Cross-talk between the catalytic core and the regulatory domain in cystathionine β-synthase: study by differential covalent labeling and computational modeling

. 2010 Dec 14 ; 49 (49) : 10526-34. [epub] 20101117

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21062078

Grantová podpora
070255/Z/03/Z Wellcome Trust - United Kingdom
HL065217 NHLBI NIH HHS - United States

Cystathionine β-synthase (CBS) is a modular enzyme which catalyzes condensation of serine with homocysteine. Cross-talk between the catalytic core and the C-terminal regulatory domain modulates the enzyme activity. The regulatory domain imposes an autoinhibition action that is alleviated by S-adenosyl-l-methionine (AdoMet) binding, by deletion of the C-terminal regulatory module, or by thermal activation. The atomic mechanisms of the CBS allostery have not yet been sufficiently explained. Using pulse proteolysis in urea gradient and proteolytic kinetics with thermolysin under native conditions, we demonstrated that autoinhibition is associated with changes in conformational stability and with sterical hindrance of the catalytic core. To determine the contact area between the catalytic core and the autoinhibitory module of the CBS protein, we compared side-chain reactivity of the truncated CBS lacking the regulatory domain (45CBS) and of the full-length enzyme (wtCBS) using covalent labeling by six different modification agents and subsequent mass spectrometry. Fifty modification sites were identified in 45CBS, and four of them were not labeled in wtCBS. One differentially reactive site (cluster W408/W409/W410) is a part of the linker between the domains. The other three residues (K172 and/or K177, R336, and K384) are located in the same region of the 45CBS crystal structure; computational modeling showed that these amino acid side chains potentially form a regulatory interface in CBS protein. Subtle differences at CBS surface indicate that enzyme activity is not regulated by conformational conversions but more likely by different allosteric mechanisms.

Zobrazit více v PubMed

Mudd S. H.; Finkelstein J. D.; Irreverre F.; Laster L. (1965) Threonine dehydratase activity in humans lacking cystathionine synthase. Biochem. Biophys. Res. Commun. 19, 665–670. PubMed

Oliveriusova J.; Kery V.; Maclean K. N.; Kraus J. P. (2002) Deletion mutagenesis of human cystathionine beta-synthase. Impact on activity, oligomeric status, and S-adenosylmethionine regulation. J. Biol. Chem. 277, 48386–48394. PubMed

Janosik M.; Kery V.; Gaustadnes M.; Maclean K. N.; Kraus J. P. (2001) Regulation of human cystathionine beta-synthase by S-adenosyl-l-methionine: evidence for two catalytically active conformations involving an autoinhibitory domain in the C-terminal region. Biochemistry 40, 10625–10633. PubMed

Kery V.; Poneleit L.; Kraus J. P. (1998) Trypsin cleavage of human cystathionine beta-synthase into an evolutionarily conserved active core: structural and functional consequences. Arch. Biochem. Biophys. 355, 222–232. PubMed

Frank N.; Kery V.; Maclean K. N.; Kraus J. P. (2006) Solvent-accessible cysteines in human cystathionine beta-synthase: crucial role of cysteine 431 in S-adenosyl-l-methionine binding. Biochemistry 45, 11021–11029. PubMed

Skovby F.; Kraus J. P.; Rosenberg L. E. (1984) Biosynthesis and proteolytic activation of cystathionine beta-synthase in rat liver. J. Biol. Chem. 259, 588–593. PubMed

Zou C. G.; Banerjee R. (2003) Tumor necrosis factor-alpha-induced targeted proteolysis of cystathionine beta-synthase modulates redox homeostasis. J. Biol. Chem. 278, 16802–16808. PubMed

Meier M.; Janosik M.; Kery V.; Kraus J. P.; Burkhard P. (2001) Structure of human cystathionine beta-synthase: a unique pyridoxal 5′-phosphate-dependent heme protein. EMBO J. 20, 3910–3916. PubMed PMC

Taoka S.; Lepore B. W.; Kabil O.; Ojha S.; Ringe D.; Banerjee R. (2002) Human cystathionine beta-synthase is a heme sensor protein. Evidence that the redox sensor is heme and not the vicinal cysteines in the CXXC motif seen in the crystal structure of the truncated enzyme. Biochemistry 41, 10454–10461. PubMed

Sen S.; Yu J.; Yamanishi M.; Schellhorn D.; Banerjee R. (2005) Mapping peptides correlated with transmission of intrasteric inhibition and allosteric activation in human cystathionine beta-synthase. Biochemistry 44, 14210–14216. PubMed

Suckau D.; Mak M.; Przybylski M. (1992) Protein surface topology-probing by selective chemical modification and mass spectrometric peptide mapping. Proc. Natl. Acad. Sci. U.S.A. 89, 5630–5634. PubMed PMC

Mendoza V. L.; Vachet R. W. (2009) Probing protein structure by amino acid-specific covalent labeling and mass spectrometry. Mass Spectrom. Rev. 28, 785–815. PubMed PMC

Janosik M.; Meier M.; Kery V.; Oliveriusova J.; Burkhard P.; Kraus J. P. (2001) Crystallization and preliminary X-ray diffraction analysis of the active core of human recombinant cystathionine beta-synthase: an enzyme involved in vascular disease. Acta Crystallogr., Sect. D: Biol. Crystallogr. 57, 289–291. PubMed

Frank N.; Kent J. O.; Meier M.; Kraus J. P. (2008) Purification and characterization of the wild type and truncated human cystathionine beta-synthase enzymes expressed in E. coli. Arch. Biochem. Biophys. 470, 64–72. PubMed PMC

Park C.; Marqusee S. (2005) Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding. Nat. Methods 2, 207–212. PubMed

Prudova A.; Bauman Z.; Braun A.; Vitvitsky V.; Lu S. C.; Banerjee R. (2006) S-adenosylmethionine stabilizes cystathionine beta-synthase and modulates redox capacity. Proc. Natl. Acad. Sci. U.S.A. 103, 6489–6494. PubMed PMC

Park C.; Marqusee S. (2004) Probing the high energy states in proteins by proteolysis. J. Mol. Biol. 343, 1467–1476. PubMed

Hnizda A.; Santrucek J.; Sanda M.; Strohalm M.; Kodicek M. (2008) Reactivity of histidine and lysine side-chains with diethylpyrocarbonate—a method to identify surface exposed residues in proteins. J. Biochem. Biophys. Methods 70, 1091–1097. PubMed

Hirasawa M.; Kleis-SanFrancisco S.; Proske P. A.; Knaff D. B. (1995) The effect of N-bromosuccinimide on ferredoxin:NADP+ oxidoreductase. Arch. Biochem. Biophys. 320, 280–288. PubMed

Hubalek F.; Pohl J.; Edmondson D. E. (2003) Structural comparison of human monoamine oxidases A and B: mass spectrometry monitoring of cysteine reactivities. J. Biol. Chem. 278, 28612–28618. PubMed

Wells I.; Marnett L. J. (1992) Acetylation of prostaglandin endoperoxide synthase by N-acetylimidazole: comparison to acetylation by aspirin. Biochemistry 31, 9520–9525. PubMed

Gabant G.; Augier J.; Armengaud J. (2008) Assessment of solvent residues accessibility using three sulfo-NHS-biotin reagents in parallel: application to footprint changes of a methyltransferase upon binding its substrate. J. Mass Spectrom. 43, 360–370. PubMed

Carven G. J.; Stern L. J. (2005) Probing the ligand-induced conformational change in HLA-DR1 by selective chemical modification and mass spectrometric mapping. Biochemistry 44, 13625–13637. PubMed

Kozich V.; Kraus J. P. (1992) Screening for mutations by expressing patient cDNA segments in E. coli: homocystinuria due to cystathionine beta-synthase deficiency. Hum. Mutat. 1, 113–123. PubMed

Biringer R. G.; Amato H.; Harrington M. G.; Fonteh A. N.; Riggins J. N.; Huhmer A. F. (2006) Enhanced sequence coverage of proteins in human cerebrospinal fluid using multiple enzymatic digestion and linear ion trap LC-MS/MS. Briefings Funct. Genomics Proteomics 5, 144–153. PubMed

Strohalm M.; Hassman M.; Kosata B.; Kodicek M. (2008) mMass data miner: an open source alternative for mass spectrometric data analysis. Rapid Commun. Mass Spectrom. 22, 905–908. PubMed

Turner B. T. Jr.; Sabo T. M.; Wilding D.; Maurer M. C. (2004) Mapping of factor XIII solvent accessibility as a function of activation state using chemical modification methods. Biochemistry 43, 9755–9765. PubMed

Perdivara I.; Deterding L. J.; Przybylski M.; Tomer K. B. (2010) Mass spectrometric identification of oxidative modifications of tryptophan residues in proteins: chemical artifact or post-translational modification?. J. Am. Soc. Mass Spectrom. 21, 1114–1117. PubMed PMC

Sharp J. S.; Becker J. M.; Hettich R. L. (2004) Analysis of protein solvent accessible surfaces by photochemical oxidation and mass spectrometry. Anal. Chem. 76, 672–683. PubMed

Sali A.; Blundell T. L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815. PubMed

Lucas M.; Encinar J. A.; Arribas E. A.; Oyenarte I.; Garcia I. G.; Kortazar D.; Fernandez J. A.; Mato J. M.; Martinez-Chantar M. L.; Martinez-Cruz L. A. (2010) Binding of S-methyl-5′-thioadenosine and S-adenosyl-l-methionine to protein MJ0100 triggers an open-to-closed conformational change in its CBS motif pair. J. Mol. Biol. 396, 800–820. PubMed

Kelley L. A.; Sternberg M. J. (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371. PubMed

Altschul S. F.; Madden T. L.; Schaffer A. A.; Zhang J.; Zhang Z.; Miller W.; Lipman D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. PubMed PMC

Sippl M. J. (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17, 355–362. PubMed

Halabi N.; Rivoire O.; Leibler S.; Ranganathan R. (2009) Protein sectors: evolutionary units of three-dimensional structure. Cell 138, 774–786. PubMed PMC

Finn R. D.; Mistry J.; Tate J.; Coggill P.; Heger A.; Pollington J. E.; Gavin O. L.; Gunasekaran P.; Ceric G.; Forslund K.; Holm L.; Sonnhammer E. L.; Eddy S. R.; Bateman A. (2010) The Pfam protein families database. Nucleic Acids Res. 38, D211–D222. PubMed PMC

Chen R.; Li L.; Weng Z. (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52, 80–87. PubMed

Evande R.; Blom H.; Boers G. H.; Banerjee R. (2002) Alleviation of intrasteric inhibition by the pathogenic activation domain mutation, D444N, in human cystathionine beta-synthase. Biochemistry 41, 11832–11837. PubMed

Mendoza V. L.; Vachet R. W. (2008) Protein surface mapping using diethylpyrocarbonate with mass spectrometric detection. Anal. Chem. 80, 2895–2904. PubMed PMC

Kvaratskhelia M.; Miller J. T.; Budihas S. R.; Pannell L. K.; Le Grice S. F. (2002) Identification of specific HIV-1 reverse transcriptase contacts to the viral RNA:tRNA complex by mass spectrometry and a primary amine selective reagent. Proc. Natl. Acad. Sci. U.S.A. 99, 15988–15993. PubMed PMC

Blair L. P.; Tackett A. J.; Raney K. D. (2009) Development and evaluation of a structural model for SF1B helicase Dda. Biochemistry 48, 2321–2329. PubMed PMC

Leitner A.; Lindner W. (2005) Effect of an arginine-selective tagging procedure on the fragmentation behavior of peptides studied by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Anal. Chim. Acta 528, 165–173.

Ignoul S.; Eggermont J. (2005) CBS domains: structure, function, and pathology in human proteins. Am. J. Physiol. 289, C1369–C1378. PubMed

Meier M.; Oliveriusova J.; Kraus J. P.; Burkhard P. (2003) Structural insights into mutations of cystathionine beta-synthase. Biochim. Biophys. Acta 1647, 206–213. PubMed

Urreizti R.; Asteggiano C.; Cozar M.; Frank N.; Vilaseca M. A.; Grinberg D.; Balcells S. (2006) Functional assays testing pathogenicity of 14 cystathionine-beta synthase mutations. Hum. Mutat. 27, 211. PubMed

Majtan T.; Liu L.; Carpenter J. F.; Kraus J. P. (2010) Rescue of cystathionine beta-synthase (CBS) mutants with chemical chaperones: purification and characterization of eight CBS mutant enzymes. J. Biol. Chem. 21, 15866–15873. PubMed PMC

Kozich V.; Sokolova J.; Klatovska V.; Krijt J.; Janosik M.; Jelinek K.; Kraus J. P. (2010) Cystathionine beta-synthase mutations: effect of mutation topology on folding and activity. Hum. Mutat. 7, 809–819. PubMed PMC

Sen S.; Banerjee R. (2007) A pathogenic linked mutation in the catalytic core of human cystathionine beta-synthase disrupts allosteric regulation and allows kinetic characterization of a full-length dimer. Biochemistry 46, 4110–4116. PubMed PMC

Tsai C. J.; del Sol A.; Nussinov R. (2008) Allostery: absence of a change in shape does not imply that allostery is not at play. J. Mol. Biol. 378, 1–11. PubMed PMC

Kern D.; Zuiderweg E. R. (2003) The role of dynamics in allosteric regulation. Curr. Opin. Struct. Biol. 13, 748–757. PubMed

Laskowski R. A.; Gerick F.; Thornton J. M. (2009) The structural basis of allosteric regulation in proteins. FEBS Lett. 583, 1692–1698. PubMed

Goodey N. M.; Benkovic S. J. (2008) Allosteric regulation and catalysis emerge via a common route. Nat. Chem. Biol. 4, 474–482. PubMed

Singh S.; Madzelan P.; Banerjee R. (2007) Properties of an unusual heme cofactor in PLP-dependent cystathionine beta-synthase. Nat. Prod. Rep. 24, 631–639. PubMed

Yamanishi M.; Kabil O.; Sen S.; Banerjee R. (2006) Structural insights into pathogenic mutations in heme-dependent cystathionine-beta-synthase. J. Inorg. Biochem. 100, 1988–1995. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...