnett L. J. (1992) Acetylation of prostaglandin endoperoxide synthase by N-acetylimidazole: comparison to acetylation by aspirin. Biochemistry 31, 9520–9525. PubMed
Gabant G.; Augier J.; Armengaud J. (2008) Assessment of solvent residues accessibility using three sulfo-NHS-biotin reagents in parallel: application to footprint changes of a methyltransferase upon binding its substrate. J. Mass Spectrom. 43, 360–370. PubMed
Carven G. J.; Stern L. J. (2005) Probing the ligand-induced conformational change in HLA-DR1 by selective chemical modification and mass spectrometric mapping. Biochemistry 44, 13625–13637. PubMed
Kozich V.; Kraus J. P. (1992) Screening for mutations by expressing patient cDNA segments in E. coli: homocystinuria due to cystathionine beta-synthase deficiency. Hum. Mutat. 1, 113–123. PubMed
Biringer R. G.; Amato H.; Harrington M. G.; Fonteh A. N.; Riggins J. N.; Huhmer A. F. (2006) Enhanced sequence coverage of proteins in human cerebrospinal fluid using multiple enzymatic digestion and linear ion trap LC-MS/MS. Briefings Funct. Genomics Proteomics 5, 144–153. PubMed
Strohalm M.; Hassman M.; Kosata B.; Kodicek M. (2008) mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun. Mass Spectrom. 22, 905–908. PubMed
Turner B. T. Jr.; Sabo T. M.; Wilding D.; Maurer M. C. (2004) Mapping of factor XIII solvent accessibility as a function of activation state using chemical modification methods. Biochemistry 43, 9755–9765. PubMed
Perdivara I.; Deterding L. J.; Przybylski M.; Tomer K. B. (2010) Mass spectrometric identification of oxidative modifications of tryptophan residues in proteins: chemical artifact or post-translational modification?. J. Am. Soc. Mass Spectrom. 21, 1114–1117. PubMed PMC
Sharp J. S.; Becker J. M.; Hettich R. L. (2004) Analysis of protein solvent accessible surfaces by photochemical oxidation and mass spectrometry. Anal. Chem. 76, 672–683. PubMed
Sali A.; Blundell T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815. PubMed
Lucas M.; Encinar J. A.; Arribas E. A.; Oyenarte I.; Garcia I. G.; Kortazar D.; Fernandez J. A.; Mato J. M.; Martinez-Chantar M. L.; Martinez-Cruz L. A. (2010) Binding of S-methyl-5′-thioadenosine and S-adenosyl-l-methionine to protein MJ0100 triggers an open-to-closed conformational change in its CBS motif pair. J. Mol. Biol. 396, 800–820. PubMed
Kelley L. A.; Sternberg M. J. (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371. PubMed
Altschul S. F.; Madden T. L.; Schaffer A. A.; Zhang J.; Zhang Z.; Miller W.; Lipman D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. PubMed PMC
Sippl M. J. (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17, 355–362. PubMed
Halabi N.; Rivoire O.; Leibler S.; Ranganathan R. (2009) Protein sectors: evolutionary units of three-dimensional structure. Cell 138, 774–786. PubMed PMC
Finn R. D.; Mistry J.; Tate J.; Coggill P.; Heger A.; Pollington J. E.; Gavin O. L.; Gunasekaran P.; Ceric G.; Forslund K.; Holm L.; Sonnhammer E. L.; Eddy S. R.; Bateman A. (2010) The Pfam protein families database. Nucleic Acids Res. 38, D211–D222. PubMed PMC
Chen R.; Li L.; Weng Z. (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52, 80–87. PubMed
Evande R.; Blom H.; Boers G. H.; Banerjee R. (2002) Alleviation of intrasteric inhibition by the pathogenic activation domain mutation, D444N, in human cystathionine beta-synthase. Biochemistry 41, 11832–11837. PubMed
Mendoza V. L.; Vachet R. W. (2008) Protein surface mapping using diethylpyrocarbonate with mass spectrometric detection. Anal. Chem. 80, 2895–2904. PubMed PMC
Kvaratskhelia M.; Miller J. T.; Budihas S. R.; Pannell L. K.; Le Grice S. F. (2002) Identification of specific HIV-1 reverse transcriptase contacts to the viral RNA:tRNA complex by mass spectrometry and a primary amine selective reagent. Proc. Natl. Acad. Sci. U.S.A. 99, 15988–15993. PubMed PMC
Blair L. P.; Tackett A. J.; Raney K. D. (2009) Development and evaluation of a structural model for SF1B helicase Dda. Biochemistry 48, 2321–2329. PubMed PMC
Leitner A.; Lindner W. (2005) Effect of an arginine-selective tagging procedure on the fragmentation behavior of peptides studied by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Anal. Chim. Acta 528, 165–173.
Ignoul S.; Eggermont J. (2005) CBS domains: structure, function, and pathology in human proteins. Am. J. Physiol. 289, C1369–C1378. PubMed
Meier M.; Oliveriusova J.; Kraus J. P.; Burkhard P. (2003) Structural insights into mutations of cystathionine beta-synthase. Biochim. Biophys. Acta 1647, 206–213. PubMed
Urreizti R.; Asteggiano C.; Cozar M.; Frank N.; Vilaseca M. A.; Grinberg D.; Balcells S. (2006) Functional assays testing pathogenicity of 14 cystathionine-beta synthase mutations. Hum. Mutat. 27, 211. PubMed
Majtan T.; Liu L.; Carpenter J. F.; Kraus J. P. (2010) Rescue of cystathionine beta-synthase (CBS) mutants with chemical chaperones: purification and characterization of eight CBS mutant enzymes. J. Biol. Chem. 21, 15866–15873. PubMed PMC
Kozich V.; Sokolova J.; Klatovska V.; Krijt J.; Janosik M.; Jelinek K.; Kraus J. P. (2010) Cystathionine beta-synthase mutations: effect of mutation topology on folding and activity. Hum. Mutat. 7, 809–819. PubMed PMC
Sen S.; Banerjee R. (2007) A pathogenic linked mutation in the catalytic core of human cystathionine beta-synthase disrupts allosteric regulation and allows kinetic characterization of a full-length dimer. Biochemistry 46, 4110–4116. PubMed PMC
Tsai C. J.; del Sol A.; Nussinov R. (2008) Allostery: absence of a change in shape does not imply that allostery is not at play. J. Mol. Biol. 378, 1–11. PubMed PMC
Kern D.; Zuiderweg E. R. (2003) The role of dynamics in allosteric regulation. Curr. Opin. Struct. Biol. 13, 748–757. PubMed
Laskowski R. A.; Gerick F.; Thornton J. M. (2009) The structural basis of allosteric regulation in proteins. FEBS Lett. 583, 1692–1698. PubMed
Goodey N. M.; Benkovic S. J. (2008) Allosteric regulation and catalysis emerge via a common route. Nat. Chem. Biol. 4, 474–482. PubMed
Singh S.; Madzelan P.; Banerjee R. (2007) Properties of an unusual heme cofactor in PLP-dependent cystathionine beta-synthase. Nat. Prod. Rep. 24, 631–639. PubMed
Yamanishi M.; Kabil O.; Sen S.; Banerjee R. (2006) Structural insights into pathogenic mutations in heme-dependent cystathionine-beta-synthase. J. Inorg. Biochem. 100, 1988–1995. PubMed
Conformational properties of nine purified cystathionine β-synthase mutants