Competing electronic states emerging on polar surfaces

. 2022 Jul 25 ; 13 (1) : 4311. [epub] 20220725

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35879300

Grantová podpora
GAUK Primus/20/SCI/009 Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
SFB TACO F81 Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
GACR 20-21727X Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
P 32148 Austrian Science Fund FWF - Austria
CZ15/2021 Österreichische Agentur für Internationale Mobilität und Kooperation in Bildung, Wissenschaft und Forschung (Austrian Agency for International Cooperation in Education and Research)
P32148-N36 Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)

Odkazy

PubMed 35879300
PubMed Central PMC9314351
DOI 10.1038/s41467-022-31953-6
PII: 10.1038/s41467-022-31953-6
Knihovny.cz E-zdroje

Excess charge on polar surfaces of ionic compounds is commonly described by the two-dimensional electron gas (2DEG) model, a homogeneous distribution of charge, spatially-confined in a few atomic layers. Here, by combining scanning probe microscopy with density functional theory calculations, we show that excess charge on the polar TaO2 termination of KTaO3(001) forms more complex electronic states with different degrees of spatial and electronic localization: charge density waves (CDW) coexist with strongly-localized electron polarons and bipolarons. These surface electronic reconstructions, originating from the combined action of electron-lattice interaction and electronic correlation, are energetically more favorable than the 2DEG solution. They exhibit distinct spectroscopy signals and impact on the surface properties, as manifested by a local suppression of ferroelectric distortions.

Zobrazit více v PubMed

Santander-Syro AF, et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO3. Nature. 2011;469:189–193. doi: 10.1038/nature09720. PubMed DOI

Wang Z, et al. Anisotropic two-dimensional electron gas at SrTiO3(110) Proc. Natl Acad. Sci. USA. 2014;111:3933–3937. doi: 10.1073/pnas.1318304111. PubMed DOI PMC

Wander A, et al. Stability of polar oxide surfaces. Phys. Rev. Lett. 2001;86:3811. doi: 10.1103/PhysRevLett.86.3811. PubMed DOI

Liu C, et al. Two-dimensional superconductivity and anisotropic transport at KTaO3 (111) interfaces. Science. 2021;371:716–721. doi: 10.1126/science.aba5511. PubMed DOI

Chen Z, et al. Two-dimensional superconductivity at the LaAlO3/KTaO3(110) heterointerface. Phys. Rev. Lett. 2021;126:026802. doi: 10.1103/PhysRevLett.126.026802. PubMed DOI

Gattinoni C, et al. Interface and surface stabilization of the polarization in ferroelectric thin films. Proc. Natl Acad. Sci. USA. 2020;117:28589–28595. doi: 10.1073/pnas.2007736117. PubMed DOI PMC

Brinkman A, et al. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 2007;6:493–496. doi: 10.1038/nmat1931. PubMed DOI

Gariglio S, Caviglia AD, Triscone J-M, Gabay M. A spin-orbit playground: Surfaces and interfaces of transition metal oxides. Rep. Prog. Phys. 2019;82:012501. doi: 10.1088/1361-6633/aad6ab. PubMed DOI

Sopiha KV, Malyi OI, Persson C, Wu P. Suppression of surfaces states at cubic perovskite (001) surfaces by CO2 adsorption. Phys. Chem. Chem. Phys. 2018;20:18828. doi: 10.1039/C8CP02535E. PubMed DOI

Vaz DC, et al. Mapping spin-charge conversion to the band structure in a topological oxide two-dimensional electron gas. Nat. Mater. 2019;18:1187–1193. doi: 10.1038/s41563-019-0467-4. PubMed DOI

Chen Y, Green RJ. Progress and perspectives of atomically engineered perovskite oxide interfaces for electronics and electrocatalysts. Adv. Mater. Interfaces. 2019;6:1900547. doi: 10.1002/admi.201900547. DOI

Chen J, Park NG. Materials and methods for interface engineering toward stable and efficient perovskite solar cells. ACS Energy Lett. 2020;5:2742–2786. doi: 10.1021/acsenergylett.0c01240. DOI

Li L, Richter C, Mannhart J, Ashoori RC. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat. Phys. 2011;7:762–766. doi: 10.1038/nphys2080. DOI

Ariando A, et al. Electronic phase separation at the LaAlO3/SrTiO3 interface. Nat. Commun. 2011;2:188. doi: 10.1038/ncomms1192. PubMed DOI

Ristic Z, et al. Nanoscale modulation of the density of states at the conducting interface between LaAlO3 and SrTiO3 band insulators. EPL (Europhys. Lett.) 2011;93:17004. doi: 10.1209/0295-5075/93/17004. DOI

Bucheli D, Caprara S, Grilli M. Pseudo-gap as a signature of inhomogeneous superconductivity in oxide interfaces. Supercond. Sci. Technol. 2015;28:045004. doi: 10.1088/0953-2048/28/4/045004. DOI

Bovenzi N, et al. Density inhomogeneities and Rashba spin–orbit coupling interplay in oxide interfaces. J. Phys. Chem. Solids. 2019;128:118–129. doi: 10.1016/j.jpcs.2017.09.013. DOI

Zhang B, et al. Re-entrance to a ferromagnetic insulator with oxygen-vacancy ordering in the La0.7Sr0.3MnO3/SrTiO3 superlattice. J. Mater. Chem. A. 2021;9:26717–26726. doi: 10.1039/D1TA04137A. DOI

Papageorgiou AC, et al. Electron traps and their effect on the surface chemistry of TiO2(110) Proc. Natl Acad. Sci. USA. 2010;107:2391–2396. doi: 10.1073/pnas.0911349107. PubMed DOI PMC

Gerosa M, Gygi F, Govoni M, Galli G. The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers. Nat. Mater. 2018;17:1122–1127. doi: 10.1038/s41563-018-0192-4. PubMed DOI

Franchini C, Reticcioli M, Setvin M, Diebold U. Polarons in materials. Nat. Rev. Mater. 2021;6:560–586. doi: 10.1038/s41578-021-00289-w. DOI

Reticcioli M, et al. Polaron-driven surface reconstructions. Phys. Rev. X. 2017;7:031053.

Albanese E, Di Valentin C, Pacchioni G. H2O adsorption on WO3 and WO3−x (001) surfaces. ACS Appl. Mater. Interfaces. 2017;9:23212–23221. doi: 10.1021/acsami.7b06139. PubMed DOI

Rousseau R, Glezakou VA, Selloni A. Theoretical insights into the surface physics and chemistry of redox-active oxides. Nat. Rev. Mater. 2020;5:460–475. doi: 10.1038/s41578-020-0198-9. DOI

Zhang D, Han ZK, Murgida GE, Ganduglia-Pirovano MV, Gao Y. Oxygen-vacancy dynamics and entanglement with polaron hopping at the reduced CeO2(111) surface. Phys. Rev. Lett. 2019;122:096101. doi: 10.1103/PhysRevLett.122.096101. PubMed DOI

Rowley SE, et al. Ferroelectric quantum criticality. Nat. Phys. 2014;10:367–372. doi: 10.1038/nphys2924. DOI

Setvin M, et al. Polarity compensation mechanisms on the perovskite surface KTaO3(001) Science. 2018;359:572–575. doi: 10.1126/science.aar2287. PubMed DOI

Chen C-W, Choe J, Morosan E. Charge density waves in strongly correlated electron systems. Rep. Prog. Phys. 2016;79:084505. doi: 10.1088/0034-4885/79/8/084505. PubMed DOI

Balandin AA, Zaitsev-Zotov SV, Grüner G. Charge-density-wave quantum materials and devices – New developments and future prospects. Appl. Phys. Lett. 2021;119:170401. doi: 10.1063/5.0074613. DOI

Zhu X, Cao Y, Zhang J, Plummer EW, Guo J. Classification of charge density waves based on their nature. Proc. Natl Acad. Sci. USA. 2015;112:2367–2371. doi: 10.1073/pnas.1424791112. PubMed DOI PMC

Spera M, et al. Insight into the charge density wave gap from contrast inversion in topographic STM images. Phys. Rev. Lett. 2020;125:267603. doi: 10.1103/PhysRevLett.125.267603. PubMed DOI

King PD, et al. Subband structure of a two-dimensional electron gas formed at the polar surface of the strong spin-orbit perovskite KTaO3. Phys. Rev. Lett. 2012;108:117602. doi: 10.1103/PhysRevLett.108.117602. PubMed DOI

Santander-Syro AF, et al. Orbital symmetry reconstruction and strong mass renormalization in the two-dimensional electron gas at the surface of KTaO3. Phys. Rev. B. 2012;86:121107. doi: 10.1103/PhysRevB.86.121107. DOI

Nakagawa N, Hwang HY, Muller DA. Why some interfaces cannot be sharp. Nat. Mater. 2006;5:204–209. doi: 10.1038/nmat1569. DOI

Tyunina M, et al. Evidence for strain-induced ferroelectric order in epitaxial thin-film KTaO3. Phys. Rev. Lett. 2010;104:227601. doi: 10.1103/PhysRevLett.104.227601. PubMed DOI

Goniakowski J, Finocchi F, Noguera C. Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 2008;71:016501. doi: 10.1088/0034-4885/71/1/016501. DOI

Springborg M, Zhou M, Molayem M, Kirtman B. Surfaces, shapes, and bulk properties of crystals. J. Phys. Chem. C. 2018;122:11926–11932. doi: 10.1021/acs.jpcc.8b03041. DOI

Hwang J, et al. Tuning perovskite oxides by strain: Electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Mater. Today. 2019;31:100–118. doi: 10.1016/j.mattod.2019.03.014. DOI

Shanavas KV, Satpathy S. Electric field tuning of the Rashba effect in the polar perovskite structures. Phys. Rev. Lett. 2014;112:086802. doi: 10.1103/PhysRevLett.112.086802. DOI

Dirnberger D, Kresse G, Franchini C, Reticcioli M. Electronic state unfolding for plane waves: Energy bands, Fermi surfaces, and spectral functions. J. Phys. Chem. C. 2021;125:12921–12928. doi: 10.1021/acs.jpcc.1c02318. PubMed DOI PMC

Narayan A, Cano A, Balatsky AV, Spaldin NA. Multiferroic quantum criticality. Nat. Mater. 2019;18:223–228. doi: 10.1038/s41563-018-0255-6. PubMed DOI

Reticcioli M, Diebold U, Franchini C. Modeling polarons in density functional theory: Lessons learned from TiO2. J. Phys.: Condensed Matter. 2022;34:204006. PubMed

Grenier P, Bernier G, Jandl S, Salce B, Boatner LA. Fluorescence and ferroelectric microregions in KTaO3. J. Phys.: Condensed Matter. 1989;1:2515.

Vikhnin V, Eden S, Aulich M, Kapphan S. The origin of the red luminescence in incipient ferroelectric KTaO3. Solid State Commun. 2000;113:455–460. doi: 10.1016/S0038-1098(99)00506-2. DOI

Cancellieri C, et al. Polaronic metal state at the LaAlO3/SrTiO3 interface. Nat. Commun. 2016;7:10386. doi: 10.1038/ncomms10386. PubMed DOI PMC

Strocov, V. N., Cancellieri, C. & Mishchenko, A. S. Electrons and Polarons at Oxide Interfaces Explored by Soft-X-Ray ARPES. In: (eds Cancellieri, C. & Strocov, V.) Spectroscopy of Complex Oxide Interfaces. Springer Series in Materials Science, vol 266. (Springer, Cham, 2018).

Kong W, et al. Formation of two-dimensional small polarons at the conducting LaAlO3/SrTiO3 interface. Phys. Rev. B. 2019;100:085413. doi: 10.1103/PhysRevB.100.085413. DOI

Kapphan SE, Gubaev AI, Vikhnin VS. UV light-induced absorption in pure KTaO3 at low temperature. Phys. Status Solidi C. 2005;2:128–131. doi: 10.1002/pssc.200460128. DOI

Wang M, Wang B, Huang F, Lin Z. Enabling PIEZOpotential in PIEZOelectric semiconductors for enhanced catalytic activities. Angew. Chem. 2019;131:7606–7616. doi: 10.1002/ange.201811709. PubMed DOI

Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI

Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. PubMed DOI

Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758. doi: 10.1103/PhysRevB.59.1758. DOI

Sun J, et al. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nat. Chem. 2016;8:831–836. doi: 10.1038/nchem.2535. PubMed DOI

Dudarev S, Botton G. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B. 1998;57:1505. doi: 10.1103/PhysRevB.57.1505. DOI

Varignon J, Bibes M, Zunger A. Origin of band gaps in 3d perovskite oxides. Nat. Commun. 2019;10:1658. doi: 10.1038/s41467-019-09698-6. PubMed DOI PMC

Malyi OI, Zunger A. False metals, real insulators, and degenerate gapped metals. Appl. Phys. Rev. 2020;7:041310. doi: 10.1063/5.0015322. DOI

Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric, and morphology data. J. Appl. Crystallogr. 2011;44:1272–1276. doi: 10.1107/S0021889811038970. DOI

Tersoff J, Hamann DR. Theory and application for the scanning tunneling microscope. Phys. Rev. Lett. 1983;50:1998. doi: 10.1103/PhysRevLett.50.1998. DOI

Giessibl FJ. The qPlus sensor, a powerful core for the atomic force microscope. Rev. Sci. Instrum. 2019;90:011101. doi: 10.1063/1.5052264. PubMed DOI

Huber F, Giessibl FJ. Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures. Rev. Sci. Instrum. 2017;88:073702. doi: 10.1063/1.4993737. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...