Competing electronic states emerging on polar surfaces
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GAUK Primus/20/SCI/009
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
SFB TACO F81
Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
GACR 20-21727X
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
P 32148
Austrian Science Fund FWF - Austria
CZ15/2021
Österreichische Agentur für Internationale Mobilität und Kooperation in Bildung, Wissenschaft und Forschung (Austrian Agency for International Cooperation in Education and Research)
P32148-N36
Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
PubMed
35879300
PubMed Central
PMC9314351
DOI
10.1038/s41467-022-31953-6
PII: 10.1038/s41467-022-31953-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Excess charge on polar surfaces of ionic compounds is commonly described by the two-dimensional electron gas (2DEG) model, a homogeneous distribution of charge, spatially-confined in a few atomic layers. Here, by combining scanning probe microscopy with density functional theory calculations, we show that excess charge on the polar TaO2 termination of KTaO3(001) forms more complex electronic states with different degrees of spatial and electronic localization: charge density waves (CDW) coexist with strongly-localized electron polarons and bipolarons. These surface electronic reconstructions, originating from the combined action of electron-lattice interaction and electronic correlation, are energetically more favorable than the 2DEG solution. They exhibit distinct spectroscopy signals and impact on the surface properties, as manifested by a local suppression of ferroelectric distortions.
Dipartimento di Fisica e Astronomia Università di Bologna 40127 Bologna Italy
Institute of Applied Physics Technische Universität Wien Vienna Austria
Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge TN USA
University of Vienna Faculty of Physics Center for Computational Materials Science Vienna Austria
Zobrazit více v PubMed
Santander-Syro AF, et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO3. Nature. 2011;469:189–193. doi: 10.1038/nature09720. PubMed DOI
Wang Z, et al. Anisotropic two-dimensional electron gas at SrTiO3(110) Proc. Natl Acad. Sci. USA. 2014;111:3933–3937. doi: 10.1073/pnas.1318304111. PubMed DOI PMC
Wander A, et al. Stability of polar oxide surfaces. Phys. Rev. Lett. 2001;86:3811. doi: 10.1103/PhysRevLett.86.3811. PubMed DOI
Liu C, et al. Two-dimensional superconductivity and anisotropic transport at KTaO3 (111) interfaces. Science. 2021;371:716–721. doi: 10.1126/science.aba5511. PubMed DOI
Chen Z, et al. Two-dimensional superconductivity at the LaAlO3/KTaO3(110) heterointerface. Phys. Rev. Lett. 2021;126:026802. doi: 10.1103/PhysRevLett.126.026802. PubMed DOI
Gattinoni C, et al. Interface and surface stabilization of the polarization in ferroelectric thin films. Proc. Natl Acad. Sci. USA. 2020;117:28589–28595. doi: 10.1073/pnas.2007736117. PubMed DOI PMC
Brinkman A, et al. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 2007;6:493–496. doi: 10.1038/nmat1931. PubMed DOI
Gariglio S, Caviglia AD, Triscone J-M, Gabay M. A spin-orbit playground: Surfaces and interfaces of transition metal oxides. Rep. Prog. Phys. 2019;82:012501. doi: 10.1088/1361-6633/aad6ab. PubMed DOI
Sopiha KV, Malyi OI, Persson C, Wu P. Suppression of surfaces states at cubic perovskite (001) surfaces by CO2 adsorption. Phys. Chem. Chem. Phys. 2018;20:18828. doi: 10.1039/C8CP02535E. PubMed DOI
Vaz DC, et al. Mapping spin-charge conversion to the band structure in a topological oxide two-dimensional electron gas. Nat. Mater. 2019;18:1187–1193. doi: 10.1038/s41563-019-0467-4. PubMed DOI
Chen Y, Green RJ. Progress and perspectives of atomically engineered perovskite oxide interfaces for electronics and electrocatalysts. Adv. Mater. Interfaces. 2019;6:1900547. doi: 10.1002/admi.201900547. DOI
Chen J, Park NG. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 2020;5:2742–2786. doi: 10.1021/acsenergylett.0c01240. DOI
Li L, Richter C, Mannhart J, Ashoori RC. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat. Phys. 2011;7:762–766. doi: 10.1038/nphys2080. DOI
Ariando A, et al. Electronic phase separation at the LaAlO3/SrTiO3 interface. Nat. Commun. 2011;2:188. doi: 10.1038/ncomms1192. PubMed DOI
Ristic Z, et al. Nanoscale modulation of the density of states at the conducting interface between LaAlO3 and SrTiO3 band insulators. EPL (Europhys. Lett.) 2011;93:17004. doi: 10.1209/0295-5075/93/17004. DOI
Bucheli D, Caprara S, Grilli M. Pseudo-gap as a signature of inhomogeneous superconductivity in oxide interfaces. Supercond. Sci. Technol. 2015;28:045004. doi: 10.1088/0953-2048/28/4/045004. DOI
Bovenzi N, et al. Density inhomogeneities and Rashba spin–orbit coupling interplay in oxide interfaces. J. Phys. Chem. Solids. 2019;128:118–129. doi: 10.1016/j.jpcs.2017.09.013. DOI
Zhang B, et al. Re-entrance to a ferromagnetic insulator with oxygen-vacancy ordering in the La0.7Sr0.3MnO3/SrTiO3 superlattice. J. Mater. Chem. A. 2021;9:26717–26726. doi: 10.1039/D1TA04137A. DOI
Papageorgiou AC, et al. Electron traps and their effect on the surface chemistry of TiO2(110) Proc. Natl Acad. Sci. USA. 2010;107:2391–2396. doi: 10.1073/pnas.0911349107. PubMed DOI PMC
Gerosa M, Gygi F, Govoni M, Galli G. The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers. Nat. Mater. 2018;17:1122–1127. doi: 10.1038/s41563-018-0192-4. PubMed DOI
Franchini C, Reticcioli M, Setvin M, Diebold U. Polarons in materials. Nat. Rev. Mater. 2021;6:560–586. doi: 10.1038/s41578-021-00289-w. DOI
Reticcioli M, et al. Polaron-driven surface reconstructions. Phys. Rev. X. 2017;7:031053.
Albanese E, Di Valentin C, Pacchioni G. H2O adsorption on WO3 and WO3−x (001) surfaces. ACS Appl. Mater. Interfaces. 2017;9:23212–23221. doi: 10.1021/acsami.7b06139. PubMed DOI
Rousseau R, Glezakou VA, Selloni A. Theoretical insights into the surface physics and chemistry of redox-active oxides. Nat. Rev. Mater. 2020;5:460–475. doi: 10.1038/s41578-020-0198-9. DOI
Zhang D, Han ZK, Murgida GE, Ganduglia-Pirovano MV, Gao Y. Oxygen-vacancy dynamics and entanglement with polaron hopping at the reduced CeO2(111) surface. Phys. Rev. Lett. 2019;122:096101. doi: 10.1103/PhysRevLett.122.096101. PubMed DOI
Rowley SE, et al. Ferroelectric quantum criticality. Nat. Phys. 2014;10:367–372. doi: 10.1038/nphys2924. DOI
Setvin M, et al. Polarity compensation mechanisms on the perovskite surface KTaO3(001) Science. 2018;359:572–575. doi: 10.1126/science.aar2287. PubMed DOI
Chen C-W, Choe J, Morosan E. Charge density waves in strongly correlated electron systems. Rep. Prog. Phys. 2016;79:084505. doi: 10.1088/0034-4885/79/8/084505. PubMed DOI
Balandin AA, Zaitsev-Zotov SV, Grüner G. Charge-density-wave quantum materials and devices – New developments and future prospects. Appl. Phys. Lett. 2021;119:170401. doi: 10.1063/5.0074613. DOI
Zhu X, Cao Y, Zhang J, Plummer EW, Guo J. Classification of charge density waves based on their nature. Proc. Natl Acad. Sci. USA. 2015;112:2367–2371. doi: 10.1073/pnas.1424791112. PubMed DOI PMC
Spera M, et al. Insight into the charge density wave gap from contrast inversion in topographic STM images. Phys. Rev. Lett. 2020;125:267603. doi: 10.1103/PhysRevLett.125.267603. PubMed DOI
King PD, et al. Subband structure of a two-dimensional electron gas formed at the polar surface of the strong spin-orbit perovskite KTaO3. Phys. Rev. Lett. 2012;108:117602. doi: 10.1103/PhysRevLett.108.117602. PubMed DOI
Santander-Syro AF, et al. Orbital symmetry reconstruction and strong mass renormalization in the two-dimensional electron gas at the surface of KTaO3. Phys. Rev. B. 2012;86:121107. doi: 10.1103/PhysRevB.86.121107. DOI
Nakagawa N, Hwang HY, Muller DA. Why some interfaces cannot be sharp. Nat. Mater. 2006;5:204–209. doi: 10.1038/nmat1569. DOI
Tyunina M, et al. Evidence for strain-induced ferroelectric order in epitaxial thin-film KTaO3. Phys. Rev. Lett. 2010;104:227601. doi: 10.1103/PhysRevLett.104.227601. PubMed DOI
Goniakowski J, Finocchi F, Noguera C. Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 2008;71:016501. doi: 10.1088/0034-4885/71/1/016501. DOI
Springborg M, Zhou M, Molayem M, Kirtman B. Surfaces, shapes, and bulk properties of crystals. J. Phys. Chem. C. 2018;122:11926–11932. doi: 10.1021/acs.jpcc.8b03041. DOI
Hwang J, et al. Tuning perovskite oxides by strain: Electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Mater. Today. 2019;31:100–118. doi: 10.1016/j.mattod.2019.03.014. DOI
Shanavas KV, Satpathy S. Electric field tuning of the Rashba effect in the polar perovskite structures. Phys. Rev. Lett. 2014;112:086802. doi: 10.1103/PhysRevLett.112.086802. DOI
Dirnberger D, Kresse G, Franchini C, Reticcioli M. Electronic state unfolding for plane waves: Energy bands, Fermi surfaces, and spectral functions. J. Phys. Chem. C. 2021;125:12921–12928. doi: 10.1021/acs.jpcc.1c02318. PubMed DOI PMC
Narayan A, Cano A, Balatsky AV, Spaldin NA. Multiferroic quantum criticality. Nat. Mater. 2019;18:223–228. doi: 10.1038/s41563-018-0255-6. PubMed DOI
Reticcioli M, Diebold U, Franchini C. Modeling polarons in density functional theory: Lessons learned from TiO2. J. Phys.: Condensed Matter. 2022;34:204006. PubMed
Grenier P, Bernier G, Jandl S, Salce B, Boatner LA. Fluorescence and ferroelectric microregions in KTaO3. J. Phys.: Condensed Matter. 1989;1:2515.
Vikhnin V, Eden S, Aulich M, Kapphan S. The origin of the red luminescence in incipient ferroelectric KTaO3. Solid State Commun. 2000;113:455–460. doi: 10.1016/S0038-1098(99)00506-2. DOI
Cancellieri C, et al. Polaronic metal state at the LaAlO3/SrTiO3 interface. Nat. Commun. 2016;7:10386. doi: 10.1038/ncomms10386. PubMed DOI PMC
Strocov, V. N., Cancellieri, C. & Mishchenko, A. S. Electrons and Polarons at Oxide Interfaces Explored by Soft-X-Ray ARPES. In: (eds Cancellieri, C. & Strocov, V.) Spectroscopy of Complex Oxide Interfaces. Springer Series in Materials Science, vol 266. (Springer, Cham, 2018).
Kong W, et al. Formation of two-dimensional small polarons at the conducting LaAlO3/SrTiO3 interface. Phys. Rev. B. 2019;100:085413. doi: 10.1103/PhysRevB.100.085413. DOI
Kapphan SE, Gubaev AI, Vikhnin VS. UV light-induced absorption in pure KTaO3 at low temperature. Phys. Status Solidi C. 2005;2:128–131. doi: 10.1002/pssc.200460128. DOI
Wang M, Wang B, Huang F, Lin Z. Enabling PIEZOpotential in PIEZOelectric semiconductors for enhanced catalytic activities. Angew. Chem. 2019;131:7606–7616. doi: 10.1002/ange.201811709. PubMed DOI
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI
Sun J, et al. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat. Chem. 2016;8:831–836. doi: 10.1038/nchem.2535. PubMed DOI
Dudarev S, Botton G. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B. 1998;57:1505. doi: 10.1103/PhysRevB.57.1505. DOI
Varignon J, Bibes M, Zunger A. Origin of band gaps in 3d perovskite oxides. Nat. Commun. 2019;10:1658. doi: 10.1038/s41467-019-09698-6. PubMed DOI PMC
Malyi OI, Zunger A. False metals, real insulators, and degenerate gapped metals. Appl. Phys. Rev. 2020;7:041310. doi: 10.1063/5.0015322. DOI
Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric, and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI
Tersoff J, Hamann DR. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 1983;50:1998. doi: 10.1103/PhysRevLett.50.1998. DOI
Giessibl FJ. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 2019;90:011101. doi: 10.1063/1.5052264. PubMed DOI
Huber F, Giessibl FJ. Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures. Rev. Sci. Instrum. 2017;88:073702. doi: 10.1063/1.4993737. PubMed DOI
Duality and degeneracy lifting in two-dimensional electron liquids on SrTiO3(001)
Atomic-Scale View at the Segregation of Alkali Metals toward the KTaO3(001) Perovskite Surface
Real-space investigation of polarons in hematite Fe2O3
Surface chemistry on a polarizable surface: Coupling of CO with KTaO3(001)